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Figure 1: We propose ConceptGAN, a framework that can jointly learn, transfer and compose concepts to generate semantically meaningful

images, even in subdomains with no training data (highlighted) while the state-of-the-art methods such as CycleGAN [49] fail to do so.

Abstract

Compositionality of semantic concepts in image

synthesis and analysis is appealing as it can help in decom-

posing known and generatively recomposing unknown

data. For instance, we may learn concepts of changing

illumination, geometry or albedo of a scene, and try to

recombine them to generate physically meaningful, but

unseen data for training and testing. In practice however

we often do not have samples from the joint concept space

available: We may have data on illumination change in one

data set and on geometric change in another one without

complete overlap. We pose the following question: How

can we learn two or more concepts jointly from different

data sets with mutual consistency where we do not have

samples from the full joint space? We present a novel

answer in this paper based on cyclic consistency over

multiple concepts, represented individually by generative

adversarial networks (GANs). Our method, ConceptGAN,

can be understood as a drop in for data augmentation to

improve resilience for real world applications. Qualitative

and quantitative evaluations demonstrate its efficacy in

generating semantically meaningful images, as well as one

shot face verification as an example application.

1. Introduction

In applications such as object detection and face recog-

nition, a large set of training data with accurate annota-

tion is critical for the success of modern deep learning-

based methods. However, collecting and annotating such

data can be a laborious or even an essentially impossible

task. Conventional data augmentation techniques typically

involve either manual effort or simple transformations such

as translation and rotation of the available data, and may not

result in semantically meaningful data samples.

Recently, generative models have been shown to

successfully synthesize unseen data samples, such as

image-to-image translation and CycleGAN [12, 49]. Given

sufficient training data, these allow us, for instance, to trans-

late from an image of a textured handbag to a corresponding

visually convincing image of a shoe with the same texture,

or from a color image of a handbag to a consistent line

drawing of a handbag. Starting with this limitation of

learning one concept at a time, naturally one would like to

continue learning more concepts to generate a wider variety

of data. However, samples from the joint distribution, in

our simple case of line drawings of shoes, may not be avail-

able for training. Going beyond two concepts, the joint

concept space certainly becomes exponential and unfeasible
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Figure 2: The proposed concept learning approach: Four-vertex

cyclic graph for joint learning of two latent concepts.

for gathering data. As shown in Figure 1, it is difficult to

directly compose separately trained CycleGAN mappings

in a semantically meaningful way to synthesize plausible

images in the subdomains with no training data. For

example shape-varying mappings trained with color images

may fail to translate images in the line drawing domain.

As an answer to this challenge, we make compositionality

a principled and explicit part of the model while learning

individual concepts. We achieve this by regularizing the

learning of the individual concepts by enforcing consistency

of concept composition. In our earlier example, this implies

enforcing cyclic consistency of applying bag to shoe, color

to line drawing, and their corresponding inverses, resulting

in a cycle of four concept shifts (Figure 2). In general,

we enforce consistency over multiple closed paths in the

underlying graph. The benefits of this are twofold: (a) we

ensure that the concepts are mutually consistent in the sense

of not impacting their mutual forward and inverse genera-

tion capability, and (b) we can optimize the resulting cost

function irrespective of whether data samples from the joint

concept space are available. In fact, we focus on the case

where no data is available from one joint concept space

(e.g., line drawings of shoes) and demonstrate that we can

nevertheless generate meaningful samples from it. This

paper focuses primarily on the simplest case of our frame-

work with two-concept cycles.

While not strictly necessary, we assume that the applica-

tion of concepts is commutative, yielding a set of symmetric

cycle consistency constraints. As it is notoriously difficult

to gauge the performance of novel image synthesis, we use

a surrogate task, face verification, for performance evalua-

tion and demonstrate how a black-box baseline system can

be improved by data augmentation. In summary:

• We propose a principled framework for learning pair-

wise visual concepts from partial data with mutual

consistency.

