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Question: What does the woman do after look uncertain? Answer: smile
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Figure 1. Answering questions in videos involves both motion and appearance analysis, and usually requires multiple cycles of reasoning,

especially for transitive questions, e.g. “ What does the woman do after look uncertain?”, we need to first localize when the woman looks

uncertain, which requires motion evidence for looking uncertain and appearance evidence for the woman; and then focus on what the

woman does (smile).

Abstract

Video Question Answering (QA) is an important task in

understanding video temporal structure. We observe that

there are three unique attributes of video QA compared with

image QA: (1) it deals with long sequences of images con-

taining richer information not only in quantity but also in

variety; (2) motion and appearance information are usu-

ally correlated with each other and able to provide useful

attention cues to the other; (3) different questions require

different number of frames to infer the answer. Based on

these observations, we propose a motion-appearance co-

memory network for video QA. Our networks are built on

concepts from Dynamic Memory Network (DMN) and in-

troduces new mechanisms for video QA. Specifically, there

are three salient aspects: (1) a co-memory attention mech-

anism that utilizes cues from both motion and appearance

to generate attention; (2) a temporal conv-deconv network

to generate multi-level contextual facts; (3) a dynamic fact

ensemble method to construct temporal representation dy-

namically for different questions. We evaluate our method

on TGIF-QA dataset, and the results outperform state-of-

the-art significantly on all four tasks of TGIF-QA.

∗ indicates equal contributions.

1. Introduction

Understanding video temporal structure is an important

topic in computer vision. To achieve this goal, various

tasks have been proposed, such as temporal action localiza-

tion [29, 10], action anticipation [11] and video prediction

[32]. Besides these tasks, video Question Answering (QA)

[16, 30] is another challenging task, which not only requires

the understanding of video temporal structure, but also joint

reasoning of videos and texts. In this paper, we tackle the

problem of video QA.

Image and text question answering have achieved much

progress recently. The success comes in part from the appli-

cation of attention mechanisms [37, 21] and memory mech-

anisms [20] in deep neural networks. Attention mechanisms

tell the neural network “where to look”, while the mem-

ory mechanism refines answers in multiple reasoning cy-

cles. Video QA is different from image QA [23, 21] in two

aspects: (1) the questions are more about temporal reason-

ing of the videos, e.g. motion transition and action count-

ing, than spatial attributes, such as colors, spatial locations,

which require effective temporal representation modeling;

(2) the input source is a sequence of images, rather than a

single image, which contains richer information not only in

quantity but also in variety (appearance, motion, transition)

to “remember”, and it makes the reasoning process more

complicated.

Dynamic Memory Networks (DMN) [20, 33] were orig-
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inally proposed for text and image question answering. It

contained a memory module to encode the input sources

multiple cycles and an attention mechanism allowing the

reading process to focus on different contents in each cy-

cle. Although DMN contains an input module and a mem-

ory module which are able to read and remember a long

sequence information, which is applicable for videos, di-

rectly applying such a method to video QA task would not

give satisfying results. Because it lacks motion analysis, es-

pecially joint analysis between motion and appearance in

videos, and temporal modeling. To strengthen the memory

mechanism, Na et al. [25] proposed a read-write memory

network that jointly encode the movie appearance and cap-

tion content, however it lacks motion analysis and dynamic

memory update. Xu et al. [35] exploited the appearance

and motion via gradually refined attention, where the mo-

tion and appearance features are fused together.

We observe two unique attributes of answering questions

in videos. The first is that the motion and appearance infor-

mation are usually correlated with each other in the reason-

ing process. For example, in answering the question “what

does the woman do after look uncertain?” as shown in Fig-

ure 1, we need to first localize “the woman look uncertain”

action, which requires motion evidence for looking uncer-

tain and appearance evidence for the woman; after that, we

need to ignore the man’s interval, and then focus on what

the woman does (smile). Appearance and motion informa-

tion are both involved in the reasoning process and provide

attention cues to each other. The second attribute is that dif-

ferent types of questions may require representations from

different amounts of frames, for example, “what is the color

of the bulldog?” needs only a single frame to produce the

answer, while “How many times does the cat lick” needs

the understanding of the whole video.

