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Abstract

We introduce Interactive Question Answering (IQA),
the task of answering questions that require an autonomous
agent to interact with a dynamic visual environment. 1QA
presents the agent with a scene and a question, like: “Are
there any apples in the fridge?” The agent must navigate
around the scene, acquire visual understanding of scene el-
ements, interact with objects (e.g. open refrigerators) and
plan for a series of actions conditioned on the question.
Popular reinforcement learning approaches with a single
controller perform poorly on 1QA owing to the large and
diverse state space. We propose the Hierarchical Interac-
tive Memory Network (HIMN), consisting of a factorized
set of controllers, allowing the system to operate at mul-
tiple levels of temporal abstraction. To evaluate HIMN,
we introduce 1QUAD V1, a new dataset built upon Al2-
THOR [35], a simulated photo-realistic environment of con-
figurable indoor scenes with interactive objects. IQUAD V1
has 75,000 questions, each paired with a unique scene con-
figuration. Our experiments show that our proposed model
outperforms popular single controller based methods on
IQUAD V1. For sample questions and results, please view
ourvideo: https://youtu.be/pXd3C—175r98.

1. Introduction

A longstanding goal of the artificial intelligence com-
munity has been to create agents that can perform manual
tasks in the real world and can communicate with humans
via natural language. For instance, a household robot might
be posed the following questions: Do we need to buy more
milk? which would require it to navigate to the kitchen,
open the fridge and check to see if there is sufficient milk
in the milk jug, or How many boxes of cookies do we have?
which would require the agent to navigate to the cabinets,
open several of them and count the number of cookie boxes.
Towards this goal, Visual Question Answering (VQA), the
problem of answering questions about visual content, has
received significant attention from the computer vision and
natural language processing communities. While there has
been a lot of progress on VQA, research by and large fo-
cuses on answering questions passively about visual con-
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Q: Is there bread in
the room?
A: No

Q: How many mugs

are in the room?
A:3

Q: Is there a tomato
in the fridge?
A: Yes

Figure 1. Samples from IQUAD V1: Each row shows a question
paired with the agent’s initial view and a scene view of the envi-
ronment (which is not provided to the agent). In the scene view, the
agent is shown in black, and the locations of the objects of interest
for each question are outlined. Note that none of the questions can
be answered accurately given only the initial image.

tent, i.e. without the ability to interact with the environment
generating the content. An agent that is only able to answer
questions passively is limited in its capacity to aid humans
in their tasks.

We introduce Interactive Question Answering (IQA),
the task of answering questions that require the agent to in-
teract with a dynamic environment. IQA poses several key
challenges in addition to the ones posed by VQA. First,
the agent must be able to navigate through the environment.
Second, it must acquire an understanding of its environ-
ment including objects, actions, and affordances. Third,
the agent must be able to interact with objects in the envi-
ronment (such as opening the microwave, picking up books,
etc.). Fourth, the agent must be able to plan and execute
a series of actions in the environment conditioned on the
questions asked of it.

To address these challenges, we propose HIMN (Hierar-
chical Interactive Memory Network). Figure 2 provides an
overview of HIMN. Akin to past works on hierarchical re-
inforcement learning, HIMN is factorized into a hierarchy
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Figure 2. An overview of the Hierarchical Interactive Memory
Network (HIMN)

of controllers, allowing the system to operate, learn, and
reason across multiple time scales while simultaneously re-
ducing the complexity of each individual subtask. A high
level controller, referred to as the Planner chooses the task
to be performed (for example, navigation / manipulation /
answering / etc.) and generates a command for the cho-
sen task. Tasks specified by the Planner are executed by
a set of low level controllers (Navigator, Manipulator, De-
tector, Scanner and Answerer) which return control to the
Planner when a task termination state is reached. Since
these subtasks are fairly independent, we can pretrain each
controller independently, while assuming oracle versions of
the remaining controllers. Our experiments show that this
factorization enables higher accuracy and generalization to
unseen environments.

Several question types require the agent to remember
where it has been and what it has seen. For example, How
many pillows are in this house? requires an agent to nav-
igate around the rooms, open closets and keep track of the
number of pillows it encounters. For sufficiently complex
spaces, the agent needs to hold this information in mem-
ory for a long time. This motivates the need for an explicit
external memory representation that is filled by the agent
as it interacts with its environment. This memory must be
both spatial and semantic so it can represent what is where.
We propose a new recurrent layer formulation: Egocentric
Spatial GRU (esGRU) to represent this memory (Sec 4.1).