• We demonstrate that via joint learning, transfer and

composition of concepts, semantically meaningful

image synthesis can be achieved over a joint latent

space with incomplete data, for instance from a subdo-

main where no data is available at training time.

• We demonstrate a scalable framework for efficient data

augmentation where multiple concepts learned in a

pair-wise fashion can be directly composed in image

synthesis.

• Using face verification as a surrogate problem, we

show how the proposed method can be used as a frame-

work to perform conditional image synthesis, helping

improve face verification accuracy.

• We provide a scheme for building iterative solutions

for an arbitrary number of concepts as a generalization.

2. Related work

The challenge of data scarcity has been addressed in

various computer vision research [20, 38, 42]. In particular,

data augmentation techniques have been utilized to improve

the training performance especially for deep learning-

based methods [19, 31, 36, 40]. Conventional approaches

mostly rely on simple transformations such as rotation [35],

random cropping [19], random flipping [19, 31, 36] and

altering RGB channel intensities [17]. The amount of new

information introduced in such operations is limited as

no latent manipulation (e.g., varying the illumination) is

involved.

Generative adversarial networks (GAN) [5] provide an

efficient tool to augment data with virtual samples [37, 46,

48]. In GAN, plausible yet unseen images are generated

by matching the synthetic sample distribution to the real

data distribution. The adversarial idea has been success-

fully applied to the transformation across image domains.

Isola et al. [8] propose the pix2pix framework, which

adapts a conditional GAN [28] to map images from the

input to output domain given paired training data. Various

strategies have been utilized to tackle the problem with

unsupervised data, such as using weight-sharing between

adversarial networks to learn the joint distribution across

domains [22, 23] and using an additional regularization loss

term which minimizes a similarity distance between the

inputs and the outputs [1, 34, 39].

In particular, Zhu et al. [49] propose CycleGAN, which

extends the pix2pix [8] framework by introducing addi-

tional cycle-consistency constraints to simultaneously learn
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a pair of forward and backward mappings between two

domains given unpaired training data. Similar unsupervised

learning ideas are also proposed in the DiscoGAN [12] and

the DualGAN [45]. Following the cycle-consistency formu-

lation, Liang et al. [21] focus on editing high-level semantic

content of objects while preserving background characteris-

tics. In these prior works, however, translation mappings

learned in each experiment depend on specific training

distributions, and therefore can not be easily transferred or

semantically composed without extra training experiments.

Another group of generative model-based approaches

seek to learn the disentangled latent representations [15,

16, 18, 26, 43] where the semantic perturbation can then

be expressed via the vector arithmetic [27, 33]. Various

recent efforts have successfully combined the representa-

tion learning with adversarial networks in applications such

as conditional image synthesis [3, 9, 29, 32, 47]. Chen et

al. [2] adopt an unsupervised approach by maximizing the

mutual information between code space input and output

observations. Fu et al. [4] perform conditional image

synthesis given training data only supervised in one (source)

domain via joint feature disentanglement and adaption. Lu

et al. [25] and Kim et al. [13] both propose models on top

of a cycle-consistency formulation [49].

While these works can provide plausible image synthesis

conditional on attribute manipulations, the discussions are

still under the assumption that training data are available

over the joint latent space and have no accommodation for

the challenge of the data scarcity. Unlike prior works, the

proposed ConceptGAN captures image space mappings that

correspond to commutative shifts in the underlying latent

space. In each experiment, we jointly learn, transfer and

compose such concepts to synthesize images over joint

latent space including a subdomain missing at the training

stage. Given the transferability of such learned concepts,

our technique also paves a way for a principled framework

to generalize to multiple concepts where new concepts can

be learned incrementally without looking at past data.

3. Model formulation

We propose ConceptGAN, a concept learning frame-

work aimed at recovering the joint space information given

missing training data in one subdomain. As illustrated in

Figure 2, the basic unit of the framework is modeled as a

four-vertex cyclic graph, where a pair of latent concepts

is jointly learned. Each vertex refers to a subdomain

ΣXY with binary latent labels X and Y and corresponding

training samples {σi
XY }

NXY

i=1
∈ ΣXY , where NXY denotes

the number of training samples in the subdomain ΣXY .

