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Abstract

We propose MAD-GAN, an intuitive generalization to

the Generative Adversarial Networks (GANs) and its condi-

tional variants to address the well known problem of mode

collapse. First, MAD-GAN is a multi-agent GAN architec-

ture incorporating multiple generators and one discrimina-

tor. Second, to enforce that different generators capture di-

verse high probability modes, the discriminator of MAD-

GAN is designed such that along with finding the real and

fake samples, it is also required to identify the generator

that generated the given fake sample. Intuitively, to succeed

in this task, the discriminator must learn to push different

generators towards different identifiable modes. We per-

form extensive experiments on synthetic and real datasets

and compare MAD-GAN with different variants of GAN. We

show high quality diverse sample generations for challeng-

ing tasks such as image-to-image translation and face gen-

eration. In addition, we also show that MAD-GAN is able to

disentangle different modalities when trained using highly

challenging diverse-class dataset (e.g. dataset with images

of forests, icebergs, and bedrooms). In the end, we show its

efficacy on the unsupervised feature representation task.

1. Introduction

Generative models have attracted considerable attention

recently. The underlying idea behind such models is to at-

tempt to capture the distribution of high-dimensional data

such as images and texts. Though these models are highly

useful in various applications, it is computationally expen-

sive to train them as they require intractable integration

in a very high-dimensional space. This drastically limits

their applicability. However, recently there has been con-

siderable progress in deep generative models – conglom-
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Figure 1: Diverse-class data generation using MAD-

GAN. Diverse-class dataset contains images from differ-

ent classes/modalities (in this case, forests, icebergs, and

bedrooms). Each row represents generations by a particu-

lar generator and each column represents generations for a

given random noise input z. As shown, once trained us-

ing this dataset, generators of MAD-GAN are able to disen-

tangle different modalities, hence, each generator is able to

generate images from a particular modality.

erate of deep neural networks and generative models – as

they do not explicitly require the intractable integration, and

can be efficiently trained using back-propagation algorithm.

Two such famous examples are Generative Adversarial Net-

works (GANs) [11] and Variational Autoencoders [14].

In this paper we focus on GANs as they are known to

produce sharp and plausible images. Briefly, GANs employ

a generator and a discriminator where both are involved in

a minimax game. The task of the discriminator is to learn

the difference between real samples (from true data distri-

bution pd) and fake samples (from generator distribution

pg). Whereas, the task of the generator is to maximize the

mistakes of the discriminator. At convergence, the genera-

tor learns to produce real looking images. A few success-

ful applications of GANs are video generation [26], image

inpainting [22], image manipulation [29], 3D object gen-

eration [27], interactive image generation using few brush

strokes [29], image super-resolution [17], diagrammatic ab-

stract reasoning [15] and conditional GANs [20, 24].

Despite the remarkable success of GAN, it suffers from

the major problem of mode collapse [2, 7, 8, 19, 25].
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Though, theoretically, convergence guarantees the genera-

tor learning the true data distribution. However, practically,

reaching the true equilibrium is difficult and not guaranteed,

which potentially leads to the aforementioned problem of

mode collapse. Broadly speaking, there are two schools of

thought to address the issue: (1) improving the learning of

GANs to reach better optima [2, 19, 25]; and (2) explicitly

enforcing GANs to capture diverse modes [7, 8, 18]. Here

we focus on the latter.