Based on these observations, we propose a motion-

appearance co-memory network for video QA. Our model

is built on concepts of DMN/DMN+ [20, 33], so we share

the same terms with DMN [20], such as facts, memory and

attention. Specifically, a video is converted to a sequence of

motion and appearance features by the two-stream models

[34]. The motion and appearance features are then fed into

a temporal convolutional and deconvolutional neural net-

work to build multi-level contextual facts, which have the

same temporal resolution but represent different contextual

information. These contextual facts are used as input facts

to the memory networks. The co-memory networks hold

two separate memory states, one for motion and one for ap-

pearance. To jointly model and interact with the motion and

appearance information, we design a co-memory attention

mechanism that takes motion cues for appearance attention

generation, and appearance cues for motion attention gen-

eration. Based on these attentions, we design dynamic fact

ensemble method to produce temporal facts dynamically at

each cycle of fact encoding. We evaluate our model on

TGIF-QA dataset [16], and outperform state-of-the-art per-

formance significantly on all four tasks in TGIF-QA.

The novelty of our method is three-fold compared with

DMN/DMN+ [20, 33]:

(1) We design a co-memory attention mechanism to

jointly model motion and appearance information.

(2) We use temporal conv-deconv networks to build

multi-level contextual facts for video QA.

(3) We introduce a method called dynamic fact ensemble

to dynamically produce temporal facts in each cycle of fact

encoding.

In the following, we first introduce related work, and

then outline the DMN/DMN+ framework. In Section 4, we

present our motion-appearance co-memory network in de-

tail, and in Section 5, we show the evaluation of our method

on TGIF-QA.

2. Related Work

Image question answering. Image question answering

aims to measure the capability of reasoning about linguistic

and image inputs jointly. Many methods have been pro-

posed [37, 5, 14, 21, 36, 7, 3, 1, 33, 23, 4, 28, 17, 13, 40,

38, 41, 42]. Among all these models, attention mechanism

[37, 5, 21, 42] provides guidance to deep models on “where

to look” and memory mechanism [20, 33] allows the model

to have multiple reasoning iterations and refine the answer

gradually. Question-guided attention mechanism [5] uses

semantic representation of a question as query to search for

the regions in an image that are related to the answer. Yang

et al. [37] presented a Stacked Attention Network (SAN)

that queries an image multiple times to infer the answer pro-

gressively. Lu et al. [21] argued that modeling “what words

to listen to” is equally important to model “where to look”,

and proposed a co-attention model that jointly reasons about

image-guided and question-guided attention. Instead of di-

rectly inferring answers from the abstract visual features,

Yu et al. [38] developed a semantic attention mechanism to

select high-level question-related concepts. Dynamic mem-

ory network (DMN), which was first introduced by Kumar

et al. [20] to solve text based question answering, adopted

episodic memories and attention mechanisms which allow

multiple cycles of reasoning. Xiong et al. [33] improved the

memory and input module of DMN so that it can be applied

to image QA.

Video question answering. Video QA is a relatively

new task compared with image QA. Yu et al. [39] adopted

a semantic attention mechanism, which combines the de-

tected concepts in videos with text encoding/decoding to

generate answers. Comparing with images, temporal do-

main is unique to videos. A temporal attention mechanism

is leveraged to selectively attend to one or more periods of

a video in [16, 24, 35]. Besides temporal attention mecha-
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Figure 2. General Dynamic Memory Network (DMN) [20] archi-

tecture. The memory update process for the t-th cycle is : (1)

the facts F are encoded by an attention-based GRU in episodic

memory module, where the attention is generated by last memory

mt−1; (2) the final hidden state of the GRU is called contextual

vector ct, which is used to update the memory mt together with

question embedding q. The question answer is generated from the

final memory state mT .

nism, Jang et al. [16] and Xu et al. [35] also utilized motion

information along with appearance information in videos.

