Abstract

We propose MAD-GAN, an intuitive generalization to the Generative Adversarial Networks (GANs) and its conditional variants to address the well known problem of mode collapse. First, MAD-GAN is a multi-agent GAN architecture incorporating multiple generators and one discriminator. Second, to enforce that different generators capture diverse high probability modes, the discriminator of MAD-GAN is designed such that along with finding the real and fake samples, it is also required to identify the generator that generated the given fake sample. Intuitively, to succeed in this task, the discriminator must learn to push different generators towards different identifiable modes. We perform extensive experiments on synthetic and real datasets and compare MAD-GAN with different variants of GAN. We show high quality diverse sample generations for challenging tasks such as image-to-image translation and face generation. In addition, we also show that MAD-GAN is able to disentangle different modalities when trained using highly challenging diverse-class dataset (e.g. dataset with images of forests, icebergs, and bedrooms). In the end, we show its efficacy on the unsupervised feature representation task.

1. Introduction

Generative models have attracted considerable attention recently. The underlying idea behind such models is to attempt to capture the distribution of high-dimensional data such as images and texts. Though these models are highly useful in various applications, it is computationally expensive to train them as they require intractable integration in a very high-dimensional space. This drastically limits their applicability. However, recently there has been considerable progress in deep generative models – conglom-
Though, theoretically, convergence guarantees the generator learning the true data distribution. However, practically, reaching the true equilibrium is difficult and not guaranteed, which potentially leads to the aforementioned problem of mode collapse. Broadly speaking, there are two schools of thought to address the issue: (1) improving the learning of GANs to reach better optima [2] [19] [23]; and (2) explicitly enforcing GANs to capture diverse modes [7] [8] [18]. Here we focus on the latter.

Borrowing from the multi-agent algorithm [11] and coupled GAN [18], we propose to use multiple generators with one discriminator. We call this framework the Multi-Agent GAN architecture, as shown in Fig. 2. In detail, similar to the standard GAN, the objective of each generator here is to maximize the mutual information between the generated latents and the generator distribution. Che et al. [7] proposed a mode regularized GAN (ModeGAN) which uses an encoder-decoder paradigm. The basic idea behind ModeGAN is that if a sample from the true data distribution \(p_d \) belongs to a particular mode, then the sample generated by the generator (fake sample) when the true sample is passed through the encoder-decoder is likely to belong to the same mode. ModeGAN assumes that there exists enough true samples from a mode for the generator to be able to capture it. Another work by Metz et al. [19] proposed a surrogate objective for the update of the generator with respect to the

2. Related Work

The recent work called InfoGAN [8] proposed an information-theoretic extension to GANs in order to address the problem of mode collapse. Briefly, InfoGAN disentangles the latent representation by assuming a factored representation of the latent variables. In order to enforce that the generator learns factor specific generations, InfoGAN maximizes the mutual information between the factored latents and the generator distribution. Che et al. [7] proposed a mode regularized GAN (ModeGAN) which uses an encoder-decoder paradigm. The basic idea behind ModeGAN is that if a sample from the true data distribution \(p_d \) belongs to a particular mode, then the sample generated by the generator (fake sample) when the true sample is passed through the encoder-decoder is likely to belong to the same mode. ModeGAN assumes that there exists enough true samples from a mode for the generator to be able to capture it. Another work by Metz et al. [19] proposed a surrogate objective for the update of the generator with respect to the
unrolled optimization of the discriminator (UnrolledGAN) to address the issue of convergence of the training process of GANs. This improves the training process of the generator which in turn allow the generators to explore better coverage to true data distribution.

Liu et al. [13] presented Coupled GAN, a method for training two generators with shared parameters to learn the joint distribution of the data. The shared parameters guide both the generators towards similar subspaces but since they are trained independently on two domains, they promote diverse generations. Durugkar et al. [9] proposed a model with multiple discriminators whereby an ensemble of multiple discriminators have been shown to stabilize the training of the generator by guiding it to produce better samples.