Borrowing from the multi-agent algorithm [1] and cou-

pled GAN [18], we propose to use multiple generators with

one discriminator. We call this framework the Multi-Agent

GAN architecture, as shown in Fig. 2. In detail, similar to

the standard GAN, the objective of each generator here is to

maximize the mistakes of the common discriminator. De-

pending on the task, it might be useful for different genera-

tors to share information. This is done using the initial layer

parameters of generators. Another reason behind sharing

these parameters is the fact that initial layers capture low-

frequency structures which are almost the same for a partic-

ular type of dataset (for example, faces), therefore, sharing

them reduces redundant computations. However, when the

dataset contains images from completely different modali-

ties, one can avoid sharing these parameters. Naively using

multiple generators may lead to the trivial solution where all

the generators learn to generate similar samples. To resolve

this issue and generate different visually plausible samples

capturing diverse high probability modes, we propose to

modify the objective function of the discriminator. In the

modified objective, along with finding the real and the fake

samples, the discriminator also has to correctly identify the

generator that generated the given fake sample. Intuitively,

in order to succeed in this task, the discriminator must learn

to push generations corresponding to different generators

towards different identifiable modes. Combining the Multi-

Agent GAN architecture with the diversity enforcing term

allows us to generate diverse plausible samples, thus the

name Multi-Agent Diverse GAN (MAD-GAN).

As an example, an intuitive setting where mode collapse

occurs is when a GAN is trained on a dataset containing

images from different modalities/classes. For example, a

diverse-class dataset containing images such as forests, ice-

berg, and bedrooms. This is of particular interest as it not

only requires the model to disentangle intra-class variations,

it also requires inter-class disentanglement. Fig. 1 demon-

strates the surprising effectiveness of MAD-GAN in this

challenging setting. Generators among themselves are able

to disentangle inter-class variations, and each generator is

also able to capture intra-class variations.

In addition, we analyze MAD-GAN through exten-

sive experiments and compare it with several variants of

GAN. First, for the proof of concept, we perform experi-

ments in controlled settings using synthetic dataset (mix-

ture of Gaussians), and complicated Stacked/Compositional

MNIST datasets with hand engineered modes. In these set-

tings, we empirically show that our approach outperforms

all other GAN variants we compare with, and is able to

generate high quality samples while capturing large num-

ber of modes. In a more realistic setting, we show high

quality diverse sample generations for the challenging tasks

of image-to-image translation [12] (conditional GAN) and

face generation [8, 23]. Using the SVHN dataset [21], we

also show the efficacy of our framework for learning the

feature representation in an unsupervised setting.

We also provide theoretical analysis of this approach and

show that the proposed modification in the objective of dis-

criminator allows generators to learn together as a mixture

model where each generator represents a mixture compo-

nent. We show that at convergence, the global optimum

value of −(k + 1) log(k + 1) + k log k is achieved, where

k is the number of generators.

Figure 2: Multi-Agent Diverse GAN (MAD-GAN). The

discriminator outputs k + 1 softmax scores signifying the

probability of its input sample being from either one of the

k generators or the real distribution.

2. Related Work

The recent work called InfoGAN [8] proposed an

information-theoretic extension to GANs in order to ad-

dress the problem of mode collapse. Briefly, InfoGAN dis-

entangles the latent representation by assuming a factored

representation of the latent variables. In order to enforce

that the generator learns factor specific generations, Info-

GAN maximizes the mutual information between the fac-

tored latents and the generator distribution. Che et al. [7]

proposed a mode regularized GAN (ModeGAN) which uses

an encoder-decoder paradigm. The basic idea behind Mod-

eGAN is that if a sample from the true data distribution pd
belongs to a particular mode, then the sample generated by

the generator (fake sample) when the true sample is passed

through the encoder-decoder is likely to belong to the same

mode. ModeGAN assumes that there exists enough true

samples from a mode for the generator to be able to capture

it. Another work by Metz et al. [19] proposed a surrogate

objective for the update of the generator with respect to the

8514



unrolled optimization of the discriminator (UnrolledGAN)

to address the issue of convergence of the training process

of GANs. This improves the training process of the gen-

erator which in turn allow the generators to explore better

coverage to true data distribution.

Liu et al. [18] presented Coupled GAN, a method for

training two generators with shared parameters to learn the

joint distribution of the data. The shared parameters guide

both the generators towards similar subspaces but since they

are trained independently on two domains, they promote di-

verse generations. Durugkar et al. [9] proposed a model

with multiple discriminators whereby an ensemble of multi-

ple discriminators have been shown to stabilize the training

of the generator by guiding it to produce better samples.