The variation over each latent concept is learned as a pair

of forward and inverse mappings, (Gi, Fi)i=1,2 between

subdomains. For example, G1 : ΣX=0,Y → ΣX=1,Y

and F1 : ΣX=1,Y → ΣX=0,Y define the variation over

concept X . In particular, no pairwise correspondence is

required for data samples between any two subdomains

and our goal is to generate realistic synthetic samples over

all four subdomains under the assumption that no training

samples are available in one of the subdomains. In the

following discussion, we assume that the subdomain Σ11

has no training data (i.e. N11 = 0). An adversarial

discriminator DXY is introduced at each of the three subdo-

mains Σ00, Σ01 and Σ10 to tell synthetic data and real data

apart. We further extend cycle-consistency constraints used

in the CycleGAN [49] and introduce a commutative loss

to encourage learning transferable and composable concept

mappings.

3.1. Adversarial loss

The adversarial loss [5] is applied to each of the three

subdomains where real data is available during training,

which encourages learning mappings between adjacent

subdomains to generate realistic samples. Let PXY denote

the underlying distribution of the real data in subdomain

ΣXY . For generator G1 and discriminator D10, for

example, the adversarial loss is expressed as:

Ladv(G1, D10,Σ00,Σ10) = Eσ10∼P10
[logD10(σ10)]

+Eσ00∼P00
[log(1−D10(G1(σ00)))]

(1)

where the generator G1 and discriminator D10 are

learned to optimize a minimax objective such that

G∗

1
= argmin

G1

max
D10

Ladv(G1, D10,Σ00,Σ10) (2)

Similarly we define Ladv(G2, D01,Σ00,Σ01),
Ladv(F1, D00,Σ10,Σ00), and Ladv(F2, D00,Σ01,Σ00) for

G2, F1 and F2 respectively. The overall adversarial loss

LADV is the sum of these four terms.

3.2. Extended cycle­consistency loss

In Zhu et al. [49] a pairwise cycle-consistency loss

is proposed to encourage generators to learn bijectional

mappings between two distributions. Let LCY C2 denote

the sum of all such pairwise (i.e., distance-2) cycle consis-

tency losses adopted in the cyclic model, where six terms

are included: (1) both forward cycle-consistency and

backward cycle-consistency [49] between pairs (Σ00,Σ01)
and (Σ00,Σ10) and (2) only forward cycle-consistency

between pairs (Σ01,Σ11) and (Σ10,Σ11). Such consis-

tency constraints can naturally be extended to potentially

any closed walks in the cyclic graph and thus further reduce

the space of possible mappings. In particular, the differ-

ence between training data samples and image samples

reconstructed via walking through all four vertices from

either direction is minimized. For example, for any data

sample σ00 in subdomain Σ00, a distance-4 cycle consis-

tency constraint is defined in the clockwise direction (F2 ◦
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F1 ◦ G2 ◦ G1)(σ00) ≈ σ00 and in the counterclockwise

direction (F1 ◦F2 ◦G1 ◦G2)(σ00) ≈ σ00. Such constraints

are implemented by the penalty function:

Lcyc4(G,F,Σ00)

= Eσ00∼P00
[‖(F2 ◦ F1 ◦G2 ◦G1)(σ00)− σ00‖1]

+ Eσ00∼P00
[‖(F1 ◦ F2 ◦G1 ◦G2)(σ00)− σ00‖1].

(3)

Similarly, we define Lcyc4(G,F,Σ01) and

Lcyc4(G,F,Σ10) considering the case where the orig-

inal image is in subdomain Σ01 and Σ10 respectively. Let

LCY C4 denotes the sum of these three terms. The overall

cycle consistency loss LCY C = LCY C2 + LCY C4.

