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Abstract

We present MorphNet, an approach to automate the de-

sign of neural network structures. MorphNet iteratively

shrinks and expands a network, shrinking via a resource-

weighted sparsifying regularizer on activations and ex-

panding via a uniform multiplicative factor on all layers.

In contrast to previous approaches, our method is scal-

able to large networks, adaptable to specific resource con-

straints (e.g. the number of floating-point operations per

inference), and capable of increasing the network’s perfor-

mance. When applied to standard network architectures on

a wide variety of datasets, our approach discovers novel

structures in each domain, obtaining higher performance

while respecting the resource constraint.

1. Introduction

The design of deep neural networks (DNNs) has often

been more of an art than a science. Over multiple years, top

world experts have incrementally improved the accuracies

and speed at which DNNs perform their tasks, harnessing

their creativity, intuition, experience, and above all - trial-

and-error. Structure design in DNNs has thus become the

new feature engineering. Automating this process is an ac-

tive research field that is gaining significance as DNNs be-

come more ubiquitous in a variety of applications and plat-

forms.

One key approach towards automated architecture search

involves sparsifying regularizers. Initially it was shown that

applying L1 regularization on weight matrices can reduce

the number of nonzero weights with little effect on the per-

formance (e.g. accuracy or mean-average-precision) of the

DNN [30, 3]. However, as DNNs started powering more

∗Google AI
†Google Brain
‡Energy-efficient multimedia systems group, MIT.
§Georgia Institute of Technology.

and more industrial applications, practical constraints such

as inference speed and power consumption became of in-

creasing importance. Standard L1 regularization can prune

individual connections (edges) in a neural network, but this

form of sparsity is ill-suited to modern hardware accelera-

tors and does not result in a speedup in practice. To induce

better sparsification, more recent work has designed regu-

larizers which target neurons (a.k.a. activations) rather than

weights [18, 29, 1]. While these techniques have succeeded

in reducing the number of parameters of a network, they do

not target reduction of a particular resource (e.g., the num-

ber of floating point operations, or FLOPs, per inference).

In fact, resource specificity of sparsifying regularizers re-

mains an under explored area.

A more recent approach to neural network architecture

design expands the scope of the problem from only shrink-

ing a network to optimizing every aspect of the network

structure. Works using this approach [33, 28, 24, 16] rely

on an auxiliary neural network to learn the art of neural

network design from a large number of trial-and-error at-

tempts. While these proposals have succeeded in achiev-

ing new state-of-the-art results on several datasets [24, 34],

they have done so at the cost of an exorbitant number of

trial-and-error attempts. These methods require months or

years of GPU time to obtain a single architecture, and be-

come prohibitively expensive as the networks and datasets

grow in complexity and volume.

Given these various research directions, automatic neu-

ral network architecture design is currently effective only

under limited conditions and given knowledge of the right

tool to use. In this paper, we hope to alleviate this issue.

We present MorphNet, a simple and general technique for

resource-constrained optimization of DNN architectures.

Our technique has three advantages: (1) it is scalable

to large models and large datasets; (2) it can optimize a

DNN structure targeting a specific resource, such as FLOPs

per inference, while allowing the usage of untargeted re-

sources, such as model size (number of parameters), to grow
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Figure 1. ResNet101 based models with similar performance (around 0.426 MAP on JFT, see Section 5). A structure obtained by shrinking

ResNet101 uniformly by a ω = 0.5 factor (left), and structures learned by MorphNet when targeting FLOPs (center) or model size (i.e.,

number of parameters; right). Rectangle width is proportional to the number of channels in the layer and residual blocks are denoted in

gray. 7 × 7, 3 × 3, and 1 × 1 convolutions are in purple, blue and green respectively. The purple bar at the bottom of each model is thus

the input layer. Learned structures are markedly different from the human-designed model and from each other. The FLOP regularizer

primarily prunes the early, compute-heavy layers. It notably learns to remove whole layers to further reduce computational burden. By

contrast, the model size regularizer focuses on removal of 3× 3 convolutions at the top layers as those are the most parameter-heavy.

as needed; (3) it can learn a structure that improves perfor-

mance while reducing the targeted resource usage.

We show the efficacy of MorphNet on a variety of

datasets. As a testament to its scalability, we find that on

the JFT dataset [12], a dataset of 350M images and 20K

classes, our method achieves 2.1% improvement in evalu-

ation MAP while maintaining the same number of FLOPs

per inference. The resources required by our technique to

achieve this improvement are only slightly greater than the

resources required to train the model once.

