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Abstract

We introduce a generic framework that reduces the com-

putational cost of object detection while retaining accuracy

for scenarios where objects with varied sizes appear in high

resolution images. Detection progresses in a coarse-to-fine

manner, first on a down-sampled version of the image and

then on a sequence of higher resolution regions identified

as likely to improve the detection accuracy. Built upon re-

inforcement learning, our approach consists of a model (R-

net) that uses coarse detection results to predict the poten-

tial accuracy gain for analyzing a region at a higher reso-

lution and another model (Q-net) that sequentially selects

regions to zoom in. Experiments on the Caltech Pedestri-

ans dataset show that our approach reduces the number of

processed pixels by over 50% without a drop in detection

accuracy. The merits of our approach become more signifi-

cant on a high resolution test set collected from YFCC100M

dataset, where our approach maintains high detection per-

formance while reducing the number of processed pixels by

about 70% and the detection time by over 50%.

1. Introduction

Most recent convolutional neural network (CNN) detec-

tors are applied to images with relatively low resolution,

e.g., VOC2007/2012 (about 500×400) [12, 13] and MS

COCO (about 600×400) [26]. At such low resolutions, the

computational cost of convolution is low. However, the res-

olution of everyday devices has quickly outpaced standard

computer vision datasets. The camera of a 4K smartphone,

for instance, has a resolution of 2,160×3,840 pixels and

a DSLR camera can reach 6,000×4,000 pixels. Applying

state-of-the-art CNN detectors directly to those high reso-

lution images requires a large amount of processing time.

Additionally, the convolution output maps are too large for

the memory of current GPUs.

Prior works address some of these issues by simplifying

the network architecture [14, 41, 9, 23, 38] to speed up de-
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Figure 1: Illustration of our approach. The input is a down-

sampled version of the image to which a coarse detector is

applied. The R-net uses the initial coarse detection results to

predict the utility of zooming in on a region to perform de-

tection at higher resolution. The Q-net, then uses the com-

puted accuracy gain map and a history of previous zooms

to determine the next zoom that is most likely to improve

detection with limited computational cost.

tection and reduce GPU memory consumption. However,

these models are tailored to particular network structures

and may not generalize well to new architectures. A more

general direction is treating the detector as a black box that

is judiciously applied to optimize accuracy and efficiency.

For example, one could partition an image into sub-images

that satisfy memory constraints and apply the CNN to each

sub-image. However, this solution is still computationally

burdensome. One could also speed up detection process and

reduce memory requirements by running existing detectors

on down-sampled images. However, the smallest objects

may become too small to detect in the down-sampled im-

ages. Object proposal methods are the basis for most CNN
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detectors, restricting expensive analysis to regions that are

likely to contain objects of interest [11, 35, 44, 43]. How-

ever, the number of object proposals needed to achieve good

recall for small objects in large images is prohibitively high

which leads to huge computational cost.

Our approach is illustrated in Fig. 1. We speed up object

detection by first performing coarse detection on a down-

sampled version of the image and then sequentially select-

ing promising regions to be analyzed at a higher resolution.

We employ reinforcement learning to model long-term re-

ward in terms of detection accuracy and computational cost

and dynamically select a sequence of regions to analyze at

higher resolution. Our approach consists of two networks:

a zoom-in accuracy gain regression network (R-net) learns

correlations between coarse and fine detections and predicts

the accuracy gain for zooming in on a region; a zoom-in Q

function network (Q-net) learns to sequentially select the

optimal zoom locations and scales by analyzing the output

of the R-net and the history of previously analyzed regions.

Experiments demonstrate that, with a negligible drop

in detection accuracy, our method reduces processed pix-

els by over 50% and average detection time by 25% on

the Caltech Pedestrian Detection dataset [10], and reduces

processed pixels by about 70% and average detection time

by over 50% on a high resolution dataset collected from

YFCC100M [21] that has pedestrians of varied sizes. We

also compare our method to recent single-shot detectors [32,

27] to show our advantage when handling large images.