W-GAN [5] is a recent technique which employs integral probability metrics based on the earth mover distance rather than the JS-divergences that the original GAN uses. BEGAN [5] builds upon W-GAN using an autoencoder based equilibrium enforcing technique alongside the Wasserstein distance. DCGAN [23] was a seminal technique which used a fully convolutional generator and discriminator for the first time along with the introduction of batch normalization thus stabilizing the training procedure, and was able to generate compelling generations. GoGAN [13] introduced a training procedure for the training of the discriminator using a maximum margin formulation alongside the earth mover distance based on the Wasserstein-1 metric. [4] introduced a technique and theoretical formulation stating the importance of multiple generators and discriminators in order to completely model the data distribution. In terms of employing multiple generators, our work is closest to [4, 18, 10]. However, while using multiple generators, our method explicitly enforces them to capture diverse modes.

3. Preliminaries

Here we present a brief review of GANs [11]. Given a set of samples \(D = \{x_i\}_{i=1}^n \) from the true data distribution \(p_d \), the GAN learning problem is to obtain the optimal parameters \(\theta_g \) of a generator \(G(z; \theta_g) \) that can sample from an approximate data distribution \(p_g \), where \(z \sim p_z \) is the prior input noise (e.g. samples from a normal distribution). In order to learn the optimal \(\theta_g \), the GAN objective (Eq. 1) employs a discriminator \(D(x; \theta_d) \) that learns to differentiate between a real (from \(p_d \)) and a fake (from \(p_g \)) sample \(x \). The overall GAN objective is:

\[
\min_{\theta_g} \max_{\theta_d} V(\theta_d, \theta_g) := \mathbb{E}_{z \sim p_z} \log D(x; \theta_d) \\
+ \mathbb{E}_{z \sim p_z} \log (1 - D(G(z; \theta_g); \theta_d)) \tag{1}
\]

The above objective is optimized in a block-wise manner where \(\theta_d \) and \(\theta_g \) are optimized one at a time while fixing the other. For a given sample \(x \) (either from \(p_d \) or \(p_g \)) and the parameter \(\theta_d \), the function \(D(x; \theta_d) \in [0, 1] \) produces a score that represents the probability of \(x \) belonging to the true data distribution \(p_d \) (or probability of it being real). The objective of the discriminator is to learn parameters \(\theta_d \) that maximizes this score for the true samples (from \(p_d \)) while minimizing it for the fake ones \(\tilde{x} = D(z; \theta_g) \) (from \(p_g \)). In the case of generator, the objective is to minimize \(\mathbb{E}_{z \sim p_z} \log (1 - D(G(z; \theta_g); \theta_d)) \), equivalently maximize \(\mathbb{E}_{z \sim p_z} \log D(G(z; \theta_g); \theta_d) \). Thus, the generator learns to maximize the scores for the fake samples (from \(p_g \)), which is exactly the opposite to what discriminator is trying to achieve. In this manner, the generator and the discriminator are involved in a minimax game where the task of the generator is to maximize the mistakes of the discriminator. Theoretically, at equilibrium, the generator learns to generate real samples, which means \(p_g = p_d \).

4. Multi-Agent Diverse GAN

In the GAN objective, one can argue that the task of a generator is much harder than that of the discriminator as it has to produce real looking images to maximize the mistakes of the discriminator. This, along with the minimax nature of the objective raise several challenges for GANs [2, 4, 8, 19, 25]: (1) mode collapse; (2) difficult optimization; and (3) trivial solution. In this work we propose a new framework to address the first challenge of mode collapse by increasing the capacity of the generator while using well known tricks to partially avoid other challenges [2].

Briefly, we propose a Multi-Agent GAN architecture that employs multiple generators and one discriminator in order to generate different samples from high probability regions of the true data distribution. In addition, theoretically, we show that our formulation allows generators to act as a mixture model with each generator capturing one component.