As evidence of our method’s ability to learn network ar-

chitecture, we show that on Inception-v2 [26], a network

structure which has been hand-tuned by experts, our method

finds an improved network architecture which leads to an

increase of 1.1% test accuracy on ImageNet, again main-

taining the same number of FLOPs per instance.

Lastly, to show constraint targeting, we present the re-

sults of applying our technique to a number of additional

datasets while targeting different constraints. Our method

is able to find unique, improved structures for each con-

straint, showing the benefits of constraint-specific targeting

(see Figure 1).

Overall, we find our method provides a much needed

general, automated, and scalable solution to the problem

of neural architecture design, a problem which is cur-

rently only solved by a combination of context-specific ap-

proaches and manual labor.

2. Related Work

The need for automatic procedures to selectively remove

or add weights to a DNN has been a topic of research for

several decades.

Optimal Brain Damage [17, 9] proposed pruning the

weights of a fully trained DNN based on their contribution

to the objective function. Since the DNN is fully trained, the

contribution of each parameter may be approximated using

the Hessian. In this and similar pruning algorithms, it is

often beneficial to add a penalty term to the loss to encour-

age less necessary weights to decrease in norm. Tradition-

ally, the penalty has taken the form of L2 regularization,

equivalent to weight-decay [5]. Later work [30] proposed

to use an L1 regularization, which is known to induce spar-

sity [27, 23], thus alleviating the need for sophisticated es-

timates of a parameter’s contribution to the loss. We use an

L1 regularization in our method for the same reasons.

An issue common to many pruning and penalty-based

procedures for inducing network sparsity is that the removal

of weights after training and the penalty during training

adversely affects the performance of the model. Previous

work [8] has noted the benefits of a multi-step training pro-

cess, first training to induce sparsity and subsequently train-

ing again using the newer structure. We utilize the same

paradigm in our approach, also finding that training a newer

structure from scratch benefits overall performance.

In this work we note that sparsity in DNNs is useful

only when it corresponds to the removal of an entire neu-

ron rather than a single connection. Previous work has

made this point as well. Group LASSO [31] was intro-

duced to solve this problem and has been previously applied

to DNNs [18, 29, 1, 22]. The specific technique we use

is based on an L1 penalty applied to the scale variables of

batch normalization [15]. This technique was also discov-

ered by a recent work [20] and similar ideas appear else-

where [14]. However, these works do not target a specific

resource or demonstrate any improvement in performance.

Moreover, they largely neglect to compare to naı̈ve DNN

shrinking strategies, such as applying a uniform multiplier

to all layer sizes, which is crucial given that they often study
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DNNs that are significantly over-parameterized.

Previous works on sparsifying DNNs have traditionally

focused on reducing model size (i.e., each individual pa-

rameter is equally valuable) [3, 19, 32]. Recent years have

revealed that more nuanced prioritization is needed. For

example in mobile applications [13], reducing latency is

also important. Our work is formulated in a general way,

thus making it applicable to a wide variety of application-

specific constraints. Our evaluation studies model size and

FLOPs-based constraints. FLOPs-based constraints have

been studied previously [21, 28, 16], although we believe

our work is the first to tackle the issue via cleverly designed

sparsifying regularizers.

Many of these previous works focus on reducing the size

of a network using sparsification. Our work supersedes such

research, going further to show that one may maintain the

size (or FLOPs per inference) and gain an increase in perfor-

mance by changing the structure of a neural network. Other

methods to learn the structure of a neural network have been

proposed, especially focusing on when and how to expand

the size of a neural network [6, 2]. While these techniques

may be incorporated in our method, we believe the sim-

plicity of our proposed iterative process is important. Our

method is easy to implement and thus quick to try.

Finally, our work is distinct from a school of methods

that learn the network structure from a large amount of trial-

and-error attempts. These methods use RL [33, 28] or ge-

netic algorithms [24, 16] with the purpose of finding a net-

work architecture which maximizes performance. We note

that some of these works have begun to investigate resource-

aware optimization rather than maximizing performance at

all costs [28, 16, 35]. Still, the amount of computation nec-

essary for these techniques makes them unfeasible on large

datasets and large models. In contrast, our approach is ex-

tremely scalable, requiring only a small constant number

(often 2) of automated trial-and-error attempts.

3. Background

In this work, we consider deep feed-forward neural net-

works, typically composed of a stack of convolutions, bi-

ases, fully-connected layers, and various pooling layers, and

in which the output is a vector of scores. In the case of clas-

sification, the final vector contains one score per each class.