W-GAN [3] is a recent technique which employs integral

probability metrics based on the earth mover distance rather

than the JS-divergences that the original GAN uses. BE-

GAN [5] builds upon W-GAN using an autoencoder based

equilibrium enforcing technique alongside the Wasserstein

distance. DCGAN [23] was a seminal technique which used

a fully convolutional generator and discriminator for the

first time along with the introduction of batch normalization

thus stabilizing the training procedure, and was able to gen-

erate compelling generations. GoGAN [13] introduced a

training procedure for the training of the discriminator using

a maximum margin formulation alongside the earth mover

distance based on the Wasserstein-1 metric. [4] introduced

a technique and theoretical formulation stating the impor-

tance of multiple generators and discriminators in order to

completely model the data distribution. In terms of employ-

ing multiple generators, our work is closest to [4, 18, 10].

However, while using multiple generators, our method ex-

plicitly enforces them to capture diverse modes.

3. Preliminaries

Here we present a brief review of GANs [11]. Given a

set of samples D = (xi)
n
i=1 from the true data distribution

pd, the GAN learning problem is to obtain the optimal pa-

rameters θg of a generator G(z; θg) that can sample from an

approximate data distribution pg , where z ∼ pz is the prior

input noise (e.g. samples from a normal distribution). In

order to learn the optimal θg , the GAN objective (Eq. (1))

employs a discriminator D(x; θd) that learns to differenti-

ate between a real (from pd) and a fake (from pg) sample x.

The overall GAN objective is:

min
θg

max
θd

V (θd, θg) := Ex∼pd
logD(x; θd)

+ Ez∼pz
log

(

1−D(G(z; θg); θd)
)

(1)

The above objective is optimized in a block-wise manner

where θd and θg are optimized one at a time while fixing

the other. For a given sample x (either from pd or pg)

and the parameter θd, the function D(x; θd) ∈ [0, 1] pro-

duces a score that represents the probability of x belonging

to the true data distribution pd (or probability of it being

real). The objective of the discriminator is to learn parame-

ters θd that maximizes this score for the true samples (from

pd) while minimizing it for the fake ones x̃ = D(z; θg)
(from pg). In the case of generator, the objective is to min-

imize Ez∼pz
log

(

1−D(G(z; θg); θd)
)

, equivalently maxi-

mize Ez∼pz
logD(G(z; θg); θd). Thus, the generator learns

to maximize the scores for the fake samples (from pg),

which is exactly the opposite to what discriminator is try-

ing to achieve. In this manner, the generator and the dis-

criminator are involved in a minimax game where the task

of the generator is to maximize the mistakes of the discrim-

inator. Theoretically, at equilibrium, the generator learns to

generate real samples, which means pg = pd.

4. Multi-Agent Diverse GAN

In the GAN objective, one can argue that the task of

a generator is much harder than that of the discriminator

as it has to produce real looking images to maximize the

mistakes of the discriminator. This, along with the min-

imax nature of the objective raise several challenges for

GANs [2, 7, 8, 19, 25]: (1) mode collapse; (2) difficult op-

timization; and (3) trivial solution. In this work we propose

a new framework to address the first challenge of mode col-

lapse by increasing the capacity of the generator while using

well known tricks to partially avoid other challenges [2].

Briefly, we propose a Multi-Agent GAN architecture that

employs multiple generators and one discriminator in order

to generate different samples from high probability regions

of the true data distribution. In addition, theoretically, we

show that our formulation allows generators to act as a mix-

ture model with each generator capturing one component.

4.1. Multi­Agent GAN Architecture

Here we describe our proposed architecture (Fig. 2). It

involves k generators and one discriminator. In the case

of homogeneous data (all the images belong to same class,

e.g. faces or birds), we allow all the generators to share in-

formation by tying most of the initial layer parameters. This

is essential to avoid redundant computations as initial lay-

ers of a generator capture low-frequency structures which

are almost the same for a particular type of dataset. This

also allows different generators to converge faster. How-

ever, in the case of diverse-class data (e.g. dataset with a

mixture of different classes such as forests, icebergs etc.), it

is necessary to avoid sharing these parameters to allow each

generator to capture content specific structures. Thus, the

extent to which one should share these parameters depends

on the task at hand.