4.1. Multi-Agent GAN Architecture

Here we describe our proposed architecture (Fig. 2). It involves \(k \) generators and one discriminator. In the case of homogeneous data (all the images belong to same class, e.g. faces or birds), we allow all the generators to share information by tying most of the initial layer parameters. This is essential to avoid redundant computations as initial layers of a generator capture low-frequency structures which are almost the same for a particular type of dataset. This also allows different generators to converge faster. However, in the case of diverse-class data (e.g. dataset with a mixture of different classes such as forests, icebergs etc.), it is necessary to avoid sharing these parameters to allow each generator to capture content specific structures. Thus, the extent to which one should share these parameters depends on the task at hand.

More specifically, given \(z \sim p_z \) for the \(i \)-th generator, similar to the standard GAN, the first step involves gen-
erating a sample (for example, an image) \(\hat{x}_i \). Since each generator receives the same latent input sampled from the same distribution, naively using this simple approach may lead to the trivial solution where all the generators learn to generate similar samples. In what follows, we propose an intuitive solution to avoid this issue and allow the generators to capture diverse modes.

4.2. Enforcing Diverse Modes

Inspired by the discriminator formulation for the semi-supervised learning [24], we use a generator identification based objective function that, along with minimizing the score \(D(\hat{x}; \theta_d) \), requires the discriminator to identify the generator that generated the fake sample \(\hat{x} \). In order to do so, as opposed to the standard GAN objective function where the discriminator outputs a scalar value, we modify it to output \(k + 1 \) soft-max scores. In more detail, given the set of \(k \) generators, the discriminator produces a soft-max probability distribution over \(k + 1 \) classes. The score at \((k+1) \)-th index \((D_{k+1}(\cdot)) \) represents the probability that the sample belongs to the true data distribution and the score at \(j \in \{1, \ldots, k\} \)-th index represents the probability of it being generated by the \(j \)-th generator. Under this setting, while learning \(\theta_d \), we optimize the cross-entropy between the soft-max output of the discriminator and the Dirac delta distribution \(\delta = \{0, 1\}^{k+1} \), where for \(j \in \{1, \ldots, k\} \), \(\delta(j) = 1 \) if the sample belongs to the \(j \)-th generator, otherwise \(\delta(k+1) = 1 \). Thus, the objective of the discriminator, which is optimizing \(\theta_d \) while keeping \(\theta_g \) constant (refer Eq. (1)), is modified to:

\[
\max_{\theta_d} \mathbb{E}_{x \sim p_d} H(\delta, D(x; \theta_d))
\]

where, \(\text{Supp}(p) = \bigcup_{i=1}^k \text{Supp}(p_{g_i}) \cup \text{Supp}(p_d) \) and \(H(\cdot, \cdot) \) is the negative of the cross-entropy function. Intuitively, in order to correctly identify the generator that produced a given fake sample, the discriminator must learn to push different generators towards different identifiable modes. However, the objective of each generator remains the same as in the standard GAN. Thus, for the \(i \)-th generator, the objective is to minimize the following:

\[
\mathbb{E}_{x \sim p_d} \log D_{k+1}(x; \theta_d) + \mathbb{E}_{z \sim p_z} \log (1 - D_{k+1}(G_i(z; \theta_g^i); \theta_d))
\]

To update the parameters, the gradient for each generator is simply computed as \(\nabla_{\theta_g} \log (1 - D_{k+1}(G_i(z; \theta_g^i); \theta_d)) \).

Notice that all the generators in this case can be updated in parallel. For the discriminator, given \(x \sim p \) (can be real or fake) and corresponding \(\delta \), the gradient is \(\nabla_{\theta_d} \log D_j(x; \theta_d) \), where \(D_j(x; \theta_d) \) is the \(j \)-th index of \(D(x; \theta_d) \) for which \(\delta(j) = 1 \). Therefore, using this approach requires very minor modifications to the standard GAN optimization algorithm and can be easily used with different variants of GAN. An intuitive visualization is shown in Fig. 3.