3.3. Commutative loss

Adversarial training in Zhu et al. [49] learns mappings

that capture sample distributions of training data and there-

fore are not easily transferable to input data that follows

a different distribution without a second training, which

may lead to weak compositionality. In order to encourage

the model to capture semantic shifts, which correspond

to commutative operators such as addition and subtrac-

tion in latent space, we enforce a commutative prop-

erty for concept composition such that starting from one

data sample, similar outputs are expected after applying

concepts in different orders. For example, for any data

sample σ00 in subdomain Σ00, we introduce a constraint

(G2 ◦ G1)(σ00) ≈ (G1 ◦ G2)(σ00) implemented by the

penalty function:

Lcomm(G1, G2,Σ00)

=Eσ00∼P00
[‖(G2 ◦G1)(σ00)− (G1 ◦G2)(σ00)‖1]

(4)

Lcomm(G1, F2,Σ01) and Lcomm(F1, G2,Σ10) are defined

in a similar way by considering original image in subdo-

mains Σ01 and Σ10. The overall commutative loss LCOMM

is the sum of the three terms.

3.4. Overall loss function

The overall loss function is expressed as:

L(G,F,D,Σ) = LADV + λLCY C + µLCOMM (5)

with weight parameters λ and µ. The generators are learned

as the solutions of a minimax problem:

G∗, F ∗ = argmin
G,F

max
D

L(G,F,D,Σ). (6)

3.5. Composition of multiple concepts

In each experiment, two concepts are jointly trained

via the proposed cyclic model shown in Figure 2, where

synthetic images are generated in all four sudomains. In

particular, by composing the pair of concepts, plausible

images are synthesized in subdomain Σ11 where we assume

no training data is available. Such image synthesis mech-

anism can be generalized by considering the composition

of multiple concepts. For example, we demonstrate in

Figure 4, that by directly combining two pairs of concepts

learned in separate experiments, plausible images can be

generated over three dimensional latent space, including a

subdomain where no training data is available in either of

the experiments, which suggests that the proposed system

can be scaled up with linearly increased complexity via

direct composition of concepts learned in pairwise fashion.

3.6. Implementation details

For all discriminators, we use the architecture similar to

Kim et al. [12] which contains 5 convolution layers with

4 × 4 filters. Compared to the PatchGAN used in Zhu

et al. [49], the discriminator network takes 64x64 input

images and output a scalar from the sigmoid function for

each image. For all the generators, we use the architecture

adapted from Zhu et al [49], which contains 2 convolution

layers with stride 2, 6 residual blocks and 2 fractionally-

strided convolution layers with stride 1

2
. We use Adam opti-

mizer [14] with an initial learning rate of 0.0002 at the first

150 epochs, followed by a linearly decaying learning rate

for the next 150 epochs as the rate goes to zero. For exper-

iments in Section 4.1, we set µ = λ = 10 and we also

include an identity loss component [49] with weight 10.

4. Experiments

4.1. Conditional image synthesis

Image synthesis experiments are performed each corre-

sponding to the manipulation over two concepts. In

Figure 3, column (I), (II) and (III) demonstrate the

clockwise cycle-consistency, the counter-clockwise cycle-

consistency and the commutative property of the concept

composition respectively. Given real testing images shown

at the leftmost in each panel, plausible synthetic data are

generated with correct semantic variation in each subdo-

main, including the subdomain where no training data is

available.

Concept learning with face images Figures 3 (A) and

Figure 4 show the results of applying proposed method on

face images. The concept learning models are trained and

tested on CelebA dataset [24]. In the experiment concerning

the concepts “smile” and “eyeglasses” (Figure 3(A)),

4851,3945 and 4618 images with attribute labels (no smile,

no eyeglasses), (no smile, with eyeglasses) and (with smile,

no eyeglasses) are used at the training stage for subdomains

Σ00, Σ01 and Σ10 respectively. Figure 4 presents the results

of directly composing three concepts learned in two sepa-

8662



(I) Clockwise cycle-consistency (II) Counter-clockwise cycle-consistency (III) Commutative property

(A)

(B)