More specifically, given z ∼ pz for the i-th generator,

similar to the standard GAN, the first step involves gen-
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Figure 3: Visualization of different generators getting

pushed towards different modes. Here, M1 and M2 could be

a cluster of modes where each cluster itself contains many

modes. The arrows abstractly represent generator specific

gradients for the purpose of building intuition.

erating a sample (for example, an image) x̃i. Since each

generator receives the same latent input sampled from the

same distribution, naively using this simple approach may

lead to the trivial solution where all the generators learn to

generate similar samples. In what follows, we propose an

intuitive solution to avoid this issue and allow the generators

to capture diverse modes.

4.2. Enforcing Diverse Modes

Inspired by the discriminator formulation for the semi-

supervised learning [25], we use a generator identification

based objective function that, along with minimizing the

score D(x̃; θd), requires the discriminator to identify the

generator that generated the given fake sample x̃. In order

to do so, as opposed to the standard GAN objective function

where the discriminator outputs a scalar value, we modify

it to output k + 1 soft-max scores. In more detail, given

the set of k generators, the discriminator produces a soft-

max probability distribution over k + 1 classes. The score

at (k + 1)-th index (Dk+1(.)) represents the probability

that the sample belongs to the true data distribution and the

score at j ∈ {1, . . . , k}-th index represents the probability

of it being generated by the j-th generator. Under this set-

ting, while learning θd, we optimize the cross-entropy be-

tween the soft-max output of the discriminator and the Dirac

delta distribution δ ∈ {0, 1}k+1, where for j ∈ {1, . . . , k},

δ(j) = 1 if the sample belongs to the j-th generator, other-

wise δ(k + 1) = 1. Thus, the objective of the discrimina-

tor, which is optimizing θd while keeping θg constant (refer

Eq. (1)), is modified to:

max
θd

Ex∼p H(δ,D(x; θd))

where, Supp(p) = ∪k
i=1Supp(pgi)∪Supp(pd) and H(., .)

is the negative of the cross entropy function. Intuitively,

in order to correctly identify the generator that produced

a given fake sample, the discriminator must learn to push

different generators towards different identifiable modes.

However, the objective of each generator remains the same

as in the standard GAN. Thus, for the i-th generator, the

objective is to minimize the following:

Ex∼pd
logDk+1(x; θd)+Ez∼pz

log(1−Dk+1(Gi(z; θ
i
g); θd))

To update the parameters, the gradient for each generator

is simply computed as ∇θi
g
log(1−Dk+1(Gi(z; θ

i
g); θd))).

Notice that all the generators in this case can be up-

dated in parallel. For the discriminator, given x ∼ p

(can be real or fake) and corresponding δ, the gradient

is ∇θd logDj(x; θd), where Dj(x; θd) is the j-th index

of D(x; θd) for which δ(j) = 1. Therefore, using this

approach requires very minor modifications to the stan-

dard GAN optimization algorithm and can be easily used

with different variants of GAN. An intuitive visualization is

shown in Fig. 3.

Theorem 1 shows that the above objective function actu-

ally allows generators to form a mixture model where each

generator represents a mixture component and the global

optimum of −(k+1) log(k+1)+k log k is achieved when

pd = 1
k

∑k

i=1 pgi . Notice that, at k = 1, which is the

case with one generator, we obtain exactly the same Jensen-

Shannon divergence based objective function as shown

in [11] with the optimal value of − log 4.

Theorem 1. Given the optimal discriminator, the objective

for training the generators boils down to minimizing

KL
(

pd(x)||pavg(x)
)

+ kKL
(1

k

k
∑

i=1

pgi(x)||pavg(x)
)

− (k + 1) log(k + 1) + k log k (2)

where, pavg(x) =
pd(x)+

∑k
i=1

pgi
(x)

k+1 . The above objective

function obtains its global minimum if pd = 1
k

∑k

i=1 pgi
with the objective value of −(k + 1) log(k + 1) + k log k.