Theorem 1 shows that the above objective function actually allows generators to form a mixture model where each generator represents a mixture component and the global optimum of \(- (k+1) \log(k+1) + k \log k \) is achieved when \(p_d = \frac{1}{k} \sum_{i=1}^k p_{g_i} \). Notice that, at \(k = 1 \), which is the case with one generator, we obtain exactly the same Jensen-Shannon divergence based objective function as shown in [11] with the optimal value of \(- \log 4 \).

Theorem 1. Given the optimal discriminator, the objective for training the generators boils down to minimizing

\[
KL(p_d(x) || p_{avg}(x)) + k KL\left(\frac{1}{k} \sum_{i=1}^k p_{g_i}(x) || p_{avg}(x) \right)
\]

\[- (k + 1) \log(k+1) + k \log k \]

(2)

where, \(p_{avg}(x) = \frac{p_d(x) + \sum_{i=1}^k p_{g_i}(x)}{k+1} \). The above objective function obtains its global minimum if \(p_d = \frac{1}{k} \sum_{i=1}^k p_{g_i} \), with the objective value of \(- (k+1) \log(k+1) + k \log k \).

Proof. The joint objective of all the generators is to minimize the following:

\[
\mathbb{E}_{x \sim p_d} \log D_{k+1}(x) + \sum_{i=1}^k \mathbb{E}_{x \sim p_{g_i}} \log (1 - D_{k+1}(x))
\]

Using Corollary 1, we substitute the optimal discriminator in the above equation and obtain:

\[
\mathbb{E}_{x \sim p_d} \log \left[\frac{p_d(x)}{p_d(x) + \sum_{i=1}^k p_{g_i}(x)} \right] + \sum_{i=1}^k \mathbb{E}_{x \sim p_{g_i}} \log \left[\frac{\sum_{i=1}^k p_{g_i}(x)}{p_d(x) + \sum_{i=1}^k p_{g_i}(x)} \right]
\]

\[= \mathbb{E}_{x \sim p_d} \log \left[\frac{p_d(x)}{p_{avg}(x)} \right] + k \mathbb{E}_{x \sim p_{g_i}} \log \left[\frac{p_{g_i}(x)}{p_{avg}(x)} \right]
\]

\[- (k + 1) \log(k+1) + k \log k \]

(3)
where, \(p_g = \frac{\sum_{i=1}^{k} p_{g_i}}{k} \) and \(p_{avg}(x) = \frac{p_g(x) + \sum_{i=1}^{k} p_{g_i}(x)}{k+1} \). Note that, Eq. (3) is exactly the same as Eq. (2). When \(p_d = \frac{\sum_{i=1}^{k} p_{d_i}}{k} \), both the KL terms become zero and the global minimum is achieved.

Corollary 1. For fixed generators, the optimal distribution learned by the discriminator \(D \) has the following form:

\[
D_{k+1}(x) = \frac{p_d(x)}{p_d(x) + \sum_{i=1}^{k} p_{g_i}(x)},
\]

\[
D_i(x) = \frac{p_{g_i}(x)}{p_d(x) + \sum_{i=1}^{k} p_{g_i}(x)}, \forall i \in \{1, \cdots, k\}.
\]

where, \(D_i(x) \) represents the i-th index of \(D(x; \theta_d) \), \(p_d \) the true data distribution, and \(p_{g_i} \) the distribution learned by the i-th generator.

Proof. For fixed generators, the objective function of the discriminator is to maximize

\[
\mathbb{E}_{x \sim p_d} \log D_{k+1}(x) + \sum_{i=1}^{k} \mathbb{E}_{x \sim p_{g_i}} \log D_i(x) = 0
\]

where, \(\sum_{i=1}^{k+1} D_i(x) = 1 \) and \(D_i(x) \in [0, 1], \forall i \). The above equation can be written as:

\[
\int_x p_d(x) \log D_{k+1}(x) dx + \sum_{i=1}^{k} \int_x p_{g_i}(x) \log D_i(x) dx
\]

\[
= \int_x \sum_{i=1}^{k+1} p_i(x) \log D_i(x) dx
\]

(4)

where, \(p_{k+1}(x) := p_d(x) \), \(p_i(x) := p_{g_i}(x), \forall i \in \{1, \cdots, k\} \), and \(\text{Supp}(p) = \bigcup_{i=1}^{k+1} \text{Supp}(p_{g_i}) \bigcup \text{Supp}(p_{d}) \). Therefore, for a given \(x \), the optimum of objective function defined in Eq. (4) with constraints defined above can be obtained using Proposition 1.