No training data

G1: +smile
G2: +eyeglasses 
F1: -smile
F2: -eyeglasses

G1 G2 F1 F2 G2 G1 F2 F1
G1 G2 G1G2

G1: handbag-to-shoe 
G2: color-to-edge 
F1: shoe-to-handbag 
F2: edge-to-color

G1 G2 F1 F2 G2 G1 F2 F1 G1 G2
G1G2

Figure 3: Image translation and synthesis conditional on concepts: (A) “smile” and ”eyeglasses”; (B) “handbag vs. shoe” and “color vs.

edge”. Each panel in column (I) demonstrates the clockwise cycle consistency where σ00, G1(σ00), (G2 ◦G1)(σ00), (F1 ◦G2 ◦G1)(σ00),
(F2 ◦ F1 ◦G2 ◦G1)(σ00) are shown in sequence, from left to right. Each panel in column (II) demonstrates the counter-clockwise cycle

consistency where σ00, G2(σ00), (G1 ◦ G2)(σ00), (F2 ◦ G1 ◦ G2)(σ00), (F1 ◦ F2 ◦ G1 ◦ G2)(σ00) are shown in sequence, from left

to right. Each panel in column (III) demonstrates the commutative property of the concept composition where σ00, G1(σ00), G2(σ00),
(G2 ◦G1)(σ00), (G1 ◦G2)(σ00) are shown in sequence, from left to right. Synthesis results obtained in the subdomains where no training

data is available are highlighted in yellow boxes.

Test data Synthetic outputs over all possible permutations of 3 concepts learned in two experiments

Figure 4: Image synthesis in a zero-shot subdomain by composing three concepts (smile, eyeglasses, bangs) learned in two separate

experiments. Concept mappings with respect to ”eyeglasses” is learned in each of two experiments therefore 2 × (3!) = 12 different

compositions of mappings available to translate images labeled as (no smile, no eyeglasses, no bangs) to the target subdomain.

(I) Clockwise cycle-consistency

G1 G2 F1 F2
G2 G1 F2 F1

(II) Counter-clockwise cycle-consistency (III) Commutative property

G1 G2 G1G2

LFW

MS-

CELEB

1M

No training data

G1: +eyeglasses; 

G2: +bangs; 

F1: -eyeglasses; 

F2: -bangs

Figure 5: Transfer of learned concepts: Image translation and conditional synthesis on face attributes “eyeglasses” and “bangs” via direct

application of models trained by CelebA data [24] on independent test datasets MS-Celeb-1M [6] (top) and LFW [7] (bottom).
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rate experiments described in Section 3.5. Synthetic images

are generated in the subdomain with labels (with smile, with

eyeglasses, with bangs) where no training data is available

in either experiment. It is shown that the proposed method

can thus be generalized to manipulation over higher dimen-

sional latent spaces.

Transfer of learned concepts Here, we qualitatively

demonstrate the transferability of the concepts learned by

ConceptGAN on different datasets not used at all during

training. Figure 5 presents the results of this experiment

of direct transfer of the learned concept pair to independent

test sets. Concepts ”eyeglasses” and ”bangs” are trained

with CelebA [24] dataset and tested on datasets LFW [7]

and MS-CELEB-1M [6] respectively.

Concept learning of shape and texture Figure 3 (B)

shows the results of applying the proposed method on

images concerning the concepts “handbag vs. shoe”

(shape variation) and “photo vs. edge” (texture vari-

ation). Without taking advantage of the paired labels,

we use the “edges2shoes” and “edges2handbags” dataset

from “pix2pix” [8] dataset. 5124, 5124 and 4982 images

with attribute labels (color, handbag), (edge, handbag) and

(color, shoe) are used at the training stage for subdomains

Σ00, Σ01 and Σ10 respectively. Given no training data,

synthetic line drawing (“edge”) images are generated for

shoes. The importance of simultaneously learning and

transferring concept mappings is demonstrated in compar-

ison to results of direct composition of separately trained

CycleGAN units [49] in Figure 1. In particular, the

mappings trained via baseline CycleGAN with images in

subdomains Σ00 and Σ10 are restricted to training distribu-

tions and therefore fail to preserve the correct texture infor-

mation when directly transferred to input images in subdo-

main Σ01
1.