Proof. The joint objective of all the generators is to mini-

mize the following:

Ex∼pd
logDk+1(x) +

k
∑

i=1

Ex∼pgi
log(1−Dk+1(x))

Using Corollary 1, we substitute the optimal discriminator

in the above equation and obtain:

Ex∼pd
log

[

pd(x)

pd(x) +
∑k

i=1 pgi(x)

]

+

k
∑

i=1

Ex∼pgi
log

[

∑k

i=1 pgi(x)

pd(x) +
∑k

i=1 pgi(x)

]

= Ex∼pd
log

[

pd(x)

pavg(x)

]

+ kEx∼pg
log

[

pg(x)

pavg(x)

]

− (k + 1) log(k + 1) + k log k (3)
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where, pg =
∑k

i=1
pgi

k
and pavg(x) =

pd(x)+
∑k

i=1
pgi

(x)

k+1 .

Note that, Eq. (3) is exactly the same as Eq. (2). When

pd =
∑k

i=1
pgi

k
, both the KL terms become zero and the

global minimum is achieved.

Corollary 1. For fixed generators, the optimal distribution

learned by the discriminator D has the following form:

Dk+1(x) =
pd(x)

pd(x) +
∑k

i=1 pgi(x)
,

Di(x) =
pgi(x)

pd(x) +
∑k

i=1 pgi(x)
, ∀i ∈ {1, · · · , k}.

where, Di(x) represents the i-th index of D(x; θd), pd the

true data distribution, and pgi the distribution learned by

the i-th generator.

Proof. For fixed generators, the objective function of the

discriminator is to maximize

Ex∼pd
logDk+1(x) +

k
∑

i=1

Exi∼pgi
logDi(xi)

where,
∑k+1

i=1 Di(x) = 1 and Di(x) ∈ [0, 1], ∀i. The above

equation can be written as:

∫

x

pd(x) logDk+1(x)dx+

k
∑

i=1

∫

x

pgi(x) logDi(x)dx

=

∫

x∈p

k+1
∑

i=1

pi(x) logDi(x)dx (4)

where, pk+1(x) := pd(x), pi(x) := pgi(x), ∀i ∈

{1, · · · , k}, and Supp(p) =
⋃k

i=1 Supp(pgi)
⋃

Supp(pd),
Therefore, for a given x, the optimum of objective function

defined in Eq. (4) with constraints defined above can be ob-

tained using Proposition 1.

Proposition 1. Given y = (y1, · · · , yn), yi ≥ 0, and ai ∈
R, the optimal solution for the objective function defined

below is achieved at y∗i = ai∑
n
i=1

ai
, ∀i

max
y

n
∑

i=1

ai log yi, s.t.

n
∑

i

yi = 1

Proof. The Lagrangian of the above problem is:

L(y, λ) =

n
∑

i=1

ai log yi + λ(

n
∑

i=1

yi − 1)

Differentiating w.r.t yi and λ, and equating to zero,

ai

yi
+ λ = 0 ,

n
∑

i=1

yi − 1 = 0

Solving the above two equations, we obtain y∗i = ai∑
n
i=1

ai
.

GAN Variants Chi-square(×105) KL-Div

DCGAN [23] 0.90 0.322

WGAN [3] 1.32 0.614

BEGAN [5] 1.06 0.944

GoGAN [13] 2.52 0.652

Unrolled GAN [19] 3.98 1.321

Mode-Reg DCGAN [7] 1.02 0.927

InfoGAN [8] 0.83 0.21

MA-GAN 1.39 0.526

MAD-GAN (Our) 0.24 0.145

Table 1: Synthetic experiment on 1D GMM (Fig. 4).