2. Related work

CNN detectors. One way to analyze high resolu-

tion images efficiently is to improve the underlying detec-

tor. Girshick [16] speeded up the region proposal based

CNN [17] by sharing convolutional features between pro-

posals. Ren et al. proposed Faster R-CNN [33], a fully

end-to-end pipeline that shares features between proposal

generation and object detection, improving both accuracy

and computational efficiency. Recently, single-shot detec-

tors [27, 31, 32] have received much attention for real-time

performance. These methods remove the proposal gener-

ation stage and formulate detection as a regression prob-

lem. Although these detectors performed well on PASCAL

VOC [12, 13] and MS COCO [26] datasets, which generally

contain large objects in images with relatively low resolu-

tion, they do not generalize as well on large images with ob-

jects of variable sizes. Also, their processing cost increases

dramatically with image size due to the large number of

convolution operations.

Sequential search. Another strategy to handle large im-

age sizes is to avoid processing the entire image and instead

investigate small regions sequentially. However, most exist-

ing works focus on mining informative regions to improve

detection accuracy without considering computational cost.

Lu et al. [28] improve localization by adaptively focusing

on subregions likely to contain objects. Alexe et al. [1]

sequentially investigated locations based on what has been

seen to improve detection accuracy. However, the proposed

approach introduces a large overhead leading to long detec-

tion time (about 5s per object class per image). Zhang et

al. [42] improved the detection accuracy by penalizing the

inaccurate location of the initial object proposals, which in-

troduced more than 15% overhead to detection time.

A sequential search process can also make use of con-

textual cues from sources, such as scene segmentation. Ex-

isting approaches have explored this idea for various object

localization tasks [8, 37, 30]. Such cues can also be incorpo-

rated within our framework (e.g., as input to predicting the

zoom in reward). However, we focus on using only coarse

detections as a guide for sequential search and leave addi-

tional contextual information for future work. Other previ-

ous work [25] utilizes a coarse-to-fine strategy to speed up

detection, but this work does not select promising regions

sequentially.

Reinforcement learning (RL). RL a is popular mech-

anism for learning sequential search policies, as it allows

models to consider the effect of a sequence of actions rather

than individual ones. Ba et al. use RL to train a attention

based model in [3] to sequentially select most relevant re-

gions for object recognition and Jie et al. [20] select regions

for localization in a top-down search fashion. However,

these methods require a large number of selection steps and

may lead to long running time. Caicedo et al. [7] designed

an active detection model for object localization, which uti-

lizes Deep Q Networks (DQN) [29] to learn a long-term

reward function to transform an initial bounding box se-

quentially until it converges to an object. However, as re-

ported in [7], the box transformation takes about 1.5s de-

tection time on a typical Pascal VOC image which is much

slower than recent detectors [33, 27, 32]. In addition, [7]

does not explicitly consider selection cost. Although, RL

implicitly forces the algorithm to take a minimum number

of steps, we need to explicitly penalize cost since each step

can yield a high cost. For example, if we do not penalize

cost, the algorithm will tend to zoom in on the whole im-

age. Existing works have proposed methods to apply RL

in cost sensitive settings [18, 22]. We follow the approach

of [18] and treat the reward function as a linear combination

of accuracy and cost.

3. Dynamic zoom-in network

Our work employs a coarse-to-fine strategy, applying a

coarse detector at low resolution and using the outputs of

this detector to guide an in-depth search for objects at high

resolution. The intuition is that, while the coarse detector

will not be as accurate as the fine detector, it will identify

image regions that need to be further analyzed, incurring the
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Figure 2: Given a down-sampled image as input, the R-net generates an initial accuracy gain (AG) map indicating the

potential zoom-in accuracy gain of different regions (initial state). The Q-net is applied iteratively on the AG map to select

regions. Once a region is selected, the AG map will be updated to reflect the history of actions. For the Q-net, two parallel

pipelines are used, each of which outputs an action-reward map that corresponds to selecting zoom-in regions with a specific

size. The value of the map indicates the likelihood that the action will increase accuracy at low cost. Action rewards from

all maps are considered to select the optimal zoom-in region at each iteration. The notation 128×15×20:(7,10) means 128

convolution kernels with size 15×20, and stride of 7/10 in height/width. Each grid cell in the output maps is given a unique

color, and a bounding box of the same color is drawn on the image to denote the corresponding zoom region size and location.

cost of high resolution detection only in promising regions.