Training and evaluating interactive agents in the real
world is currently prohibitive from the standpoint of oper-
ating costs, scale and research reproducibility. A far more
viable alternative is to train and evaluate such agents in real-
istic simulated environments. Towards this end, we present
the Interactive Question Answering Dataset (IQUAD V1)
built upon AI2-THOR [35], a photo-realistic customizable
simulation environment for indoor scenes integrated with
the Unity [!] physics engine. IQUAD V1 consists of over

75,000 multiple choice questions, each question accompa-
nied by a unique scene configuration.

We evaluate HIMN on IQUAD V1 using a question an-
swering accuracy metric and show that it outperforms a
baseline based on a common architecture for reinforcement
learning used in past work. We evaluate in both familiar and
unfamiliar environments to show that our semantic model
generalizes well across scenes.

In summary, our contributions include: (a) propos-
ing Interactive Question Answering, the task of answer-
ing questions that require the agent to interact with a dy-
namic environment, (b) presenting the Hierarchical Interac-
tive Memory Network, a question answering model factor-
ized into a high level Planner, a set of low level controllers
and a rich semantic spatial memory, (c) the Egocentric Spa-
tial GRU, a new recurrent layer to represent this memory
and (d) a new dataset IQUAD V1 towards the task of IQA.

2. Related Work

Visual Question Answering (VQA): VQA has seen signif-
icant progress over the past few years, owing to the design
of deep architectures suited for this task and the creation of
large VQA datasets to train these models [71]. These in-
clude datasets of natural images [2, 30, 41, 68], synthetic
images [2, 4, 24, 27, 28], natural videos [23, 65], synthetic
videos [32, 49] and multimodal contexts [29]. Some of
these use questions written by humans [2, 28, 29, 36] and
others use questions that are generated automatically [4, 24,

]. IQUAD V1 is set in a photo-realistic simulation en-
vironment and uses automatically generated questions. In
contrast to the aforementioned datasets that only require the
agent to observe the content passively, IQUAD V1 requires
the agent to interact with a dynamic environment.

The first deep architectures designed for VQA involved
using an RNN to encode the question, using a CNN to en-
code the image and combining them using fully connected
layers to yield the answer [2, 42]. More recently, modular
networks [4, 20, 25] that construct an explicit representation
of the reasoning process by exploiting the compositional na-
ture of language have been proposed. Similar architectures
have also been applied to the video domain with extensions
such as spatiotemporal attention [23, 49]. Our proposed
approach to question answering allows the agent to inter-
act with its environment and is thus fundamentally different
to past QA approaches. However, we note that approaches
such as visual attention and modularity can easily be com-
bined with our model to provide further improvements.
Reinforcement Learning (RL): RL algorithms have been
employed in a wide range of problems including locomo-
tion [33], obstacle detection [44] and autonomous flight [34,

]. Of particular relevance to our approach is the area of
hierarchical reinforcement learning (HRL), which consists
of a high level controller and one or more low level con-
trollers. The high-level controller selects a subtask to be ex-
ecuted and invokes one of the low level controllers. The ad-
vantage of HRL is that it allows the model to operate at mul-
tiple levels of temporal abstraction. Early works propos-
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ing HRL algorithms include [! 1, 54, 64]. More recent ap-
proaches include [37] who propose hierarchical-DQN with
an intrinsically motivated RL algorithm, [66] who use HRL
to create a lifelong learning system that has the ability to
reuse and transfer knowledge from one task to another,
and [51] who use HRL to enable zero shot task general-
ization by learning subtask embeddings that capture corre-
spondences between similar subtasks. Our use of HRL pri-
marily lets us learn at multiple time scales and its integra-
tion with the semantic memory lets us divide the complex
task of IQA into more concrete tasks of navigation, detec-
tion, planning etc. that are easier to train.

RL techniques have also recently been applied to QA
tasks, most notably by [25] to train a program generator
that constructs an explicit representation of the reasoning
process to be performed and an execution engine that exe-
cutes the program to predict the answer.