Proposition 1. Given \(y = (y_1, \cdots, y_n) \), \(y_i \geq 0 \), and \(a_i \in \mathbb{R} \), the optimal solution for the objective function defined below is achieved at

\[
y^*_i = \frac{\sum_{i=1}^{n} a_i y_i}{\sum_{i=1}^{n} a_i}, \forall i
\]

\[
\max_y \sum_{i=1}^{n} a_i \log y_i, \text{ s.t. } \sum_{i=1}^{n} y_i = 1
\]

Proof. The Lagrangian of the above problem is:

\[
\mathcal{L}(y, \lambda) = \sum_{i=1}^{n} a_i \log y_i + \lambda \left(\sum_{i=1}^{n} y_i - 1 \right)
\]

Differentiating w.r.t \(y_i \) and \(\lambda \), and equating to zero,

\[
a_i \frac{y_i}{y_i} + \lambda = 0, \sum_{i=1}^{n} y_i - 1 = 0
\]

Solving the above two equations, we obtain \(y^*_i = \frac{a_i}{\sum_{i=1}^{n} a_i} \).

Table 1: Synthetic experiment on 1D GMM (Fig. 4).

<table>
<thead>
<tr>
<th>GAN Variants</th>
<th>Chi-square ((\times 10^5))</th>
<th>KL-Div</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCGAN [23]</td>
<td>0.90</td>
<td>0.322</td>
</tr>
<tr>
<td>WGAN [3]</td>
<td>1.32</td>
<td>0.614</td>
</tr>
<tr>
<td>BEGAN [5]</td>
<td>1.06</td>
<td>0.944</td>
</tr>
<tr>
<td>GoGAN [13]</td>
<td>2.52</td>
<td>0.652</td>
</tr>
<tr>
<td>Unrolled GAN [19]</td>
<td>3.98</td>
<td>1.321</td>
</tr>
<tr>
<td>Mode-Reg DCGAN [7]</td>
<td>1.02</td>
<td>0.927</td>
</tr>
<tr>
<td>InfoGAN [8]</td>
<td>0.83</td>
<td>0.21</td>
</tr>
<tr>
<td>MA-GAN</td>
<td>1.39</td>
<td>0.526</td>
</tr>
<tr>
<td>MAD-GAN (Our)</td>
<td>0.24</td>
<td>0.145</td>
</tr>
</tbody>
</table>

5. Experiments

We present an extensive quantitative and qualitative analysis of MAD-GAN on various synthetic and real-world datasets. First, we use a simple 1D mixture of Gaussians and also Stacked/Compositional MNIST dataset (1000 modes) to compare MAD-GAN with several known variants of GANs, such as DCGAN [23], WGAN [3], BEGAN [5], GoGAN [13], Unrolled GAN [19], Mode-Reg GAN [7] and InfoGAN [8]. Furthermore, we created another baseline, called MA-GAN (Multi-Agent GAN), which is a trivial extension of GAN with multiple generators and one discriminator. As opposed to MAD-GAN, MA-GAN has a simple Multi-Agent architecture without modifications to the objective of the discriminator. This comparison allows us to understand the effect of explicitly enforcing diversity in the objective of the MAD-GAN. We use KL-divergence [16] and number of modes recovered [7] as the criterion for comparisons and show superior results compared to all the other methods. Additionally, we show diverse generations for the challenging tasks of image-to-image translation [12], diverse-class data generation, and face generation. It is non-trivial to devise a metric to evaluate diversity on these high quality generation tasks, so we perform qualitative assessment. Note that, the image-to-image translation objective is known to learn the delta distribution, thus, it is agnostic to the input noise vector. However, we show that MAD-GAN is able to produce highly plausible diverse generations for this task. In the end, we show the efficacy of MAD-GAN in unsupervised feature representation learning task. We provide detailed overview of the architectures, datasets, and the parameters used in our experiments in the supplementary.