We make use of two major components: 1) a mechanism for

learning the statistical relationship between the coarse and

fine detectors, so that we can predict which regions need

to be zoomed in given the coarse detector output; and 2) a

mechanism for selecting a sequence of regions to analyze

at high resolution, given the coarse detector output and the

regions that have already been analyzed by the fine detector.

Our pipeline is illustrated in Fig. 2. We learn a strategy

that models the long-term goal of maximizing the overall

detection accuracy with limited cost.

3.1. Problem formulation

Our work is formulated as a Markov Decision Process

(MDP) [6]. At each step, the system observes the current

state, estimates potential cost-aware rewards of taking dif-

ferent actions and selects the action that has the maximum

long-term cost-aware reward.

Action. Our algorithm sequentially analyzes regions

with high zoom-in reward at high resolution. In this con-

text, an action corresponds to selecting a region to analyze

at high resolution. Each action a can be represented by a

tuple (x, y, w, h) where (x, y) indicates the location, and

(w, h) specifies the size of the region. At each step, the

algorithm scores a set of potential actions—a list of rectan-

gular regions—in terms of the potential long-term reward

of taking those actions.

State. The representation encodes two types of informa-

tion: 1) the predicted accuracy gain of regions yet to be an-

alyzed; and 2) the history of regions that have already been

analyzed at high resolution (the same region should not be

zoomed in multiple times). We design a zoom-in accuracy

gain regression network (R-net) to learn an informative ac-

curacy gain map (AG map) as the state representation from

which the zoom-in Q function can be successfully learned.

The AG map has the same width and height as the input im-

age. The value of each pixel in the AG map is an estimate

of how much the detection accuracy might be improved if

that pixel in the input image were included by the zoom-in

region. As a result, the AG map provides detection accu-

racy gain for selecting different actions. After an action is

taken, values corresponding to the selected region in the AG

map decrease accordingly, so the AG map can dynamically

record action history.

Cost-aware reward function. The state representation

encodes the predicted accuracy gain of zooming in on each

image subregion. To maintain a high accuracy with limited

computation, we define a cost-aware reward function for ac-

tions. Given state s and action a, the cost-aware reward

function scores each action (zoom region) by considering

both cost increment and accuracy improvement as

R(s, a) =
∑

k in a

|gk − plk| − |gk − phk | − λ
b

B
(1)

where k in a means that proposal k is included in the re-

gion selected by action a. plk and phk indicates coarse and

fine detection scores, and gk is the corresponding ground-

truth label. The variable b represents the total number of

pixels included in the selected region, and B indicates the

total number of pixels of the input image. The first term

measures the detection accuracy improvement. The second

term indicates the zoom-in cost. The trade-off between ac-
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curacy and computation is controlled by the parameter λ.

During training, the Q-net uses this reward function to cal-

culate the immediate rewards of taking actions and learns a

long-term reward function by Q learning [36].

3.2. Zoom­in accuracy gain regression network

The zoom-in accuracy gain regression network (R-net)

predicts the accuracy gain of zooming in on a particular re-

gion based on the coarse detection results. The R-net is

trained on pairs of coarse and fine detections so that it can

observe how they correlate with each other to learn a suit-

able accuracy gain.

Toward this end, we apply two pre-trained detectors

to a set of training images and obtain two sets of image

detection results: low-resolution detections {(dl
i, p

l
i, f

l
i )}

in the down-sampled image and high-resolution detections

{(dh
j , p

h
j )} in the high resolution version of each image,

where d is the detection bounding box, p is the probabil-

ity of being the target object and f indicates a feature vec-

tor of the corresponding detection. We use the superscripts

h and l to indicate the high resolution and low resolution

(down-sampled) images. For the model to learn whether or

not a high resolution detection improves the overall results,

given a set of coarse detections at training time, we intro-

duce a match layer which associates detections produced by

the two detectors. In this layer, we pair the coarse and fine

detection proposals and generate a set of correspondences

between them. The object proposals i in the down-sampled

image and j in the high-resolution image are defined as cor-

responding to each other if we find a j with sufficiently large

intersection over union IoU(dli, d
h
j ) with i (IoU >0.5).