Recently Na et al. [25] and Kim et al. [18] both introduced

the memory mechanism to their models for video QA. How-

ever, their models [25, 18] both lack motion analysis and

dynamic memory update mechanism.

Video temporal analysis. To answer the video-based

questions correctly, temporal analysis of videos is neces-

sary. Shou et al. [29] presented a multi-stage Segment-CNN

model to generate action proposals and localize actions in

videos. Temporal Unit Regression Network (TURN) [9]

and Cascaded Boundary Regression (CBR) [10] exploit the

temporal boundary regression mechanism for proposal gen-

eration and action detection. Recently Gao et al. [8] and

Hendricks et al. [2] proposed to localize activities by lan-

guage queries, their methods involve of joint modeling of

the videos and language queries, which also related to video

QA.

3. General Dynamic Memory Networks

As our work is closely related to DMN [20, 33], we begin

with introducing the general framework of DMN. It con-

tains four distinct modules: an input module, a question

module, an episodic memory module and an answer mod-

ule, as shown in Figure 2.

Fact module. The fact module converts the input data

(e.g. text, image, video) into a set of vectors called facts,

which is denoted as F = [f1, f2, ..., fL], where L is the to-

tal number of facts. For text-based QA, [20] used a Gated

Recurrent Unit (GRU) to encode all text information; for

image-based QA, [33] adopted a bi-directional GRU to en-

code the local region visual features to globally-aware facts.

Question module. The question module converts the

question into an embedding q. Specifically, [20, 33] used

a GRU to encode the question sentence and use the final

hidden state of the GRU as the question embedding.

Episodic memory module. Episodic memory is de-

signed to retrieve the relevant information from the facts.

To extract information related to the questions from the facts

more effectively, especially when transitive reasoning is re-

quired in questions, the episodic memory module iterates

over the input facts for multiple cycles, and updates the

memory after each cycle. There are two important mech-

anisms in the episodic memory module: an attention mech-

anism and a memory update mechanism.

Suppose that the updated memory after t-th cycle is mt,

the facts set F = [f1, f2, ..., fL], the question embedding is

q, then the attention gate gti is given by

gti = Fa(fi,mt−1, q) (1)

where Fa is an attention function which takes the fact vector

fi at step i, memory mt−1 at cycle t − 1 and the question

q as inputs, and outputs a scalar value gti , which represents

the attention value for the fact fi in cycle t.

To effectively use the ordering and positional informa-

tion in videos, an attention based GRU is designed. Instead

of using the original update gate in the GRU, the attention

gate gti is used, the update equation for the modified GRU

is

hi = gti ◦ h̃i + (1− gti) ◦ hi−1 (2)

The final hidden state of the attention based GRU is used

as the contextual feature ct for updating the episodic mem-

ory mt. Together with the question embedding q and the

memory for cycle t − 1, the t-th cycle memory is updated

by

mt = Fm(mt−1, ct, q) (3)

where Fm is a memory update function. The final memory

mT is passed to the answer module to generate the final

answers, where T is the number of memory update cycle.

Answer module. The answer module takes both q and

mT to generate the models predicted answer. Different an-

swer decoders may be applied for different tasks, e.g. a soft-

max output layer for single word answer.

4. Motion-Appearance Co-Memory Networks

In this section, we present our motion-appearance co-

memory networks, including multi-level contextual facts,

co-memory module and answer module. The question mod-

ule remains the same as the one in traditional DMN.

4.1. Multi­level Contextual Facts

The videos are cut into small units [9] (a sequence of

frames). For each video unit, we use two-stream CNN mod-

els [34] to extract unit-level motion and appearance fea-

tures. More feature pre-processing details are given in Sec-
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Figure 3. The input temporal representations are processed by

temporal conv-deconv layers to build multi-layer contextual facts,

which have the same temporal resolution but different contextual

information.

tion 5. The sequence of unit-level appearance features and

motion features is represented as {ai} and {bi} respectively.