In the case of InfoGAN [8], we varied the dimension of the categorical variable, depicting the number of modes, to obtain the best cross-validated results.

5.1. Non-Parametric Density Estimation

In order to understand the behavior of MAD-GAN and different state-of-the-art GAN models, we first perform a
very simple synthetic experiment, much easier than generating high-dimensional complex images. We consider a distribution of 1D GMM having five mixture components with modes at 10, 20, 60, 80 and 110, and standard deviations of 3, 3, 2, 2 and 1, respectively. While the first two modes overlap significantly, the fifth mode stands isolated as shown in Fig. 4. We train different GAN models using 200,000 samples from this distribution and generate 65,536 data points from each model. In order to compare the learned distribution with the ground truth distributions, we first estimate them using bins over the data points and create the histograms. These histograms are carefully created using different bin sizes and the best bin (found to be 0.1) is chosen. Then, we use Chi-square distance and the KL-divergence to compute distance between the two histograms. From Fig. 4 and Tab. 1 it is evident that MAD-GAN is able to capture all the clustered modes which includes significantly overlapped modes as well. MAD-GAN obtains the minimum value in terms of both Chi-square distance and the KL-divergence. In this experiment, both MAD-GAN and MA-GAN used four generators. In the case of InfoGAN, we used 5 dimensional categorical variable, which provides the best result.

5.2. Stacked and Compositional MNIST

We now perform experiments on a more challenging setup, similar to [7] [19], in order to examine and compare MAD-GAN with other GAN variants. [19] created a Stacked-MNIST dataset with 25,600 samples where each sample has three channels stacked together with a random MNIST digit in each of them. Thus, it creates 1000 distinct

<table>
<thead>
<tr>
<th>GAN Variants</th>
<th>KL Div</th>
<th># Modes Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCGAN [23]</td>
<td>2.15</td>
<td>712</td>
</tr>
<tr>
<td>WGAN [3]</td>
<td>1.02</td>
<td>868</td>
</tr>
<tr>
<td>BEGAN [5]</td>
<td>1.89</td>
<td>819</td>
</tr>
<tr>
<td>GoGAN [13]</td>
<td>2.89</td>
<td>672</td>
</tr>
<tr>
<td>Unrolled GAN [19]</td>
<td>1.29</td>
<td>842</td>
</tr>
<tr>
<td>Mode-Reg DCGAN [7]</td>
<td>1.79</td>
<td>827</td>
</tr>
<tr>
<td>InfoGAN [8]</td>
<td>2.75</td>
<td>840</td>
</tr>
<tr>
<td>MA-GAN</td>
<td>3.4</td>
<td>700</td>
</tr>
<tr>
<td>MAD-GAN (Our)</td>
<td>0.91</td>
<td>890</td>
</tr>
</tbody>
</table>

Table 2: Stacked-MNIST experiments and comparisons. Note that three generators are used for MAD-GAN.

<table>
<thead>
<tr>
<th>GAN Variants</th>
<th>KL Div</th>
<th># Modes Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCGAN [23]</td>
<td>0.18</td>
<td>980</td>
</tr>
<tr>
<td>WGAN [3]</td>
<td>0.25</td>
<td>1000</td>
</tr>
<tr>
<td>BEGAN [5]</td>
<td>0.19</td>
<td>999</td>
</tr>
<tr>
<td>GoGAN [13]</td>
<td>0.87</td>
<td>972</td>
</tr>
<tr>
<td>Unrolled GAN [19]</td>
<td>0.091</td>
<td>1000</td>
</tr>
<tr>
<td>Mode-Reg DCGAN [7]</td>
<td>0.12</td>
<td>992</td>
</tr>
<tr>
<td>InfoGAN [8]</td>
<td>0.47</td>
<td>990</td>
</tr>
<tr>
<td>MA-GAN</td>
<td>1.62</td>
<td>997</td>
</tr>
<tr>
<td>MAD-GAN (Our)</td>
<td>0.074</td>
<td>1000</td>
</tr>
</tbody>
</table>