Given a set of correspondences, {(dl
k, p

l
k, p

h
k , f

l
k)}, we

estimate the zoom-in accuracy gain of a coarse detection.

A detector can handle only objects within a range of sizes,

so applying the detector to the high-resolution image does

not always produce the best accuracy. For example, larger

objects might be detected with higher accuracy at lower res-

olution if the detector was trained on mostly smaller objects.

So, we measure which detection (coarse or fine) is closer to

groundtruth using the metric |gk − plk| − |gk − phk | where

gk ∈ {0, 1} indicates the groundtruth label. When the high

resolution score phk is closer to the groundtruth than the low

resolution score plk, the function indicates that this proposal

is worth zooming in on. Otherwise, applying a detector on

the down-sampled image is likely to yield a higher accuracy,

so we should avoid zooming in on this proposal. We use a

Correlation Regression (CR) layer to estimate the zoom-in

accuracy gain of proposal k such that

min
W

(|gk − plk| − |gk − phk | − Φ(W, f l
k))

2 , (2)

where Φ represents the regression function and W indicates

the parameters. The output of this layer is the estimated

accuracy gain. The CR layer contains two fully connected

layers where the first layer has 4,096 units and the second

one has only one output unit.

The AG map can be generated given the learned accu-

racy gain of each proposal. We assume that each pixel in-

side a proposal bounding box has equal contribution to its

accuracy gain. Consequently, the AG map is generated as

AG(x, y) =

{
α

Φ(Ŵ,f l

k
)

bk
if (x, y) in d

l
k,

0 otherwise,
(3)

where (x, y) in d
l
k means point (x, y) is inside the bound-

ing box d
l
k and bk denotes the number of pixels included in

d
l
k. α is a constant number. Ŵ denotes the estimated pa-

rameters of the CR layer. The AG map is used as the state

representation and it naturally contains the information of

coarse detections’ qualities. After zooming in and perform-

ing detection on a region, all the values inside the region are

set 0 to prevent future zooming on the same region.

3.3. Zoom­in Q function learning network

The R-net provides information about which image re-

gion is likely to be the most informative if it is inspected

next. Since the R-net is embedded within a sequential pro-

cess, we use reinforcement learning to train a second net-

work, the Q-net, to learn a long-term zoom-in reward func-

tion. At each step, the system takes an action by consider-

ing both immediate (Eq. 1) and future rewards. We formu-

late our problem in a Q learning framework, which approx-

imates the long-term reward function for actions by learn-

ing a Q function. Based on the Bellman equation [5], the

optimal Q function, Q∗(s, a), obeys an important identity:

given the current state, the optimal reward of taking an ac-

tion equals the combination of its immediate reward and a

discounted optimal reward at the next state triggered by this

action (4)

Q∗(s, a) = Es′ [R(s, a) + γmax
a′

Q∗(s′, a′)|s, a] (4)

where s is the state and a is an action. Following [29], we

learn the Q function for candidate actions by minimizing

the loss function at the i-th iteration, i.e.,

Li =(R(s, a) + γmax
a′

Q(s′, a′; θ−i )−Q(s, a; θi))
2 (5)

where θi and θ−i are parameters of the Q network and those

needed to calculate future reward at iteration i, respectively.

Eq. 5 implies that the optimal long-term reward can be

learned iteratively if the immediate reward R(s, a) is pro-

vided for a state-action pair. Since R(s, a) is a cost-aware

reward, the Q-net learns a long-term cost-aware reward

function for the action set.

In practice, θ−i = θi−C where C is a constant parameter.

γ is future reward discount factor. We choose C = 10 and
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γ = 0.5 empirically in our experiments. We also adopt the

ǫ-greedy policy [34] at training to balance between explo-

ration and exploitation. The ǫ setting is the same as in [7].

The structure of our Q-net is shown in Fig. 2. The in-

put is the AG map and each pixel in the map measures the

predicted accuracy gain if the pixel at that location in the

input image is included in the zoom region. The output is

a set of maps and each value of a map measures the long-

term reward of taking the corresponding action (selecting

a zoom region at a location with a specified size). To al-

low the Q-net to choose zoomed-in regions with different

sizes, we use multiple pipelines, each of which outputs a

map corresponding to zoomed-in regions of a specific size.