To build multiple levels of temporal representations

where each level represent different contextual information,

we use the temporal convolutional layers to model the tem-

poral contextual information and de-convolutional layers to

recover temporal resolution, as shown in Figure 3. Specifi-

cally, the lowest level feature sequence is built directly from

the unit features, A1

L = {ai}, B1

L = {bi}. The convo-

lutional layers compute a feature hierarchy consisting of

temporal feature sequences at several scales with a scaling

step of 2, F 1

L, F 2

L/2, F 3

L/4, ..., as shown in Figure 3. Note

that F could be A (for appearance features) or B (for mo-

tion features). The de-convolutional pathway hypothesizes

higher resolution features F 2

L, F 3

L by upsampling tempo-

rally coarser, but semantically stronger, feature sequences.

Thus, F 1

L, F 2

L and F 3

L have the same resolution but dif-

ferent temporal contextual coverage. Note that we only

show 3 levels in Figure 3, more levels could be modeled

by adding more convolutional and de-convolutional layers.

FL = {F 1

L, F
2

L, ..., F
N
L } is termed as contextual facts.

4.2. Motion­appearance Co­Memory Module

In this part, we introduce the co-memory attention mech-

anism and the dynamic fact ensemble method.

Co-memory attention. The questions in video QA usu-

ally involve both appearance and motion. Appearance usu-

ally provides useful cues for motion attention, i.e. guides

the focus on motion content, and vice versa. To allow in-

teraction between appearance and motion, we design a co-

memory attention mechanism. Specifically, two separate

memory modules are used to hold motion memory mt
b and

appearance memory mt
a, where t is the number of cycle for

memory update. As indicated before, when the networks

read motion facts to update motion memory, appearance

memory provides useful cues to generate attentions; motion

memory is also helpful for updating appearance attention.

Therefore, mt−1

b and mt−1

a are both used to generate atten-

tions for motion and appearance fact encoding in the t-th
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Figure 4. Co-memory attention module extracts useful cues from

both appearance and motion memories to generate attention

gat/gbt for motion and appearance separately. Dynamic fact en-

semble takes the multi-layer contextual facts AL/BL and the at-

tention scores gat/gbt to construct proper facts A
s/h
L /B

s/h
L , which

are encoded by an attention-based GRU. The final hidden state

ctb/cta of the GRU is used to update the memory mt
b/mt

a. The final

output memory mh is the concatenation of the motion and appear-

ance memory, and it is used to generate answers.

cycle. As we build multiple levels of facts, we generate an

attention score for each fact vector at each level. The mo-

tion attention gate for fact bij is gbti,j and the appearance

attention for fact aij is gati,j , where t means the number of

cycle, i is the level of fact representation and j is the step of

the facts.

zati,j = tanh
(

W
2

a

(

a
j
i +W

1

a[m
t−1

a , q]
))

gati,j = W
4

a

(

zati,j +W
3

a[m
t−1

b , q]
)

(4)

zbti,j = tanh
(

W
2

b

(

b
j
i +W

1

b [m
t−1

b , q]
))

gbti,j = W
4

b

(

zbti,j +W
3

b [m
t−1

a , q]
)

(5)

where W
1

a, W2

a, W3

a, W4

a, W1

b , W2

b , W3

b and W
4

b are

weight parameters. gati,j and gbti,j are attentions used in

dynamic fact ensemble and memory update.