Table 3: Compositional-MNIST experiments and comparisons. Note that three generators are used for MAD-GAN.
Figure 6: Diverse generations for edges-to-handbags generation task. In each sub-figure, the first column represents the input, columns 2-4 represents generations by MAD-GAN (using three generators), and columns 5-7 are generations by InfoGAN (using three categorical codes). It is evident that different generators of MAD-GAN are able to produce diverse results capturing different colors, textures, design patterns, among others. However, InfoGAN generations are visually almost the same, indicating mode collapse.

Figure 8: Diverse generations for night-to-day image generation task. First column in each sub-figure represents the input. The remaining three columns show the diverse generations of three different generators of MAD-GAN (Our).

modes in the data distribution. [19] used a stripped down version of the generator and discriminator pair to reduce the modeling capacity. We do the same for fair comparisons and used the same architecture as mentioned in their paper. Similarly, [7] created Compositional-MNIST whereby they took 3 random MNIST digits and place them at the 3 quadrants of a 64 × 64 dimensional image. This also resulted in a data distribution with 1000 hand-designed modes. The distribution of the resulting generated samples was estimated using a pretrained MNIST classifier to classify each of the digits either in the channels or the quadrants to decide the mode it belongs to.

Tables 2 and 3 provide comparison of our method with variants of GAN in terms of KL divergence and the number of modes recovered for the Stacked and Compositional MNIST datasets, respectively. In Stacked-MNIST, as evident from the Tab. 2, MAD-GAN outperforms all other variants of GAN in both the criteria. Interestingly, in the case of Compositional-MNIST, as shown in Tab. 3, MAD-GAN, WGAN and Unrolled GAN were able to recover all the 1000 modes. However, in terms of KL divergence, the distribution generated by MAD-GAN is the closest to the true data distribution.

5.3. Diverse Samples for Image-to-Image Translation and Comparison to InfoGAN

Here we present experimental results on the challenging task of image-to-image translation [12] which uses conditional variant of GANs [20]. Conditional GAN for this task is known to learn the delta distribution, thus, generates the same image irrespective of the variations in the input noise vector. Generating diverse samples in this setting is an open problem. We show that MAD-GAN is able to generate diverse samples in these experiments as well. We use three generators for MAD-GAN experiments and show three diverse generations. Note that, we do not claim to capture all the possible modes present in the data distribution because firstly we cannot estimate the number of modes a priori, and secondly, even if we could, we do not know how diverse the generations would be after using certain number of generators. We follow the same approach as [12] and employ patch based conditional GAN.

We compare MAD-GAN with InfoGAN [8] in these experiments as it is closest to our approach and can be used in image-to-image translation task. Theoretically, latent codes in InfoGAN should enable diverse generations. However, InfoGAN can only be used when the bias introduced by the categorical variables have significant impact on the generator network. For image-to-image translation and high resolution generations, the categorical variable does not have
tions for the cal codes. In addition, in Fig. 8, we show diverse genera-
generations are almost the same for all the three categori-

classes. However, InfoGAN bags. Clearly, each MAD-GAN generator is able to produce
handbags, the objective is to generate real looking hand-

days. As can be seen, the generated day images in Fig. 8
places, the objective is to generate their corresponding day

images. As can be seen, the generated day images in Fig. 8
tained from the Places dataset [28]. Images were randomly
bergs
broadleaf-forest
bamboo-forest
bedroom
islets
ice-