5. Quantitative evaluations

We provide quantitative performance evaluations of our

proposed concept learning framework for two different

tasks: attribute classification and face verification.

5.1. Attribute classification

In this section, our goal is to quantitatively demonstrate

the importance of simultaneously learning and transferring

concept mappings as opposed to learning and composing

concepts separately via a single CycleGAN unit. To this

end, we perform, and report results of, several classifica-

tion experiments. Specifically, we employ the following

evaluation protocol: (a) We use data in subdomains Σ00,

Σ01 and Σ10 to learn concept mappings and automatically

synthesize data in the subdomain Σ11 using the proposed

1Additional results of the experiments, including with other concepts,

can be found in the supplementary material.

Classifier Val CycleGAN Ours

C1: “color/shoe” vs. “edge/shoe” 99 0 99

C2: “edge/handbag” vs. “edge/shoe” 99 99 98

Both C1 and C2 N/A 0 98

Table 1: The accuracy (%) of classifying “edge/shoe” images

synthesized via ConceptGAN (ours) vs. CycleGAN [49]. Joint

classification accuracy is reported as the percentage of the images

correctly classified in two tests at the same time.

Classifier Val CycleGAN Ours

C1: “with” vs. “no” eyeglasses 98 93 98

C2: “with” vs. “no” bangs 93 61 67

Both C1 and C2 N/A 56 66

Table 2: The accuracy (%) of classifying face images synthesized

via ConceptGAN (ours) vs. CycleGAN [49].

concept learning model. We then use the generated images

in the subdomain Σ11 and perform a two-class classifica-

tion experiment on each of the concepts. (b) We repeat

the experiment described above, but now data in Σ11 is

generated as composition of two independently learned

CycleGAN units, i.e., we learn one CycleGAN for the

Σ00 =⇒ Σ10 mapping and another CycleGAN for the

Σ00 =⇒ Σ01 mapping. Given data in Σ00, we then

compose the two learned mappings to synthesize data in

Σ11. We use the same network architecture to train the sepa-

rate CycleGAN unit as described in Section 3.6.

Key results of this experiment for multiple concept

examples include the following. (a) Classifying shoe and

edge images: In this experiment, we demonstrate results on

the “handbag vs. shoe” and “color vs. edge” concepts. We

use images of “color/handbag” (Σ00), “color/shoe” (Σ10),

and “edge/handbag” (Σ01) for learning the mappings of

our proposed concept learning approach as well as indi-

vidual mappings for CycleGAN. The results of this exper-

iment are shown in Table 1. The results demonstrate that

the proposed method successfully composes two concepts

in the subdomain Σ11 as 98% of the synthesized images

pass both classification tests, which greatly outperforms

the results of direct composition of two separately trained

CycleGAN units where no synthesized image survive both

tests. (b) Classifying face images with “eyeglasses” and

“bangs”: In this experiment, we demonstrate results on the

“eyeglasses” and “bangs” concepts. We use images of “no

eyeglasses, no bangs” (Σ00), “with eyeglasses, no bangs”

(Σ10), and “no eyeglasses, with bangs” (Σ01) to learn

the mappings of ConceptGAN and baseline CycleGAN.

The results of this experiment are shown in Table 2.

The proposed method outperforms direct composition of

CycleGAN units in terms of the synthesis quality in the
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Attributes Smiling & Eyeglasses Bangs & Eyeglasses Smiling, Bangs, & Eyeglasses

Ranking Method l2 RNP SRID l2 RNP SRID l2 RNP SRID

Augmentation No Yes Yes No Yes Yes No Yes Yes

CaffeFace 8.3 10.7 12.8 7.9 12.3 16.9 11.5 13.3 16.6

VGGFace 38.6 43.9 49.4 49.8 59.4 61.5 44.4 54.8 58.6

Table 3: Rank-1 face verification results (in %) for three different attribute sets: no augmentation (where we use l2 distance to rank) vs.

augmentation with ConceptGAN (where we use the multi-shot ranking algorithms, RNP and SRID to rank).