We number the parameterized layers of the DNN L =
1, . . . ,M+1. Each layer L corresponds to a convolution or

fully-connected layer and has an input width IL and output

width OL associated with it. In the case of a convolutional

layer, IL, OL correspond to the number of input and output

channels, respectively, and OL−1 = IL for most networks

without concatenating residual connections. We consider

L = M + 1 to be the last layer of the neural network. Thus

OM+1 is the size of the final output vector.

Since a fully-connected layer may be considered as a

special case of a convolution, we will henceforth only con-

sider convolutions. Thus for each layer L = 1, . . . ,M + 1
we also associate input spatial dimensions wL, xL, out-

put spatial dimensions yL, zL, and filter dimensions fL, gL.

The weight matrix associated with layer L thus has dimen-

sions IL ×OL × fL × gL and maps a wL × xL × IL input

to a yL × zL ×OL output.

The neural network is trained to minimize a loss:

min
θ

L(θ), (1)

where θ is the collective parameters of the neural network

and L is a loss measuring a combination of how well the

neural network fits the data and any additional regulariza-

tion terms (e.g., L2 regularization on weight matrices).

3.1. Problem Setup

We are interested in a procedure for automatically de-

termining the design of a neural network to optimize per-

formance1 under a constraint of limiting the consumption

of a certain resource (e.g., FLOPs per inference). In the

fully general case, this would entail determining the widths

IL, OL, the filter dimensions fL, gL, the number of layers

M , which layers are connected to which, etc. In this paper,

we restrict the task of neural network design to only opti-

mize over the output widths O1:M of all layers. Thus we

assume that we have a seed network design O◦
1:M , which in

addition to an initial set of output widths also gives the fil-

ter dimensions, network topology, and other design choices

that are treated as fixed. In Section ?? we elaborate on how

our method can be extended to optimize over these addi-

tional design choices. However, we found that restricting

the optimization to only layer widths can be effective while

maintaining simplicity.

In formal terms, assume we are given a seed network

design O◦
1:M and that the objective in Eq. (1) is a suitable

proxy for the performance. Let the constraint be denoted

by F(O1:M ) ≤ ζ for F monotonically increasing in each

dimension. In this paper, F is either the number of FLOPs

per inference or the model size (i.e., number of parameters),

although our method is generalizable to other constraints.

We would like to find the optimal dimensions,

O∗
1:M = argmin

F(O1:M )≤ζ

min
θ

L(θ). (2)

4. Method

We motivate our approach by first presenting a naı̈ve so-

lution to Eq. (2): the width multiplier. Let ω · O1:M =
{⌊ωO1⌋, . . . , ⌊ωOM⌋} for ω > 0. Observe that ω < 1 re-

sults in a shrunk network and ω > 1 results in an expanded

network. The width multiplier (with ω < 1) was first in-

troduced in the context of MobileNet [13]. To solve Eq. (2)

one may perform the following process:
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1. Find the largest ω such that F(ω ·O◦
1:M ) ≤ ζ.

2. Return ω ·O◦
1:M .

In most cases the form of F allows for easily finding the op-

timal ω. Thus, unlike other methods which require training

a network to determine which components are more or less

necessary, application of a width multiplier is essentially

free. Despite its simplicity, in our evaluations we found

this approach to often give good solutions, especially when

O◦
1:M is already a well-structured network. The approach

suffers, however, with decreased quality of the initial net-

work design.

Consider now an alternative, more sophisticated ap-

proach based on sparsifying regularizers. We may aug-

ment the objective (1) with a regularizer G(θ) which induces

sparsity in the neurons, putting greater cost on neurons

which contribute more to F(O1:M ). The trained parameters

θ∗ = argminθ {L(θ)+λG(θ)} then induce a new set of out-

put widths O′
1:M which are a tradeoff between optimizing

the loss given by L and satisfying the constraint given by F .

Unlike the width multiplier approach, this approach is able

to change the relative sizes of layers. However, the resulting

structure O′
1:M is not guaranteed to satisfy F(O′

1:M ) ≤ ζ.

Moreover, this procedure often disproportionately sacrifices

performance, especially when F(O′
1:M ) < ζ.

4.1. Our Approach

We propose to utilize a hybrid of the two approaches, it-

eratively alternating between a sparsifying regularizer and

a uniform width multiplier. Given a suitable regularizer

G which induces sparsity in the activations, putting greater

cost on activations which contribute more to F(O1:M ) (we

elaborate on the specific form of G in subsequent sections),

we propose to approximately solve Eq. (2) starting from the

seed network O◦
1:M using Algorithm 1.