Dynamic fact ensemble. As shown in Section

4.1, we build a multi-layer contextual facts set FL =
{F 1

L, F
2

L, ..., F
N
L } for motion and appearance separately,

which have the same temporal resolution, but represent dif-

ferent contextual information. There are two reasons that

the facts should be selected dynamically: (1) Different types

of questions may require different level of representations,

e.g. the “bulldog color” and the “cat lick” questions given in

Section 1; (2) During the multiple cycles of the fact reading,
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Figure 5. Multi-layer contextual facts are dynamically constructed

via a soft attention fusion process, which computes a weighted

average facts according to the attention.

each cycle may focus on different level of information. We

designed an attention-based fact ensemble methods shown

in Figure 5. For simplicity, we use gti,j to represent the at-

tention gate, which is actually gati,j for appearance and gbti,j
for motion. We calculate Softmax over gti,j along level axis

(i.e. i) to get attention scores sti,j .

The ensemble facts can be represented as

F s
t : {f t

j =

N
∑

i=0

sti,jf
i
j}

L
j=1

(6)

where fi,j is the fact vector of level i and step j in the con-

textual facts FL. The attention scores used in the later fact

encoding process are given by

stj = softmax(
1

N

N
∑

i=0

gti,j), j = 1, 2, ..., L (7)

where the Softmax is computed along j axis.

Memory update. The fact encoding processes are con-

ducted separately for motion and appearance, which adopts

an attention based GRU [33] to generate contextual vectors

cta and ctb for appearance and motion in the t-th cycle. Mo-

tion memory mt
b and appearance memory mt

a are updated

separately as follows.

mt
a = FC([mt−1

a , q, cta]) (8)

mt
b = FC([mt−1

b , q, ctb]) (9)

where FC means fully-connected layer, ReLU is used as the

non-linear activation. The final output memory mh is the

concatenation of mT
a and mT

b , where T is the number of

cycles.

4.3. Answer Module

Following [16], we model the four tasks in TGIF-QA

[16] into three different types: multiple-choice, open-ended

numbers and open-ended words.

For multiple-choice, we use a linear regression function

that takes the memory state mh and outputs a real-valued

score for each answer candidate.

s = W
T
mmh (10)

where Wm are weight parameters. The model is optimized

by hinge loss between the scores for correct answers sp and

the scores for incorrect answers sn, max(0, 1 + sn − sp).
This decoder is used to solve repeating action and state tran-

sition tasks.

For open-ended numbers, we also use a linear regression

function which takes the memory state mh and outputs an

integer-valued answer.

s = [WT
nmh + b] (11)

where [.] means rounding. We adopt ℓ2 loss between the

groundtruth value and the predicted value to train the model,

which is used to solve the repetition count task.

For open-ended words, we treat this as a classification

problem. A linear function that takes the final memory state

mh followed by a softmax layer is adopted to generate an-

swers.

o = softmax
(

W
⊤

wmh + b
)

(12)

where Ww are weight parameters and b is bias. Cross-

entropy loss is used to train the model and this type of de-

coder is used in Frame QA task.

For each task, we train a separate model by the answer

decoder and loss mentioned above. The model of each task

is trained and evaluated individually.

5. Evaluation

In this section, we describe the dataset and evaluation

settings, and discuss the experiment results.

5.1. Dataset

We evaluate the proposed model on TGIF-QA

dataset [16], which is a large-scale dataset introduced

by Jang et al. for Video QA. The dataset consists of 165k

QA pairs collocted from 71k animated Tumblr GIFs. There

are four types of tasks: repetition count, repetition action,

state transition and frame QA. First three tasks are unique

to videos and require temporal reasoning to answer them.

Tasks. Repetition count is an open-ended task to count

the number of repetition of an action (e.g. “How many times

does the cat lick?”). There are 11 possible answers (i.e.

from 0 to 10+) in total. Repetition action is a 5-option multi-

ple choice task, which is asking about the name of the action

that happened specific times (e.g. “what does the duck do 3

times?”). State transition is also a 5-option multiple choice

task which can be answered by understanding the transi-

tion of two states in a video (e.g. “What does the woman

do after drink water?”). Besides, TGIF-QA also provides a

traditional frame QA task (i.e. image QA). The image QA

questions of previous datasets [3, 27, 22] can be answered

by getting effective information from a single given image;

but for frame QA in TGIF-QA dataset, the model needs to

find the most relevant frame among all frames in the video

6580



Table 1. Number of samples of different tasks in TGIF-QA dataset.