These pipelines share the same features extracted from the

state representation. In the training phase, actions from all

maps are concatenated to produce a unified action set and

trained end-to-end together by minimizing the loss function

in Eq. 5 so that all actions values compete with each other.

After zooming in on a selected region, we get both coarse

and fine detections on the region. We just replace the coarse

detections with fine ones in each zoom-in region.

Window selection refinement. The output of the Q-net

can be directly used as a zoom-in window. However, be-

cause candidate zoom windows are sparsely sampled, the

window can be adjusted slightly to increase the expected re-

ward. The Refine module takes the Q-net output as a coarse

selection and locally moves the window towards a better lo-

cation, as measured by the accuracy gain map by

â = argmax
a∈A

∑

(x,y) in a

AG(x, y) (6)

where â selects the refined window and A =
(xq ± µx, yq ± µy, w, h) corresponds to the local refine-

ment area controlled by parameter µ, where (xq, yq, w, h)
indicates the output window of Q-net. We show a

qualitative example of refinement in Fig. 3.

4. Experiments

We perform experiments on the Caltech Pedestrian De-

tection dataset (CPD) [10] and a Web Pedestrian dataset

(WP) collected from YFCC100M [21]. Datasets like Pas-

cal VOC [12] and MS COCO [26] are not chosen to vali-

date our method, because they are not close to our scenario.

In [12] and [26], there are generally very few objects per

image and most objects are large, which leads to 1) close-

to-zero rewards for regions, since large objects are likely

to maintain high detection accuracy after reasonable down

sampling; and, 2) large zoom-in windows in order to en-

close large objects. Low region rewards discourage the win-

dow selection process and large zoom-in windows produce

high cost, which make our method invalid.

Caltech Pedestrian Detection (CPD). There are dif-

ferent settings according to different annotation types, i.e.

Overall, Near scale, Medium scale, No occlusion, Partial

occlusion and Reasonable [10]. Similar to the Reasonable

setting, we only train and test on pedestrians at least 50 pix-

els tall. We sparsely sample images (every 30 frames) from

the training set. There are 4,321 images in the training set

and 4,088 images in the test set. We rescale the images to

600 pixels on the shorter side to form the high resolution

version of image during both training and testing. All of

our model components are trained on this training set.

Web Pedestrian (WP) dataset. The image resolution

in the CPD dataset is low (640×480). To better demon-

strate our approach, we collect 100 test images with much

higher resolution from the YFCC100M [21] dataset. The

images are collected by searching for keywords ”Pedes-

trian”, ”Campus” and ”Plaza”. An example is shown in

Fig. 4 where pedestrians have varied sizes and are densely

distributed in the images. For this dataset, we annotate all

the pedestrians with at least 16-pixel width and less than

50% occlusion. Images are rescaled to 2,000 pixels on the

longer side to fit for our GPU memory.

4.1. Baseline methods

We compare to the following baseline algorithms:

Fine-detection-all. This baseline directly applies the

fine detector to the high resolution version of image. This

method leads to high detection accuracy with high compu-

tational cost. All of the other approaches seek to maintain

this detection accuracy with less computation.

Coarse-detection-all. This baseline applies the coarse

detector on down-sampled images with no zooming.

GS+Rnet. Given the initial state representation gener-

ated by the R-net, we use a greedy search strategy (GS) to

densely search for the best window every time based on the

current state without considering the long-term reward.

ER+Qnet. The entropy of the detector output (object

vs no object) is another way to measure the quality of a

coarse detection. [2] used entropy to measure the quality

of a region for a classification task. Higher entropy implies

lower quality of a coarse detection. So, if we ignore the

correlation between fine and coarse detections, the accuracy

gain of a region can also be computed as

− plilog(p
l
i)− (1− pli)log(1− pli) (7)

where pl indicates the score of the coarse detection. For

fair comparison, we fix all parameters of the pipeline except

replacing the R-net output of a proposal with its entropy.

SSD and YOLOv2. We also compare our method with

off-the-shelf SSD [27] and YOLOv2 [32] trained on CPD,

to show the advantage of our method on large images.