Visual Navigation: The majority of visual navigation tech-
niques fall into three categories: offline map-based, on-
line map-based, and map-less approaches. Offline map-
based techniques [6, 7, 31, 52] require the complete map
of the environment to make any decisions about their ac-
tions, which limits their use in unseen environments. On-
line map-based methods [10, 13, 50, 61, 67, 69] often con-
struct the map while exploring the environment. The major-
ity of these approaches use the computed map for naviga-
tion only, whereas our model constructs a rich semantic map
which is used for navigation as well as planning and ques-
tion answering. Map-less approaches [17, 22,

which use techniques such as obstacle avoidance and fea-
ture matching, depend upon implicit representations of the
world to perform navigation, and lack long-term memory
capabilities. Recently Gupta et al. [16] proposed a joint ar-
chitecture for a mapper that produces a spatial memory and
a planner that can plan paths. The similarities between our
works lie in the usage of a hierarchical system and a spa-
tial memory. In contrast to their work, navigation is not the
end goal of our system, but a subtask towards question an-
swering, and our action space is more diverse as it includes
interaction and question answering.

Visual Planning: To answer questions such as Do I need
to buy milk? an agent needs to plan a sequence of actions
to explore and interact with the environment. A large body
of research on planning algorithms [12, 14, 26, 62, 63] use
high-level formal languages. These techniques are designed
to handle low-dimensional state spaces but do not scale well
to high-dimensional state spaces such as natural images.

Other relevant work includes visual navigation [74] and
visual semantic planning [73] which both use the AI2-
THOR environment [35]. The former tackles navigation,
and the latter focuses on high level planning and assumes
an ideal low level task executor; in contrast, our model
trains low level and high level controllers jointly. Also, both
these approaches do not generalize well to unseen scenes,
whereas our experiments show that we do not overfit to pre-
viously encountered environments. Finally, these methods
lack any sort of explicit map, whereas we construct a se-

mantic map which helps us navigate and answer questions.

Recently Chaplot et al. [8] and Hill et al. [19] have pro-
posed models to complete navigation tasks specified via
language (e.g. Go to the red keycard) and trained their sys-
tems in simulated 3D environments. These models show the
ability to generalize to unseen instructions of seen concepts.
In contrast, we tackle several question types that require a
variety of navigation behaviours and interaction, and the en-
vironment we use is significantly more photo-realistic. In
our experiments, we compare our proposed HIMN model to
a baseline system (A3C in Section 5) that very closely re-
sembles the model architectures proposed in [8] and [19].
Visual Learning by Simulation: There has been an in-
creased use of simulated environments and game platforms
to train computer vision systems to perform tasks such as
learning the dynamics of the world [47, 48, 70], seman-
tic segmentation [!8], pedestrian detection [43], pose es-
timation [53] and urban driving [3, 9, 57, 58]. Several of
these are also interactive making them suitable to learn con-
trol, including [5, 30, 35, 39, 72]. We choose to use AI2-
THOR [35] in our work since it provides a photo-realistic
and interactive environment of real world scenes, making it
very suitable to train IQA systems that might be transfer-
able to the real world.

3. Learning Framework
3.1. Actionable Environment

Training and evaluating interactive agents in the real
world is currently prohibitive from the standpoint of oper-
ating costs, scale, time, and research reproducibility. A far
more viable alternative is to use simulated environments.
However, the framework should be visually realistic, allow
interactions with objects, and have a detailed model of the
physics of the scene so that agent movements and object
interactions are properly represented. Hence, we adopt the
AI2-THOR environment [35] for our purposes. AI2-THOR
is a photo-realistic simulation environment of 120 rooms
in indoor settings, tightly integrated with a physics engine.
Each scene consists of a variety of objects, from furniture
such as couches, appliances such as microwaves and smaller
objects such as crockery, cutlery, books, fruit, etc. Many of
these objects are actionable such as fridges which can be
opened, cups which can be picked up and put down, and
stoves which can be turned on and off.