# QA pairs Action Trans Count Frame

Training 20,475 52,704 26,843 39,392

Testing 2,274 6,232 3,554 13,691

Total 22,749 58,936 30,397 53,083

to answer the question correctly. Frame QA is defined as an

open-ended task. The number of QA pairs of TGIF-QA for

the four tasks are shown in table 1.

Metric. For the task of repetition count, the Mean

Square Error (MSE) between the predicted count value and

the groundtruth count value is used for evaluation. For rep-

etition action, state transition and frame QA, classification

accuracy (ACC) is used as the evaluation metric.

5.2. Implementation Details

Appearance and motion features. Since the frames per

second (FPS) of the GIFs in TGIF-QA [16] vary, we extract

frames from all GIFs with the FPS that is specified by the

corresponding GIF file. The long videos are cut into small

units, each unit contains 6 frames.

To extract unit-level video features, we use ResNet-152

[12] to process the central frame of a unit, and the out-

puts of “pool5” layer (∈ R
2,048) of ResNet-152 is used as

our appearance features. To utilize motion information, we

extract optical flow inside a video unit, and use the flow

CNN from two-stream model [34] to get unit-level flow fea-

tures. Specifically, the two-direction dense optical flows

[6] which are calculated between two adjacent frames in

a six-consecutive-frame unit are fed into the pre-trained

flow CNN model, which is a BN-Inception network[15].

Then we take the feature map of the “global pool” layer

(∈ R
1,024) as the raw optical flow features. Finally, we

down-sample the feature dimension by average pooling and

get a 2048-dimension vector as our two-direction optical

flow feature. In this process, we pad the first or last frame

if we didn’t have enough frames centered at each step. We

set the temporal resolution of video features to be 34, long

feature sequences are cut and short one are padded.

Contextual facts. The output channel number of each

layer in the conv-deconv networks is 1024, temporal conv

filter size is 3 with stride 1, deconv layer with stride 2, max

pool filter size is 2 with stride 2. We build N = 3 layers of

contextual facts.

Co-memory module. The size of memory state ma and

mb is set to be 1024. The hidden state size of the GRU for

fact encoding is 512. zati,j and zbti,j in equation (4) and (5)

are 512-dimensional.

Question and answer embedding. For each word in the

question, we use a pre-trained word embedding model [26]

to convert it to a 300-dimension vector. All words in the

question are processed by a two-layer GRU, whose hidden

state size is 512. The final hidden state is used as question

embedding. For action transition and repeating action, the

candidate answers are a sequence of words, thus we use the

same method as the one for encoding questions to encode

the answer.

Training details. We set the batch size to 64. Adam

optimizer [19] is used to optimize the model, the learning

rate is set to 0.001. For each task, we train the model for 50

epochs.

5.3. System Baselines

Besides co-memory networks, there are two direct meth-

ods to make use of motion and appearance information: fact

concatenation and memory concatenation, which are used

as system baselines.

Fact concatenation. This baseline method simply con-

catenate the input motion facts and appearance facts, {bi}
and {ai} along the feature dimension. The concatenated

vector {hi} which is db + da dimensional is used as in-

put facts for multi-level contextual fact module. Only one

memory module is used.

Memory concatenation. In this baseline method, in-

stead of concatenating the input facts, we use two separate

memory modules: one for appearance, the other for motion,

and concatenate the final motion memory states mT
b and the

final appearance memory states mT
a to mt

f together, which

are used to decode answers. Co-memory attention mecha-

nism is not used in this baseline.

5.4. Experiments on TGIF­QA

We first evaluate the co-memory attention module by

comparing it with the two baseline method “fact concate-

nation” and “memory concatenation”. Second, we evalu-

ate the multi-level contextual facts and the dynamic fact en-

semble. Finally, we compare our method with the previous

state-of-the-art methods.