5. Experiments

We present an extensive quantitative and qualitative

analysis of MAD-GAN on various synthetic and real-

world datasets. First, we use a simple 1D mixture of

Gaussians and also Stacked/Compositional MNIST dataset

(1000 modes) to compare MAD-GAN with several known

variants of GANs, such as DCGAN [23], WGAN [3], BE-

GAN [5], GoGAN [13], Unrolled GAN [19], Mode-Reg

GAN [7] and InfoGAN [8]. Furthermore, we created an-

other baseline, called MA-GAN (Multi-Agent GAN), which

is a trivial extension of GAN with multiple generators and

one discriminator. As opposed to MAD-GAN, MA-GAN

has a simple Multi-Agent architecture without modifica-

tions to the objective of the discriminator. This compari-

son allows us to understand the effect of explicitly enforc-

ing diversity in the objective of the MAD-GAN. We use

KL-divergence [16] and number of modes recovered [7]

as the criterion for comparisons and show superior results

compared to all the other methods. Additionally, we show

diverse generations for the challenging tasks of image-to-

image translation [12], diverse-class data generation, and

face generation. It is non-trivial to devise a metric to evalu-

ate diversity on these high quality generation tasks, so we

perform qualitative assessment. Note that, the image-to-

image translation objective is known to learn the delta dis-

tribution, thus, it is agnostic to the input noise vector. How-

ever, we show that MAD-GAN is able to produce highly

plausible diverse generations for this task. In the end, we

show the efficacy of MAD-GAN in unsupervised feature

representation learning task. We provide detailed overview

of the architectures, datasets, and the parameters used in our

experiments in the supplementary.

In the case of InfoGAN [8], we varied the dimension of

the categorical variable, depicting the number of modes, to

obtain the best cross-validated results.

5.1. Non­Parametric Density Estimation

In order to understand the behavior of MAD-GAN and

different state-of-the-art GAN models, we first perform a

8517



(a) DCGAN (b) WGAN (c) BEGAN (d) GoGAN

(e) Unrolled GAN (f) Mode-Reg DCGAN (g) InfoGAN (h) MAD-GAN (Our)

Figure 4: A toy example to understand the behaviour of different GAN variants in order to compare with MAD-GAN (each

method was trained for 198000 iterations). The orange bars show the density estimate of the training data and the blue ones

for the generated data points. After careful cross-validation, we chose the bin size of 0.1.

very simple synthetic experiment, much easier than gen-

erating high-dimensional complex images. We consider a

distribution of 1D GMM [6] having five mixture compo-

nents with modes at 10, 20, 60, 80 and 110, and standard

deviations of 3, 3, 2, 2 and 1, respectively. While the first

two modes overlap significantly, the fifth mode stands iso-

lated as shown in Fig. 4. We train different GAN models

using 200, 000 samples from this distribution and generate

65, 536 data points from each model. In order to compare

the learned distribution with the ground truth distributions,

we first estimate them using bins over the data points and

create the histograms. These histograms are carefully cre-

ated using different bin sizes and the best bin (found to be

0.1) is chosen. Then, we use Chi-square distance and the

KL-divergence to compute distance between the two his-

tograms. From Fig. 4 and Tab. 1 it is evident that MAD-

GAN is able to capture all the clustered modes which in-

cludes significantly overlapped modes as well. MAD-GAN

obtains the minimum value in terms of both Chi-square

distance and the KL-divergence. In this experiment, both

MAD-GAN and MA-GAN used four generators. In the case

of InfoGAN, we used 5 dimensional categorical variable,

which provides the best result.

5.2. Stacked and Compositional MNIST

We now perform experiments on a more challenging

setup, similar to [7, 19], in order to examine and com-

pare MAD-GAN with other GAN variants. [19] created a

Stacked-MNIST dataset with 25, 600 samples where each

sample has three channels stacked together with a random

MNIST digit in each of them. Thus, it creates 1000 distinct

GAN Variants KL Div # Modes Covered

DCGAN [23] 2.15 712

WGAN [3] 1.02 868

BEGAN [5] 1.89 819

GoGAN [13] 2.89 672

Unrolled GAN [19] 1.29 842

Mode-Reg DCGAN [7] 1.79 827

InfoGAN [8] 2.75 840

MA-GAN 3.4 700

MAD-GAN (Our) 0.91 890

Table 2: Stacked-MNIST experiments and comparisons.