The MorphNet algorithm optimizes the DNN by itera-

tively shrinking (Steps 1-2) and expanding (usually, Step 3)

the DNN. At the shrinking stage, we apply a sparsifying

regularizer on neurons. This results in a DNN that con-

sumes less of the targeted resource, but typically achieves

a lower performance. However, a key observation is that

the training process in Step 1 not only highlights which lay-

ers of the DNN are over-parameterized, but also which lay-

ers are bottlenecked. For example, when targeting FLOPs,

higher-resolution neurons in the lower layers of the DNN

tend to be sacrificed more than lower-resolution neurons in

the upper layers of the DNN. The situation is the exact op-

posite when the targeted resource is model size rather than

FLOPs.

This leads us to Step 3 of the MorphNet algorithm, which

usually performs an expansion. In this paper we only report

one method for expansion, namely uniformly expanding all

layer sizes via a width multiplier as much as the constrained

Algorithm 1 The MorphNet Algorithm

1: Train the network to find

θ∗ = argmin
θ

{L(θ) + λG(θ)}, for suitable λ.

2: Find the new widths O′
1:M induced by θ∗.

3: Find the largests ω such that F(ω ·O′
1:M ) ≤ ζ.

4: Repeat from Step 1 for as many times as desired, setting

O◦
1:M = ω ·O′

1:M .

5: return ω ·O′
1:M .

resource allows, although one may replace this with an al-

ternative expansion technique.

We have thus completed one cycle of improving the net-

work architecture, and we can continue this process itera-

tively until the performance is satisfactory, or until the DNN

architecture has converged (i.e., further iterations lead to a

near-identical DNN structure). In our evaluation below, we

found a single iteration of Steps 1-3 to be enough to yield a

noticeable improvement over the naı̈ve technique of just us-

ing a uniform width multiplier, while subsequent iterations

can bring additional benefits in performance. The optimal

number of iterations, and whether the process converges, is

yet to be investigated. Note that a single iteration of the

MorphNet algorithm comes at the cost of a number of train-

ing runs equal to the number of values of λ attempted, often

a small constant number (i.e., 5 or less). Empirically, we

found it easy to find a good range of λ by trial-and-error.

Whether a value is too large or too small is evident very

early on in training by observing if the constrained quantity

collapses to zero or does not decrease at all.

We use the remainder of this section to elaborate on the

specifics of MorphNet. We begin by describing the calcu-

lation of F for the two constraints we consider (FLOPs and

model size). We then describe how a penalty on this con-

straint may be relaxed to a simple yet surprisingly effective

regularizer G with informative sub-gradients. Subsequently,

we describe how to maintain the sparsifying nature of G
when network topologies are not confined to the traditional

paradigm of stacked layers with only local connections (i.e.,

as in Residual Networks). Extensions to MorphNet to make

it applicable to design choices beyond just layer widths are

briefly discussed in the supplementary material

4.2. Constraints

In this paper we restrict the discussion to two simple

types of constraints: the number of FLOPs per inference,

and the model size (i.e., number of parameters). However,

our approach lends itself to generalizations to other con-

straints, provided that they can be modeled.

Both the FLOPs and model size are dominated by layers

associated with matrix multiplications - i.e., convolutions.

The FLOPs and model size are bilinear in the number of
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inputs and outputs of that layer:

F(layer L) = C(wL, xL, yL, zL, fL, gL) · ILOL. (3)

In the case of a FLOPs constraint we have,

C(w, x, y, z, f, g) = 2yzfg, (4)

and in the case of a model size constraint we have,

C(w, x, y, z, f, g) = fg. (5)

For ease of notation, we will henceforth drop the arguments

from C and assume them to be implicit. The constraints

also include the relatively small cost of the biases, which is

linear in OL, and omitted here to avoid clutter.