Co-memory attention. In this experiment, we set the

layer of contextual facts to be 1, and dynamic fact ensem-

ble is not used. The number of memory updates T = 2.

We compare co-memory attention mechanism with “fact

concatenation” (fact-concat) and “memory concatenation”

(mem-concat) to see the effectiveness of co-memory atten-

tion , the results are shown in Table 2. We can see that co-

Table 2. Evaluation of co-memory attention mechanism on TGIF-

QA. “Action” is repetition action (ACC %), “Trans” is state tran-

sition (ACC %), “Count” is repetition count (MSE) and “Frame”

is frame QA (ACC %).

Method Action Trans Count Frame

Fact-concat 65.0 71.2 4.34 49.9

Mem-concat 64.5 70.7 4.39 50.2

Co-memory 66.8 73.2 4.21 51.0
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memory attention outperforms fact-concat and mem-concat

in all four tasks, which shows the effectiveness of the co-

memory attention mechanism. We believe the reason is

that co-memory attention exploits the knowledge that mo-

tion and appearance provide useful cues to each other in

attention generation.

Contextual facts and dynamic fact ensemble. Dy-

namic fact ensemble collaborates with multi-level contex-

tual facts to construct proper temporal fact representation,

so we test them together. We build 3 layers of contex-

tual facts and do experiments to test dynamic fact ensemble

module. We use “fact concatenation” as the top memory

network. The results are shown in Table 3: “w/o ensem-

ble” means that we don’t build the multi-level contextual

facts, but just use a single temporal conv layer (filter size

is 1) to convert appearance and motion features into 1024-

dimension vectors, which are used as input facts.

Table 3. Evaluation of dynamic fact ensemble on TGIF-QA. “Ac-

tion” is repetition action (ACC %), “Trans” is state transition

(ACC %), “Count” is repetition count (MSE) and “Frame” is frame

QA (ACC %).

Method Action Trans Count Frame

w/o ensemble 65.0 71.2 4.34 49.9

w/ ensemble 66.3 72.5 4.30 50.4

It can be seen that the ensemble provides better results.

We believe the reason is that the attention-based fact fusion

optimizes the ensemble process by using weighted average

of the contextual facts, and avoids just using only one of

them, which may make the facts sub-optimal.

How many cycles of memory update are sufficient?

We test the co-memory attention model with different mem-

ory update times T = 1, 2, 3 to see how many cycles of

memory update are sufficient for video QA task. The dy-

namic fact ensemble is not used in this experiment. The

results are shown in Table 4.

Table 4. Comparison on cycles of memory update on TGIF-QA.

“Action” is repetition action (ACC %), “Trans” is state transition

(ACC %), “Count” is repetition count (MSE) and “Frame” is frame

QA (ACC %).

Method Action Trans Count Frame

T = 1 65.1 69.9 4.35 50.5

T = 2 66.8 73.2 4.21 51.0

T = 3 66.5 73.1 4.24 51.1

We can see that two cycles (T = 2) of memory update

gives the best performance on the task of “Action”, “Trans”

and “Count”. For “Frame”, T = 2 and T = 3 have similar

results. Comparing the results of T = 2 and T = 1 in

“Trans”, we can see that T = 2 improves the performance

by 3.3%, we believe the reason is that multiple cycles of fact

Table 5. Comparison with the state-of-the-art method on TGIF-

QA dataset. “Action” is repetition action (ACC %), “Trans” is

state transition (ACC %), “Count” is repetition count (MSE) and

“Frame” is frame QA (ACC %).