Note that three generators are used for MAD-GAN.

GAN Variants KL Div # Modes Covered

DCGAN [23] 0.18 980

WGAN [3] 0.25 1000

BEGAN [5] 0.19 999

GoGAN [13] 0.87 972

Unrolled GAN [19] 0.091 1000

Mode-Reg DCGAN [7] 0.12 992

InfoGAN [8] 0.47 990

MA-GAN 1.62 997

MAD-GAN (Our) 0.074 1000

Table 3: Compositional-MNIST experiments and compar-

isons. Note that three generators are used for MAD-GAN.
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Figure 6: Diverse generations for edges-to-handbags generation task. In each sub-figure, the first column represents the input,

columns 2-4 represents generations by MAD-GAN (using three generators), and columns 5-7 are generations by InfoGAN

(using three categorical codes). It is evident that different generators of MAD-GAN are able to produce diverse results

capturing different colors, textures, design patterns, among others. However, InfoGAN generations are visually almost the

same, indicating mode collapse.

modes in the data distribution. [19] used a stripped down

version of the generator and discriminator pair to reduce

the modeling capacity. We do the same for fair comparisons

and used the same architecture as mentioned in their paper.

Similarly, [7] created Compositional-MNIST whereby they

took 3 random MNIST digits and place them at the 3 quad-

rants of a 64×64 dimensional image. This also resulted in a

data distribution with 1000 hand-designed modes. The dis-

tribution of the resulting generated samples was estimated

using a pretrained MNIST classifier to classify each of the

digits either in the channels or the quadrants to decide the

mode it belongs to.

Tables 2 and 3 provide comparison of our method with

variants of GAN in terms of KL divergence and the num-

ber of modes recovered for the Stacked and Compositional

MNIST datasets, respectively. In Stacked-MNIST, as ev-

ident from the Tab. 2, MAD-GAN outperforms all other

variants of GAN in both the criteria. Interestingly, in the

case of Compositional-MNIST, as shown in Tab. 3, MAD-

GAN, WGAN and Unrolled GAN were able to recover all

the 1000 modes. However, in terms of KL divergence, the

distribution generated by MAD-GAN is the closest to the

true data distribution.

5.3. Diverse Samples for Image­to­Image Transla­
tion and Comparison to InfoGAN

Here we present experimental results on the challenging

task of image-to-image translation [12] which uses condi-

tional variant of GANs [20]. Conditional GAN for this task

is known to learn the delta distribution, thus, generates the

same image irrespective of the variations in the input noise

vector. Generating diverse samples in this setting in itself

is an open problem. We show that MAD-GAN is able to

Figure 8: Diverse generations for night-to-day image gen-

eration task. First column in each sub-figure represents the

input. The remaining three columns show the diverse gen-

erations of three different generators of MAD-GAN (Our).

generate diverse samples in these experiments as well. We

use three generators for MAD-GAN experiments and show

three diverse generations. Note that, we do not claim to cap-

ture all the possible modes present in the data distribution

because firstly we cannot estimate the number of modes a

priori, and secondly, even if we could, we do not know how

diverse the generations would be after using certain num-

ber of generators. We follow the same approach as [12] and

employ patch based conditional GAN.