3.2. Interactive Question Answering Dataset

IQUAD V1 is a question answering dataset built upon
AI2-THOR [35]. It consists of over 75,000 multiple choice
questions for three different question types (table 1 shows
more detailed statistics). Each question is accompanied by
a scene identifier and a unique arrangement of movable ob-
jects in the scene. Figure 1 shows three such examples. The
wide variety of configurations in IQUAD V1 prevent models
from memorizing simple rules like “apples are always in the
fridge” and render this dataset challenging. IQUAD V1 con-
sists of several question types including: Existence ques-
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Interactive Question Answering Dataset Statistics
Train Test
Existence 25,600 | 640
Counting 25,600 | 640
Spatial Relationships 25,600 | 640
Rooms 25 5
Total scene configurations (s.c.) | 76,800 | 1,920
Avg # objects per (s.c.) 46 41
Avg # interactable objects (s.c.) | 21 16
Vocabulary Size 70 70

Table 1. This table shows the statistics of our proposed dataset in
a variety of question types, objects and scene configurations.

tions (Is there an apple in the kitchen?), Counting ques-
tions (How many forks are present in the scene?), and Spa-
tial Relationship questions (Is there lettuce in the fridge?
/ Is there a cup on the counter-top?). Questions, ground
truth answers, and answer choices are generated automat-
ically. Since natural language understanding is not a fo-
cus of this dataset, questions are generated using a set of
templates written down a priori. Extending IQUAD V1 to
include more diverse questions generated by humans is fu-
ture work. IQUAD V1 is a balanced dataset that prevents
models from obtaining high accuracies by simply exploit-
ing trivial language and scene configuration biases. Similar
to past balanced VQA datasets [ 1 5], each question is associ-
ated with multiple scene configurations that result in differ-
ent answers to the question. We split the 30 kitchen rooms
into 25 train and 5 test, and have 1024 unique (question,
scene configuration) pairs for each (room, question type)
pair in train, and 128 in test. An episode is finished when
the Answerer is invoked. We evaluate different methods us-
ing Top-1 accuracy.

3.3. Agent and Objects

The agent in our environments has a single RGB cam-
era mounted at a fixed height. An agent can perform one
of five navigation actions (move ahead 25 cm, rotate 90 de-
grees left or right, look up or down 30 degrees). We assume
a grid-world floor plan that ensures that the agent always
moves along the edges of a grid and comes to a stop on a
node in this grid. The agent can perform two interaction ac-
tions (open and close) to manipulate objects. A wide variety
of objects (fridges, cabinets, drawers, microwaves, etc.) can
be interacted with. If there are multiple items in the current
viewpoint which can be opened or closed, the environment
chooses the one nearest to the center of the current image.
The success of each action depends on the current state of
the environment as well as the agent’s current location. For
instance, the agent cannot open a cabinet that is more than
1 meter away or is not in view, or is already open, and it
cannot walk through a table or a wall.

4. Model

We propose HIMN (Hierarchical Interactive Memory
Network), consisting of a hierarchy of controllers that op-

erate at multiple levels of temporal abstraction and a rich
semantic memory that aids in navigation, interaction, and
question answering. Figure 2 provides an overview of
HIMN. We now describe each of HIMN’s components in
greater detail.

Global Semantic Memory

Agent’s current

Viewpoint
(memory locations ——
that are read) egocentric

updates only
’f{ Agent’s current
location

Local Memory

swap into the
GRU hidden state

Local Inputs Local Update
provided by the updated hidden

Navigator state of the GRU
—l —l —)
] input to
the GRU

Figure 3. An overview of the Egocentric Spatial GRU (esGRU):
The esGRU only allows writing to a local window within the mem-
ory, dependent on the agent’s current location and viewpoint.

4.1. Spatial Memory

Several question types require the agent to keep track of
objects that it has seen in the past along with their loca-
tions. For complex scenes with several locations and in-
teractable objects, the agent needs to hold this information
in memory for a long duration. This motivates the need
for an explicit external memory representation that is filled
by the agent on the fly and can be accessed at any time.
To address this, HIMN uses a rich semantic spatial mem-
ory that encodes a semantic representation of each location
in the scene. Each location in this memory consists of a
feature vector encoding object detection probabilities, free
space probability (a 2D occupancy grid), coverage (has the
agent inspected this location before), and navigation intent
(has the agent attempted to visit this location before). We
propose a new recurrent layer formulation: Egocentric Spa-
tial GRU (esGRU) to represent this memory, illustrated in
Figure 3. The esGRU maintains an external global spatial
memory represented as a 3D tensor. At each time step, the
esGRU swaps in local egocentric copies of this memory into
the hidden state of the GRU, performs computations using
current inputs, and then swaps out the resulting hidden state
into the global memory at the predetermined location. This
speeds up computations and prevents corrupting the mem-
ory at locations far away from the agent’s current viewpoint.
When navigating and answering questions, the agent can
access the full memory, enabling long-term recall from ob-
servations seen hundreds of states prior. Furthermore, only
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Figure 4. Schematic representation of the Planner

low level controllers have read-write access to this memory.
Since the Planner only makes high level decisions, without
interacting with the world at a lower level, it only has read
access to the memory.