Euclidean distance 

No Augmentation

Rank=5
⋯

RNP

Augmentation 

(Eyeglasses and 

Bangs)

Rank=1

⋯ ⋯⋯ ⋯ ⋯ ⋯

Figure 6: A qualitative illustration of improvement in face veri-

fication performance with augmented data using the “eyeglasses”

and “bangs” attribute pair.

subdomain Σ11 by around 10% improvement in joint clas-

sification accuracy.

5.2. Face verification with augmented data

Given a pair of face images, face verification is the

problem of determining whether the pair represents the

same person. Here, we demonstrate the applicability of

ConceptGAN to this problem. Specifically, we begin with

the one-shot version where every person in the probe and

the gallery has exactly one image each. We then use the

learned concept mappings to synthesize new, unseen face

images, transforming the one-shot version to a multi-shot

one. We demonstrate that by performing this conversion

with our synthesized images, we improve the face verifi-

cation performance. Here, we note that the focus of these

evaluations is not to obtain state-of-the-art results but to

demonstrate the applicability of ConceptGAN as a plug-in

module that can be used in conjunction with any existing

face verification algorithm to obtain improved performance.

We use the CelebA [24] dataset for all experiments, where

we generate 10 random splits of 100 people each not used in

training ConceptGAN and report the average performance.

We first perform one-shot experiments where we use two

popular pre-trained face representation models, VGGFace

[30] and CaffeFace [41] to compute feature representa-

tions of the images and rank gallery candidates using the

Euclidean distance. We next perform multi-shot experi-

ments by augmenting both probe and gallery sets for each

person using ConceptGAN, and rank gallery candidates

with two multi-shot ranking algorithms, SRID [10, 11] and

Without 

commutative

Without 

cycle 

consistency

Full model
Test data

(a) (b)
Figure 7: (a) Sample qualitative results for ablation experi-

ments. (b) Synthesis results for 128x128 images with “Bangs”

and ”Eyeglasses”: column1: Σ00, column2: synthesized in Σ11.

Ranking method l2 SRID

Augmentation No Yes

LFW 9.5 13.1

MS-Celeb1M 11.7 14.8

Table 4: Rank-1 face verification results (in %): Transfer of

concepts learned on CelebA to LFW and MS-Celeb1M.

(a)

(b)

(c)

Figure 8: Generalizing ConceptGAN to n concepts, illustrated

with n = 3. (a) concepts c1, c2, c3, the 2n = 8 states, and

all possible shifts between the states. (b) c1, c2, c3 defined by

observing nodes 0,1,2,4, allowing primary inference of nodes

3,5,6, and secondary inference of node 7; (c) c1, c2, c3 defined

by observing nodes 0,4,6,7 with resulting primary (brown) and

secondary (sand) inferred nodes.

RNP [44]. Results of all the experiments discussed above

are summarized in Table 3, where the augmented probe

and gallery sets have 4 images each in the cases of two
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concepts and 8 images each in the case of 3 concepts. As

can be noted from these results, converting the one-shot

face verification problem to a multi-shot one by means

of ConceptGAN has obvious benefits, with the multi-shot

rank-1 face verification results consistently outperforming

the corresponding one-shot results. We further qualita-

tively show the rank improvement in Figure 6, where we

see improved retrieval in the cases where face verifica-

tion was performed with augmented data. Here we also

provide quantitative evaluations for the transferability of

concepts learned by CycleGAN. Specifically, in Table 4,

we show rank-1 face verification results with CaffeFace

and SRID on two independent test sets (LFW and MS-

Celeb1M) using concepts learned by ConceptGAN on the

CelebA dataset, where we see improved performance with

data synthetized using the transferred concepts. These

results, complemented by the qualitative evaluations of the

previous section, provide evidence for the transferability

of the learned concepts to new datasets, demonstrating

promise in learning the underlying latent space information.