We compare MAD-GAN with InfoGAN [8] in these ex-

periments as it is closest to our approach and can be used in

image-to-image translation task. Theoretically, latent codes

in InfoGAN should enable diverse generations. However,

InfoGAN can only be used when the bias introduced by the

categorical variables have significant impact on the genera-

tor network. For image-to-image translation and high res-

olution generations, the categorical variable does not have
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Figure 9: Face generations using MAD-GAN. Each gener-

ator employed is DCGAN. Each row represents a genera-

tor. Each column represents generations for a given random

noise input z. Note that, the first generator is generating

faces pointing to the left. The second generator is gener-

ating female faces with long hair, while the third generator

generates images with light background.

sufficient impact on the generations. As will be seen shortly,

we validate this hypothesis by comparing our method with

InfoGAN for this task. For the InfoGAN generator, to cap-

ture three kinds of distinct modes, the categorical code is

chosen to take three values. Since we are dealing with im-

ages, in this case, the categorical code is a 2D matrix in

which we set one third of the entries to 1 and remaining

to 0 for each category. The generator is fed input image

along with categorical code appended channel wise to the

image. Architecture of the Q network is same as that of the

pix2pix discriminator [12], except that the output is a vector

of size 3 for the prediction of the categorical codes. The dis-

criminator and the Q network parameters are unshared. We

observed that sharing them and even adding noise besides

categorical code did not make any difference. Note that, we

tried different variations of the categorical codes but did not

observe any significant variation in the generations.

Fig. 6 shows generations by MAD-GAN and InfoGAN

for the edges-to-handbags task, where given the edges of

handbags, the objective is to generate real looking hand-

bags. Clearly, each MAD-GAN generator is able to produce

meaningful images but different from remaining generators

in terms of color, texture, and patterns. However, InfoGAN

generations are almost the same for all the three categori-

cal codes. In addition, in Fig. 8, we show diverse genera-

tions for the night-to-day task, where given night images of

places, the objective is to generate their corresponding day

images. As can be seen, the generated day images in Fig. 8

differ in terms of lighting conditions, sky patterns, weather

conditions, and many other minute yet useful cues.

5.4. Diverse­Class Data Generation

To further explore the mode capturing capacity of MAD-

GAN, we experimented with a much more challenging task

of diverse-class data generation. In detail, we trained MAD-

GAN (three generators) on a combined dataset consist-

ing of various highly diverse images such as islets, ice-

bergs, broadleaf-forest, bamboo-forest, and bedroom, ob-

tained from the Places dataset [28]. Images were randomly

selected from each of them, creating a training dataset of

24, 000 images. The generators have the same architecture

as that of DCGAN. In this case, as the images in the dataset

belong to different classes, we did not share the generator

parameters. As shown in Fig. 1, to our surprise, we found

that even in this highly challenging setting, the generations

from different generators belong to different classes. This

clearly indicates that the generators in MAD-GAN are able

to disentangle inter-class variations. In addition, each gen-

erator for different noise input is able to generate diverse

samples, indicating intra-class diversity.

5.5. Diverse Face Generation

Here we show diverse face generations (CelebA dataset)

using MAD-GAN where we use DCGAN [23] as each of

our three generators. Again, we use the same setting as

provided in DCGAN. The high quality face generations are

shown in the Fig. 9.

5.6. Unsupervised Representation Learning

Similar to DCGAN [23], we train our framework using

SVHN dataset [21]. The trained discriminator is used to ex-

tract features. Using these features, we train an SVM for

the classification task. For the MAD-GAN, with three gen-

erators, we obtained misclassification error of 17.5% which

is almost 5% better than the results reported by DCGAN

(22.48%). This clearly indicates that our framework is able

to learn a better feature space in an unsupervised setting.

6. Conclusion

We presented a very simple and effective framework,

Multi-Agent Diverse GAN (MAD-GAN), for generating di-

verse and meaningful samples. We showed the efficacy of

our approach and compared it with various variants of GAN

that it captures diverse modes while producing high quality

samples. We presented a theoretical analysis of MAD-GAN

with conditions for global optimality. Looking forward, an

interesting future direction would be to estimate a priori the

number of generators needed for a particular dataset. It is

not clear how to do that given that we do not have access

to the true data distribution. In addition, we would also like

to theoretically understand the limiting cases that depend

on the relationship between the number of generators and

the complexity of the data distribution. Another interesting

direction would be to exploit different generators such that

their combinations can be used to capture diverse modes.
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