4.2. Variants of our framework

We use Qnet-CNN to represent the Q-net developed us-

ing a fully convolutional network (see Fig. 2). To ana-
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Figure 3: Effect of region refinement. Red boxes indicate

zoom regions and the step number denotes the order that the

zoom windows were selected. Before refinement, windows

are likely to cut people in half due to the sampling grid,

leading to a bad detection performance. Refinement locally

adjusts the location of a window and produces better results.

lyze the contributions of different components to the per-

formance gain, we evaluate three variants of our framework:

Qnet*, Qnet-FC and Rnet*.

Qnet*. This method uses a Q-net with refinement to lo-

cally adjust the zoom-in window selected by Q-net.

Qnet-FC. Following [7], we develop this variant with

two fully connected (FC) layers for Q-net. For Qnet-FC, the

state representation is resized to a vector of length 1, 200 as

the input. The first layer has 128 units and the second layer

has 34 units (9+25). Each output unit represents a sampled

window on an image. We uniformly sample 25 windows

of size 320 × 240 and 9 windows of size 214 × 160 on

the CPD dataset. Since the output number of Qnet-FC can

not be changed, windows sizes are proportionally increased

when Qnet-FC is applied to WP dataset.

Rnet*. This is an R-net learned using a reward function

that does not explicitly encode cost (λ = 0 in Eq. 1).

4.3. Evaluation metric

We use three metrics when comparing to the Fine-

detection-all strategy: AP percentage (Aperc), processed

pixel numbers percentage (Pperc), and average detection

time percentage (Tperc). Aperc quantifies the percentage

of AP we obtain compared to the Fine-detection-all strat-

egy. Pperc and Tperc indicate the computational cost as a

percentage of the Fine-detection-all baseline strategy.

4.4. Implementation details

We downsample the high resolution image by a factor of

2 to form a down-sampled image for all of our experiments

and only handle zoom-in regions at the high resolution.

For the Q-net, we spatially sample zoom-in candidate

regions with two different window sizes (320 × 240 and

214 × 160) in a sliding window manner. For windows of

size W ×H , we uniformly sample windows with horizontal

stride Sx = W/2 and vertical stride Sy = H/2 pixels. For

the refinement, we set (µx, µy) = 0.5(Sx, Sy). The Q-net

stops taking actions when the sum over all the values of the

AG map is smaller than 0.1.

We use Faster R-CNN as our detector due to the success

of R-CNN in many computer vision applications [15, 39,

24, 40, 19, 4]. Two Faster R-CNNs are trained on the CPD

training set at the fine and coarse resolutions and used as

black-box coarse and fine detectors afterwards. YOLOv2

and SSD are trained on the same training set with default

parameter settings in the official codes released by the au-

thors. All experiments are conducted using a K-80 GPU.

4.5. Qualitative results

The qualitative comparisons, which show the effect of

refinement on the selected zoom-in regions, are shown in

Fig. 3. We observe that refinement significantly reduces the

cases in which pedestrians only partly occur in the selected

windows. Due to the sparse window sampling of Q-net,

optimal regions might not be covered by any window can-

didate, especially when the window size is relatively small

compared to the image size.

We show a comparison between our method (Q-net*-

CNN+Rnet) and the greedy strategy (GS+Rnet) in Fig. 4.

GS tends to select duplicate zooms on the same portion of

the image. While the Q-net might select a sub-optimal win-

dow in the near term, it leads to better overall performance

in the long term. As shown in the first example of Fig. 4,

this helps Q-net terminate with fewer zooms.

Fig. 5 shows a qualitative comparison of R-net and ER.

The examples in the first row are detections that do not

need to be zoomed in on, since the coarse detections are

good enough. R-net produces much lower accuracy gains

for these regions. On the other hand, R-net outputs much

higher gains in the second row which includes regions need-

ing analysis at higher resolution. The third row contains

examples which get worse results at higher resolution. As

we mentioned before, entropy cannot determine if zooming

in will help, while R-net produces negative gains for these

cases and avoids zooming in on these regions.