4.2. Planner

The high level Planner invokes low level controllers in
order to explore the environment, gather knowledge needed
to answer the given question, and answer the question. We
frame this as a reinforcement learning problem where the
agent must issue the fewest possible commands that result
in a correct answer. The agent must learn to explore rel-
evant areas of the scene based on learned knowledge (e.g.
apples are often in the fridge, cabinets are openable, etc.),
the current memory state (e.g. the fridge is to the left), cur-
rent observations (e.g. the fridge is closed) and the question.
At every timestep, the Planner chooses to either invoke the
Navigator providing a relative location in a 5x5 grid in front
of the agent, invoke the Scanner with a direction such as up
or left, invoke the Manipulator with open/close commands
on a nearby object, or invoke the Answerer for a total of
32 discrete actions. It does this by producing a policy =
consisting of probabilities 7; for each action, and a value
v for the current state. 7 and v are learned using the A3C
algorithm [46]. Figure 4 shows a schematic of the Plan-
ner. It consists of a GRU which accepts at each time step
the current viewpoint (encoded by a CNN) and the previ-
ous action. The Planner has read only access to the se-
mantic memory centered around the agent’s current loca-
tion. The output of this GRU is combined with the question
embedding and an embedding of the nearby semantic spa-
tial memory to predict m and v. The agent receives a fixed
reward/penalty based on answering correctly/incorrectly. It
is also provided a constant time penalty to encourage ef-
ficient explorations of the environment and quick answer-
ing, as well as a penalty for attempting to perform invalid

actions. The agent is also given intermediate rewards for
increasing the “coverage” of the environment, effectively
training the network to maximize the amount of the room
it has explored as quickly as possible. Finally, at each time
step, the Planner also predicts which high level actions are
viable given the current world state. In many locations in
the scenes, certain navigation destinations are unreachable
or there are no objects to interact with. Predicting possi-
ble/impossible actions at each time step, allows gradients to
propagate through all actions rather than just the chosen ac-
tion. This leads to higher accuracies and faster convergence
(see section 5.2 for more details).

4.3. Low level controllers

Navigator The Navigator is invoked by the Planner which
also provides it with the relative coordinates of the target
location. Given a destination specified by the Planner and
the current estimate of the room’s occupancy grid, the Nav-
igator runs A* search to find the shortest path to the goal.
As the Navigator moves through the environment, it uses
the esGRU to produce a local (5x5) occupancy grid given
the current visual observation. This updates the global oc-
cupancy estimate, and prompts a new shortest-path compu-
tation. This is a fully supervised problem and can be trained
with the standard sigmoid-cross-entropy. The Navigator
also invokes the Scanner to obtain a wide angle view of
the environment. Given that the requested destination may
be outside the bounds of the room or otherwise impossible
(e.g. at a wall or other obstacle), the Navigator’s network
also predicts a termination signal, and returns control to the
Planner when the prediction passes a certain threshold.
Scanner The Scanner is a simple controller which captures
images by rotating the camera up, down, left, or right while
maintaining the agent’s current location. The Scanner calls
the Detector on every new image.

Detector Object detection is a critical component of HIMN
given that all questions in IQUAD V1 involve one or more
objects in the room. We use YOLOvV3 [56] fine-tuned on
the AI2-THOR training scenes as an object detector. We
estimate the depth of an object using the FRCN depth es-
timation network [38] and project the probabilities of the
detected objects onto the ground plane. Both of these net-
works operate at real-time speeds, which is necessary since
they are invoked on every new image. The detection prob-
abilities are incorporated into the spatial memory using a
moving average update rule. We also perform experiments
where we substitute the trained detector and depth estimator
with oracle detections. Detections provided by the environ-
ment still requires the network to learn affordances. For
instance, the network must learn that microwaves can be
opened, apples can be in fridges, etc.