5.3. Ablation experiments

In this section, we study the impact of the various

components of the proposed loss function presented in

Section 3.4. We first present qualitative results in

Figure 7(a) for sample test images with and without the

commutative (Lcomm) and distance-4 cycle consistency

loss (Lcyc4). In each case, we start with a test image (“No

Bangs” and “No Eyeglasses”) and show the synthesized

image in subdomain Σ11 (with “Bangs” and “Eyeglasses”).

One can see that with the “full model”, the visual quality

of the generated images is better. We note that with SRID

and CaffeFace, we obtain a rank-1 face verification perfor-

mance of 12.1% without Lcyc4, 15.3% without Lcomm,

and 16.9% with the full model. Furthermore, we report

the following attribute classification results corresponding

to those in Table 2: combined C1 and C2 performance of

18% without Lcyc4, 60% without Lcomm, and 66% with the

full model. These results provide empirical justification for

each of the individual terms in our proposed loss function

presented in Section 3.4. Finally, we also provide sample

results for synthesizing images of resolution higher than the

64 × 64 discussed previously- in Figure 7(b), we provide

two examples of synthesizing 128 × 128 images using our

model. Additional results can be found in the supplemen-

tary material 2.

6. Generalizing to multiple concepts

In the previous sections, we discussed a possible way we

could scale up to three concepts, and showed qualitative and

2Supplementary material can be found at https://arxiv.org/

abs/1711.06148

quantitative results. Here, we provide a scheme to gener-

alize our method to n concepts under two assumptions: (a)

concepts have distinct states, i.e. they are not continuous,

and (b) activating one concept does not inhibit any other.

We show that pairwise constraints over two concepts are

sufficient for generating samplers from all concept combi-

nations. Figure 8(a) illustrates n = 3 with concepts C =
{c1, c2, c3} as a graph where the edges apply a concept and

the nodes are the 2n concept combinations. Each node of

the graph may be observed or not as illustrated in figure 8(b)

(green indicates an observed node). “Observed” means that

we have samples from the underlying distribution of a node.

Applying our method then allows to infer node 3, indi-

cated in brown, with two concepts ±c1 and ±c2 involved.

Indeed, the sub-graph of nodes {0, 1, 2, 3} is exactly our

proposed two concept solution. Let’s add data drawn from

node 4, observing the additional concept ±c3. The resulting

graph shows that we can also infer nodes 5 and 6 by

adding constraints corresponding the cycles (0, 2, 6, 4) and

(0, 1, 5, 4). We now take the next step in generalization by

considering node 7. Assuming that we indeed can infer

nodes 3, 5, 6, we consider constraints that treat them as

“observed”, such as over the cycles (3, 7, 5, 1), (5, 7, 6, 4),
and (6, 7, 3, 2). This allows us to estimate samples for node

7. To illustrate the generic nature, figure 8(c) shows a situ-

ation with data at nodes {0, 4, 6, 7}. We can firstly infer

nodes {2, 5} and secondarily {1, 3}. Generalizing to n > 3,

we propose to discover new layers of nodes in order of their

distance from any observed node. Naturally, one cannot

escape the combinatorial complexity of generating all the

samplers. However, our generalization paves the way for

iterative algorithms that yield approximate solutions effi-

ciently based on a graphical representation of concepts and

data.

7. Conclusions

We proposed ConceptGAN, a novel concept learning

framework where we seek to capture underlying semantic

shifts between data domains instead of mappings restricted

to training distributions. The key idea is that via joint

concept learning, transfer and composition, information

over a joint latent space is recovered given incomplete

training data. We showed that the proposed method

can be applied as a smart data augmentation technique

to generate realistic samples over different variations of

concept attributes, including samples in a subdomain where

the variation is completely unseen at the training stage. We

demonstrated the compositionality of the captured concepts

as well as the transferability of data augmentation in appli-

cation on face verification problems.
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