Model Action Trans Frame Count 1

VIS+LSTM(aggr) [27] 46.8 56.9 34.6 5.09

VIS+LSTM(avg) [27] 48.8 34.8 35.0 4.80

VQA-MCB(aggr) [7] 58.9 24.3 25.7 5.17

VQA-MCB(avg) [7] 29.1 33.0 15.5 5.54

Yu et al. [39] 56.1 64.0 39.6 5.13

ST(R+C) [16] 60.1 65.7 48.2 4.38

ST-SP(R+C) [16] 57.3 63.7 45.5 4.28

ST-SP-TP(R+C) [16] 57.0 59.6 47.8 4.56

ST-TP(R+C) [16] 60.8 67.1 49.3 4.40

ST-TP(R+F) 62.9 69.4 49.5 4.32

Co-memory (w/o DFE) 66.8 73.2 51.0 4.21

Co-memory (full) 68.2 74.3 51.5 4.10

reading and memory update allow the model to focus on

different parts of the video in each cycle. The performance

begins to saturate at T = 3.

Comparison with state-of-the-art method. There are

two version of TGIF-QA, we report the performance of

the second version, which is released by the authors of

[16] on Arxiv. The first version is originally reported in

the CVPR version of [16]. State-of-the-art method [16]

on TGIF-QA adopted a dual-LSTM based approach with

both spatial and temporal attention. Originally, their model

is trained on C3D [31] temporal feature and ResNet-152

[12] frame feature. However, our method adopts Flow

CNN model (Inception) for motion and ResNet-152 for ap-

pearance. Thus, for fair comparison, we train their model

(https://goo.gl/SVKTP9) with our features on all four tasks

in TGIF-QA. The results are shown in Table 5. In Table

5, “SP” means spatial attention, “TP” means temporal at-

tention, “(R+C)” means ResNet-152 features and C3D fea-

tures, “(R+F)” means ResNet-152 features and Flow CNN

features (our feature). We also list methods “VIS-LSTM”

[27] and “VQA-MCB” [7], which are provided in [16].

There are two co-memory variants shown in Table 5:

“co-memory (w/o DFE)” uses co-memory attention with

T = 2 memory update, but not dynamic fact ensemble;

“co-memory (full)” uses co-memory attention with T = 2
memory update and dynamic fact ensemble (soft fusion) on

3-layer contextual facts. We can see that our method outper-

forms the state-of-the-art method significantly on all four

tasks. Some visualization examples are shown in Figure 6.

1We found an evaluation mistake in [16] (https://goo.gl/SVKTP9) on

count task. The new performances updated by the authors are listed here.
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Q: What does the man do before look surprise?
Co-memory: blink eye
ST-TP: pet

Q: What does the man do after open a door?
Co-memory: grab an object
ST-TP: say something while pop cap off of a pen

Q: What does the person do 2 times?
Co-memory: chew meat
ST-TP: rub finger across face

Q: What does the woman do 2 times?
Co-memory: fold both hands
ST-TP: bob head

Q: What is the color of the hat?
Co-memory: white
ST-TP: blue

Q: What is the man performing a trick falls and crashes?
Co-memory: motorcycle
ST-TP: bicycle

Q: How many times does the man dip his body?
Co-memory: 2
ST-TP: 4

Q: How many times does the woman turn eyes?
Co-memory: 3
ST-TP: 2

Figure 6. Examples on state transition, repetition action, repetition count and frame QA are shown in 1st, 2nd, 3rd and 4th row. ST-TP is

the temporal attention model from [16]. Green is for correct prediction and red is for wrong prediction.

6. Conclusion

Comparing with image QA, video QA deals with long

sequences of images, which contains richer information in

both quantity and variety. In addition, motion and appear-

ance information are both important for video analysis, and

usually correlated with each other and able to provide useful

attention cues to the other. Motivated by these observations,

we propose a motion-appearance co-memory network for

video QA. Specifically, we design a co-memory attention

mechanism that utilizes cues from both motion and appear-

ance to generate attention, a temporal conv-deconv network

to generate multi-level contextual facts, and a dynamic fact

ensemble method to construct temporal representation dy-

namically for different questions. We evaluate our method

on TGIF-QA dataset, and outperforms state-of-the-art per-

formance significantly.
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