Manipulator The Manipulator is invoked by the Planner
to manipulate the current state of an object. For example,
opening and closing the microwave. This leads to a change
in the visual appearance of the scene. If the object is too far
away or out of view, the action will fail.

Answerer The Answerer is invoked by the Planner to an-
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Existence Counting Spatial Relationships
Model Accuracy | Length | Accuracy | Length | Accuracy | Length
Most Likely Answer Per Q-type (MLA) || 50 - 25 - 50 -
A3C with ground truth (GT) detections || 48.59 33241 | 24.53 998.32 | 49.84 578.71
HIMN with YOLO [56] detections 68.47 318.33 | 3043 926.11 | 58.67 516.23
Human (small sample) 90 58.40 80 81.90 90 43.00

Table 2. This tables compares the test accuracy and episode lengths of question answering across different models and question types.

swer the question. It uses the current image, the full spatial
memory, and the question embedding vector to predict an-
swer probabilities a; for each possible answer to the ques-
tion. The question vector is tiled to create a tensor with
the same width and height as the spatial memory. These
are depthwise concatenated with the spatial memory and
passed through 4 convolution and max pool layers followed
by a sum over the spatial layers. This output vector is fed
through two fully connected layers and a softmax over pos-
sible answer choices. After the Answerer is invoked, the
episode ends, whether the answer was correct or not.

4.4. Training

The full system is trained jointly. However, since the
individual tasks of the controllers are mostly independent,
we are able to pretrain them separately. Our initial analy-
sis showed that this leads to faster convergence and better
accuracy than training end-to-end from scratch. We outline
our training procedures below.

Planner: To pretrain the Planner, we assume a perfect Nav-
igator and Detector by using the ground truth shortest path
for the Navigator and the ground truth object information
for the Detector.

Navigator: We pretrain the Navigator by providing pairs
of random starting points and goal locations.

Answerer: The Answerer is pretrained by using ground-
truth partial semantic maps which contain enough informa-
tion to answer the current question correctly.

Detector: The Detector is pretrained by fine-tuning
YOLOv3 [56] on the AI2-THOR training scenes. It is
trained to identify small object instances which may repeat
in multiple scenes (apples, forks, etc.) as well as large ob-
ject instances which are unique to each scene (e.g. each
fridge model will only exist in one scene).

Scanner and Manipulator: There are no trainable parame-
ters for these controllers in our current setup. Their behavior
is predefined by the AI2-THOR environment.

Joint Training After all trainable controllers are pretrained,
we update the model end-to-end.

5. Experiments

We evaluate HIMN on the IQUAD V1 dataset, using Top-
1 question answering accuracy. An initial baseline of Most
likely answer per Question-Type (MLA) shows that the
dataset is exactly balanced. Additionally, because we con-
struct the data such that each generated question has a scene

configuration for each answer possibility, there is no possi-
ble language bias in the dataset. The learned baseline that
we compare to (A3C), is based on a common architecture
for reinforcement learning used in past works including for
visual semantic planning [73] and task oriented language
grounding [8, 19]. We extend this for the purpose of ques-
tion answering. Since HIMN has access to object detec-
tions provided by either the environment or YOLO [56],
we also provide detections to the baseline. For the base-
line model, at each time-step, the raw RGB image observed
by the agent is concatenated depth wise with object detec-
tions (one channel per object class). This tensor is passed
through convolutional layers and fed into a GRU. The ques-
tion is passed through an LSTM. The output of the LSTM
and GRU are concatenated, and passed through two fully
connected layers to produce probabilities 7; for each action
and a value v. The output of the first fully connected layer
is also passed to an answering module that consists of two
more fully connected layers with a softmax on the space of
all possible answers. The model is trained using the A3C
algorithm for action probabilities and a supervised loss on
the answers. We also provide a human baseline of random
questions on each question type.