4.6. Quantitative evaluation

Table 1 shows the average precision (AP) and average

detection time per image for Fine-detection-all and Coarse-

detection-all strategies on CPD and WP datasets. The

coarse baseline maintains only about 65% and 71% AP on

CPD and WP, respectively, suggesting that the naive down-

samping method significantly decreases detection accuracy.

Comparative results on the CPD and WP dataset are
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Our methodGreedy strategy (GS)

Step	1

Step	2
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Step	3

Step	1Step	2

Step	1

Step	2 Step	3

Figure 4: Qualitative comparison between using the Q-net*

and a greedy strategy (GS) that selects the region with high-

est predicted accuracy gain at each step. Red bounding

boxes indicate zoom-in windows and step number denotes

the order of windows selection. The Q-net selects regions

that appear sub-optimal in the near term but better zoom

sequences in the long term, which leads to fewer steps as

shown in the first row.

Dataset APf APc DTf (ms) DTc(ms)

CPD 0.493 0.322 304 123

WP 0.407 0.289 1375 427

Table 1: Coarse-detection-all(with subscript c) v.s. Fine-

detection-all (with subscript f ) on CPD and WP datasets.

DT indicates average detection time per image.

shown in Table 2. Q-net*-CNN + R-net reduces processed

pixels by over 50% with comparable (or even better) detec-

tion accuracy than the Fine-detection-all strategy and im-

proves detection accuracy of Coarse-detection-all by about

35% on the CPD dataset. On the WP dataset, the best

variant (Q-net*-CNN + R-net*)) reduces processed pixels

by over 60% while maintaining 97% detection accuracy of

Fine-detection-all. Table 2 shows that variants of our frame-

work outperform GS+Rnet and Qnet+ER in most cases

which suggests that Qnet and Rnet are better than GS and

ER. Q-net is better than GS since the greedy strategy con-

siders individual actions separately, while Q-net utilizes a

RL framework to maximize the long term reward.

Qnet*-CNN+Rnet always produces better detection ac-

curacy than Qnet*-CNN+ER under the same cost budget,

which demonstrates that learning the accuracy gain using

an R-net is preferable to using entropy, a hand-crafted mea-

sure. This could be due to two reasons: 1) entropy measures

only the confidence of the coarse detector, while our R-net

estimates the correlation with the high-resolution detector

based on confidence and appearance; 2) according to the re-

Figure 5: Qualitative comparison of R-net and ER on the

Caltech Pedestrians test set. The first row of numbers in-

dicate probability of the red box being a pedestrian. C de-

notes coarse detection and F indicates fine detection. Red

font denotes the accuracy gain of R-net and blue is for ER.

Positive and negative values are normalized to [0, 1] and [-

1, 0). Compared to ER, R-net gives lower positive scores

(row #1)/ negative scores (row #3) for regions that coarse

detections are good enough/ better than fine detections and

it produces higher scores for regions (row #2) where fine

detections are much better than coarse ones.
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Figure 6: Detection time and accuracy comparison on the

CPD/WP dataset after zooming in on two/three regions.

gression target function in Eq. 2, our R-net also measures

whether the zoom-in process will improve detection accu-

racy. This avoids wasting resources on regions that cannot

be improved (or might even be degraded) by fine detections.

We observe from Fig. 6 that our approach (Qnet*-

CNN+Rnet and Qnet*-CNN+Rnet*) reduces detection time

by 50% while maintaining a high accuracy on the WP

dataset. On the CPD dataset, they can reduce detection time

by 25% without a significant drop of accuracy. Detection

time cannot be reduced as much as on the WP dataset, since

CPD images are relatively small; however, it is notable that

our approach helps even in this case.
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Baselines Variants under our framework

Pperc GS+Rnet Qnet*-CNN+ER Qnet*-CNN+Rnet Qnet*-CNN+Rnet* Qnet*-FC+Rnet Qnet-CNN+Rnet

CPD

≤40% 65%(40%) 88%(74%) 99%(75%) 65%(40%) 93%(64%) 65%(40%)

≤45% 93%(87%) 97%(79%) 102%(80%) 101%(80%) 94%(73%) 96%(73%)

≤50% 95%(97%) 97%(79%) 102%(80%) 101%(80%) 94%(73%) 96%(73%)

WP

≤30% 85%(62%) 83%(38%) 92%(40%) 93%(40%) 71%(31%) 83%(40%)