sufficient impact on the generations. As will be seen shortly,
we validate this hypothesis by comparing our method with
InfoGAN for this task. For the InfoGAN generator, to cap-
ture three kinds of distinct modes, the categorical code is
chosen to take three values. Since we are dealing with im-
ages, in this case, the categorical code is a 2D matrix in
which we set one third of the entries to 1 and remaining
to 0 for each category. The generator is fed input image
along with categorical code appended channel wise to the
image. Architecture of the Q network is same as that of the
pix2pix discriminator [12], except that the output is a vector
of size 3 for the prediction of the categorical codes. The
 discriminator and the Q network parameters are unshared.
We observed that sharing them and even adding noise besides
categorical code did not make any difference. Note that, we
tried different variations of the categorical codes but did not
observe any significant variation in the generations.

Fig. 6 shows generations by MAD-GAN and InfoGAN
for the edges-to-handbags task, where given the edges of
handbags, the objective is to generate real looking hand-

days. Clearly, each MAD-GAN generator is able to produce
meaningful images but different from remaining generators
in terms of color, texture, and patterns. However, InfoGAN
generations are almost the same for all the three categori-
cal codes. In addition, in Fig. 8 we show diverse genera-
tions for the night-to-day task, where given night images of
places, the objective is to generate their corresponding day
images. As can be seen, the generated day images in Fig. 8
differ in terms of lighting conditions, sky patterns, weather
conditions, and many other minute yet useful cues.

5.4. Diverse-Class Data Generation

To further explore the mode capturing capacity of MAD-
GAN, we experimented with a much more challenging task
of diverse-class data generation. In detail, we trained MAD-
GAN (three generators) on a combined dataset consist-
ing of various highly diverse images such as islets, ice-
bergs, broadleaf-forest, bamboo-forest, and bedroom, ob-
tained from the Places dataset [28]. Images were randomly
selected from each of them, creating a training dataset of
24,000 images. The generators have the same architecture
as that of DCGAN. In this case, as the images in the dataset
belong to different classes, we did not share the generator
parameters. As shown in Fig. 1 to our surprise, we found
that even in this highly challenging setting, the generations
from different generators belong to different classes. This
clearly indicates that the generators in MAD-GAN are able
to disentangle inter-class variations. In addition, each gen-
erator for different noise input is able to generate diverse
samples, indicating intra-class diversity.

5.5. Diverse Face Generation

Here we show diverse face generations (CelebA dataset)
using MAD-GAN where we use DCGAN [23] as each of
our three generators. Again, we use the same setting as
provided in DCGAN. The high quality face generations are
shown in the Fig. 9.

5.6. Unsupervised Representation Learning

Similar to DCGAN [23], we train our framework using
SVHN dataset [21]. The trained discriminator is used to ex-
tract features. Using these features, we train an SVM for
the classification task. For the MAD-GAN, with three gen-
erators, we obtained misclassification error of 17.5% which
is almost 5% better than the results reported by DCGAN
(22.48%). This clearly indicates that our framework is able
to learn a better feature space in an unsupervised setting.

6. Conclusion

We presented a very simple and effective framework,
Multi-Agent Diverse GAN (MAD-GAN), for generating di-
verse and meaningful samples. We showed the efficacy
of our approach and compared it with various variants of GAN
that it captures diverse modes while producing high quality
samples. We presented a theoretical analysis of MAD-GAN
with conditions for global optimality. Looking forward, an
interesting future direction would be to estimate a priori the
number of generators needed for a particular dataset. It is
not clear how to do that given that we do not have access
to the true data distribution. In addition, we would also like
to theoretically understand the limiting cases that depend
on the relationship between the number of generators and
the complexity of the data distribution. Another interesting
direction would be to exploit different generators such that
their combinations can be used to capture diverse modes.

7. Acknowledgements

This work was supported by the EPSRC, ERC grant
ERC-2012-AdG 321162-HELIOS, EPSRC grant Seebibyte
EP/M013774/1 and EPSRC/MURI grant EP/N019474/1.
References