Table 2 shows the test accuracies and the average episode
lengths for the proposed HIMN model and baselines for each
question type. HIMN significantly outperforms the baselines
on all question types, both with YOLO object detections
as well as ground truth object detections. Surprisingly, the
A3C baseline performs slightly worse than random chance
even with ground truth detections. We conjecture that this is
because there is no explicit signal for when to answer, and
no persistence of object detections. The A3C model is not
able to associate object detections with the question, and
thus has no reason to remember detections for long periods
of time. Because HIMN does not overwrite its entire spa-
tial memory at each timestep, object detections persist for
much longer, and the Answerer can better learn the associ-
ations between the questions and the objects. HIMN further
benefits from a spatial memory in counting and spatial rela-
tionship questions because these require much more spatial
reasoning than existence questions. Additionally, because
A3C does not learn to answer questions, it also does not
learn to efficiently explore the environments, as most of the
reward comes from answering questions correctly. HIMN,
on the other hand, traverses much more of the environment,
only answering when it is confident that it has sufficiently
explored the room. This indicates that HIMN (which uses
an explicit semantic spatial memory with egocentric up-
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Existence Counting Spatial Relationships
Model Accuracy | Length | Accuracy | Length | Accuracy | Length
HIMN with YOLO [56] detections 68.47 318.33 | 30.43 926.11 | 58.67 516.23
HIMN with GT detection 86.56 679.70 | 35.31 604.79 | 70.94 311.03
HIMN with GT detection and oracle navigator (HIMN-GT) || 88.60 618.63 | 48.44 871.12 | 72.50 475.55
HIMN-GT Question not given to planner 50.00 150.60 | 24.50 293.33 | 50.25 118.09
HIMN-GT No loss on invalid actions 49.84 659.28 | 24.84 911.46 | 50.00 613.50

Table 3. Ablation experiments on the HIMN model.

dates) is more effective than A3C (which uses a standard
fully-connected GRU) at (a) Estimating when the environ-
ment has been sufficiently explored, given the question (b)
Keeping track of past observations for much longer dura-
tions, which is important in determining answers for ques-
tions that require a thorough search of the environment, and
(c) Keeping track of multiple object instances in the scene,
which may be observed several time steps apart (which is
crucial for answering counting questions).

5.1. Ablation Analysis

We perform four ablative experiments on our network
structure and inputs, shown in table 3. First, we use
the ground truth object detections and depth instead of
YOLO [56] and FRCN depth [38]. This adds a dramatic
improvement to our model owing primarily to the fact that
without detection mistakes, the Answerer can be more ac-
curate and confident. Secondly, we substitute our learned
navigation controller with an oracle Navigator that takes the
shortest path in the environment. When the optimal Navi-
gator is provided, HIMN further improves. This is because
the Planner can more accurately direct the agent through
the environment, allowing it to be more efficient and more
thorough at exploring the environment. It also takes fewer
invalid actions (as seen in table 4), indicating that it is less
likely to get stuck in parts of the room. In our third ablative
experiment, we remove the question vector from the input
of the Planner, only providing it to the Answerer, which
results in random performance. This shows that the Plan-
ner utilizes the question to direct the agent towards different
parts of the room to gather information required to answer
the question. For instance any question about an object in
the fridge requires the planner to know the fridge needs to
be opened. If the planner is not told the question, it has no
reason to open the fridge, and instead will likely choose to
continue exploring the room as exploration often gives more
reward than opening an object. Also, some questions can be
answered soon after an object is observed (e.g. Existence),
whereas others require longer explorations (e.g. Counting).
Having access to the questions can clearly help the Planner
in these scenarios. Tables 3 shows that HIMN does in fact
explore the environment for longer durations for Counting
questions than for Existence and Spatial Relationship ques-
tions. In our final ablation experiment, we remove the loss
on invalid actions. If we do not apply any loss on these
actions and only propagate gradients through the chosen ac-
tion, the agent suffers from the difficulty of exploring a large
action space and again performs at random chance.

Percentage of invalid actions

Model Existence | Counting | Spatial Relationships
A3C with GT detections 32.75 34.55 32.63

HIMN No loss on invalid actions 56.27 53.43 51.93

HIMN with YOLO [56] detections | 6.07 5.95 6.68

HIMN with GT detections 6.49 5.71 5.66

HIMN-GT 1.79 2.02 1.27

Human 5.99 6.47 3.49

Table 4. This tables compares the percentage of invalid actions
across different models on test. Lower is better.