≤35% 90%(82%) 91%(51%) 93%(45%) 96%(48%) 71%(31%) 85%(47%)

≤40% 94%(96%) 91%(51%) 93%(49%) 97%(52%) 89%(54%) 86%(52%)

Table 2: Detection accuracy comparisons in terms of Aperc on the CPD and WP datasets under a fixed range of processed

pixel percentage (Pperc). Bold font indicates the best result. Numbers are display as Aperc(Tperc)- Tperc is included in the

parentheses for the reference of running time. Note that 25% Pperc overhead is incurred simply by analyzing the down-

sampled image (this overhead is included in the table) and percentages are relative to Fine-detection-all baseline (an Aperc

of 80% means that an approach reached 80% of the AP reached by the baseline).

CPD WP

AP DT(ms) AP DT(ms)

SSD500 [27] 0.405 128 0.255 570

SSD300 [27] 0.400 74 0.264 530

YOLOv2 [32] 0.398 70 0.261 790

Our method 0.503 243 0.379 619

Table 3: Comparison between Qnet*-CNN+Rnet and

single-shot detectors trained on CPD. DT indicates average

detection time per image. Bold font indicates the best result.

Table 3 shows accuracy/cost comparisons between

YOLO/SSD and our method. Experiments suggest the fol-

lowing conclusions: 1) although fast, these single-shot de-

tectors achieve much lower AP on images with objects

occurring over a large range of scales; 2) as image size

increases, YOLO/SSD processing time increases dramat-

ically, while, our method achieves much higher accuracy

with comparable detection time; 3) SSD consumes much

more GPU memory than other detectors on large images

due to the heavy convolution operations. We have to resize

images of WP to 800×800 to fit within GPU memory. Note

that it is possible to improve the results of YOLO/SSD by

pruning the networks or training with more data, but that is

not within the scope of this paper.

4.7. Ablation analysis

Improvement by refinement (Qnet*-CNN+Rnet vs.

Qnet-CNN+Rnet). In Table 2, we find that region refine-

ment significantly improves detection accuracy under fixed

cost ranges, especially on the WP. Refinement is more use-

ful when zoom-in window size is relatively small compared

with image size due to the sparse window sampling of Q-

net. Fig. 3 qualitatively shows the effect of refinement.

Improvement by CNN (Qnet*-CNN+Rnet vs. Qnet*-

FC+Rnet). FC has two obvious drawbacks in our setting.

First, it has a fixed number of inputs and outputs which

makes it hard to handle images with different sizes. Sec-

ond, it is spatially dependent. Images from the CPD dataset

consist of driving views which have strong spatial priors,

i.e., most pedestrians are on the sides of the street and the

horizon is roughly in the same place. Qnet-FC takes advan-

tage of these spatial priors, so it works better on this dataset.

However, when it is applied to the WP dataset, its perfor-

mance drops significantly compared to other methods, since

the learned spatial priors now distract the detector.

Improvement by the cost term (Qnet*-CNN+Rnet

vs. Qnet*-CNN+Rnet*). Qnet*-CNN+Rnet outperforms

Qnet*-CNN+R-net* on CPD, especially when Pperc is low

(40%). Without explicit cost penalization, the algorithm of-

ten selects the largest zoom regions, a poor strategy when

there is a low pixel budget. However, since the window

sizes are relatively small compared to the image size of the

WP dataset, Qnet*-CNN+Rnet* does not suffer much from

this limitation. On the contrary, it benefits from zooming in

on relatively bigger regions. Consequently, it outperforms

other variants. Nevertheless, Qnet*-CNN+Rnet has compa-

rable detection accuracy and can generalize better on sce-

narios where window sizes are comparable with image size.

5. Conclusion

We propose a dynamic zoom-in network to speed up ob-
ject detection in large images without manipulating the un-
derlying detector’s structure. Images are first downsampled
and processed by the R-net to predict the accuracy gain of
zooming in on a region. Then, the Q-net sequentially selects
regions with high zoom-in reward to conduct fine detection.
The experiments show that our method is effective on both
Caltech Pedestrian Detection dataset and a high resolution
pedestrian dataset.
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