5.2. Invalid Actions

Table 4 shows the percentage of invalid actions taken by
the different methods. Failed actions are due to navigation
failures (failing to see an obstacle) or interaction failures
(trying to interact with something too far away or otherwise
impossible). There is a clear benefit to including a loss on
the invalid actions both in terms of QA accuracy, as can be
seen in table 3, as well as in terms of percentage of invalid
actions performed, shown in table 4. All models in table 4
are penalized for every invalid action they attempt, but this
only provides feedback on a single action at every timestep.
With the addition of a supervised loss on all possible ac-
tions, the percentage of invalid actions performed is nearly
an order of magnitude lower. By directly training our agent
to recognize affordances (valid actions), we are able to mit-
igate the difficulties posed by a large action space, allowing
the Planner to learn much more quickly. The validity loss
also serves as an auxiliary task which has been shown to aid
the convergence of RL algorithms [21]. By replacing the
learned Navigator with an oracle, we observe that the ma-
jority of failed actions are due to navigation failures. We be-
lieve that with a smaller step size, we would further reduce
the navigation errors at the expense of longer trajectories.

Existence Counting Spatial Relationships
Model S U S U S U

HIMN with YOLO [50] detections || 73.68 | 68.47 | 36.26 | 30.43 | 60.71 | 58.67
HIMN with GT detections 94.00 | 86.56 | 42.38 | 35.31 | 73.38 | 70.94

Table 5. This tables compares the accuracy of question answering
across different models on Seen (S) and Unseen (U) environments.

5.3. Generalization in Unseen Environments

One benefit of HIMN over other RL architectures is that
encoding semantic information into a spatial map should
generalize well in both seen and unseen environments.
Thus, in table 5, we compare HIMN’s performance on
seen and unseen environments. Unseen environments tests
the agent with questions that occur in 5 never-before-seen
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Question: Is there bread in the room?

High Level Controller Low Level Controllers

/ Tanswer / P(True) / P( False)
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Figure 5. A sample trajectory for answering the existence question: Is there bread in the room? The purple sections indicate a Planner
step, and the gray sections indicate a lower level controller such as the Navigator is controlling the agent. For a more detailed explanation,

refer to section 5.4.

rooms, whereas the seen environments use the 25 training
rooms but never-before-seen object placements and corre-
sponding questions. Despite our relatively small number of
training rooms, table 5 shows that our method only loses
up to a few percentage points of accuracy when tested on
unseen environments. This contrasts with many other end-
to-end RL methods which learn deep features that tend to
limit their applicability outside a known domain [73, 74].
Note that all experiments in previous sections were only
performed on unseen environments.

5.4. Qualitative Results

Figure 5 shows a sample run of HIMN for the ques-
tion “Is there bread in the room.” Initially, P(True) and
P(False) both start near 50%. The Planner begins search-
ing the room by navigating around the kitchen table. Dur-
ing the initial exploration phase, bread is not detected, and
P(False) slowly increases. At timestep 39, the Naviga-
tor invokes the Detector, which sees the bread and incorpo-
rates it into the semantic spatial map. However, the Nav-
igator does not return control to the Planner, as it has
not yet reached the desired destination. Upon returning
at timestep 45, the Planner reads the spatial map, sees the
bread, and immediately decides it can answer the question.
Thus Tanswer and P(T'rue) both increase to nearly 100%.
For more examples, please see our supplementary video
https://youtu.be/pXd3C-1jr98.

5.5. Limitations

Although HIMN performs quite well, it still has several
obvious limitations. Due to the 2D nature of the seman-
tic spatial map, HIMN is unable to differentiate between an
object being inside a container and being on top of the con-
tainer. Two obvious extensions of HIMN are storing an ex-
plicit height parameter or using multiple 2D slices to con-

struct a 3D map. Secondly, as can be seen in the human
experiments in table 2, HIMN is still fairly inefficient at ex-
ploring the environment. We plan on investigating more
traditional planning algorithms to reduce the time spent ex-
ploring previously searched areas. Finally, our templated
language model is quite simple, and would not extend to ar-
bitrary questions. We plan on extending IQUAD to include
more varied questions, and we will use more expressive lan-
guage embeddings like [45, 55] in future work.

6. Conclusion

In this work, we pose a new problem of Interactive Ques-
tion Answering for several question types in interactive en-
vironments. We propose the Hierarchical Interactive Mem-
ory Network, consisting of a factorized set of controllers,
allowing the system to learn from long trajectories. We also
introduce the Egocentric Spatial GRU for updating spatial
memory maps. The effectiveness of our proposed model
is demonstrated on a new benchmark dataset built upon
a high-quality simulation environment for this task. This
dataset still presents several challenges to our model and
baselines and warrants future research.
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