A sparsifying regularizer on neurons will induce some

of the neurons to be zeroed out. Namely, the weight matrix

will exhibit structured sparsity in such a way that the pre-

activation at some index i is zero for any input and the post-

activation at the same index is a constant. Such neurons

should be discounted from Eq. (3) since an equivalent net-

work may be constructed without the weights leading into

and out of these neurons. To reflect this, we rewrite Eq. (3)

as,

F(layer L) = C

IL−1∑

i=0

AL,i

OL−1∑

j=0

BL,j , (6)

where AL,i (BL,j) is an indicator function which equals one

if the i-th input (j-th output) of layer L is alive – not zeroed

out. Eq. (6) represents an expression for the constrained

quantity pertaining to a single convolution layer. The total

constrained quantity is obtained by summing Eq. (6) over

all layers in the DNN:

F(O1:M ) =

M+1∑

L=1

F(layer L). (7)

4.3. Regularization

When shrinking a network, we wish to minimize the loss

of the DNN L(θ) subject to a constraint F(O1:M ) ≤ ζ. The

optimization problem is equivalent to applying a penalty on

the loss,

min
θ

L(θ) + λF(O1:M ), (8)

for a suitable λ. Note that F is implicitly a function of θ,

since its calculation (Eq. (6) and Eq. (7)) relies on indicator

functions. For tractable learning via gradient descent, it is

necessary to replace the discontinuous L0 norm that appears

in Eq. (6) with a continuous proxy norm. There are many

possible choices for this continuous proxy norm.

In this work we choose to use an L1 norm on the γL vari-

ables of batch normalization [15]. We chose this regular-

ization because it is simple and widely applicable. Indeed,
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Figure 2. A histogram of γ for one of the ResNet101 bottleneck

layers when trained with a FLOP regularizer. Some of the |γ|’s
are zeroed out, and are separated by a clear gap from the nonzero

|γ|’s.

many top-performing feed-forward models apply batch nor-

malization to each layer. This means that each neuron has

a particular γ associated with it which determines its scale.

Setting this γ to zero effectively zeros out the neuron.

Thus our relaxation of Eq. (6) is

G(θ, layer L) = C

IL−1∑

i=0

|γL−1,i|

OL−1∑

j=0

BL,j+

C

IL−1∑

i=0

AL,i

OL−1∑

j=0

|γL,j |, (9)

where for ease of notation we assume the input neurons to

layer L are given by layer L − 1. The regularizer for the

whole network is then

G(θ) =

M+1∑

L=1

G(θ, layer L). (10)

Note that the A and B coefficients in Eq. (9) are dynamic

quantities, being piece-wise constant functions of the net-

work weights. As neurons at the input of layer L are zeroed

out, the cost of each neuron at the output is reduced, and

vice versa for neurons at the output of layer L. Eq. (9) cap-

tures this behavior. In particular, Eq. (9) is discontinuous

with respect to the γ’s. However, Eq. (9) is still differen-

tiable almost everywhere, and thus we found that standard

minibatch optimizers readily handle the discontinuity of G.

While our regularizer is simple and general, we found it

to be surprisingly effective at inducing sparsity. We show

the induced values of γ for one network trained with G
in Figure 2. There is a clear separation between those γ’s

which have been zeroed out and those which continue to

contribute to the network’s computation.
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4.4. Preserving the Network Topology

DNNs in computer vision applications often have resid-

ual (skip) connections: i.e., the input of layer L3 can be the

sum of the outputs of L1 and L2. If the outputs of L1 and

L2 are regularized separately, it is not guaranteed that the

exact same outputs will be zeroed out in L1 and L2, which

can change the topology of the network and introduce new

types of connectivity that did not exist before. While the

latter is a legitimate modification of the network structure,

it may result in a significant complication in the network

structure when the network has tens of layers tied to each

other via residual connections. To avoid these changes in

the network topology, we group all neurons that are tied in

skip connections via a Group LASSO. For example, in the

example above the j-th output of L1 will be grouped with

the j-th output of L2. There are multiple ways to group

them, and in the results presented in this work we use the

L∞ norm - the maximum of the |γ|’s in the group.

5. Empirical Evaluation

We evaluate the MorphNet algorithm for automatic

structure learning on a variety of datasets and seed net-

work designs. We give a brief overview of each experimen-

tal setup in Section 5.1. In Section 5.2, we go through in

detail the application of MorphNet on one of these setups

(Inception V2 on ImageNet), examining the benefit and im-

provement at each step of the algorithm. We then give a

summarized view of the results of MorphNet applied to all

datasets and all models in Section 5.3. Finally, we take a

closer look at our regularization in Section 5.4, showing

that it adequately targets the desired constraint using both

quantitative and qualitative analysis.

5.1. Datasets

We evaluate on a number of different datasets encom-

passing various scales and domains.

5.1.1 ImageNet

ImageNet [4] is a well-known benchmark consisting of 1M

images classified into 1000 distinct classes. We apply Mor-

phNet on two markedly different seed architectures: Incep-

tion V2 [26], and MobileNet [13]. These two networks were

the result of hand-tuning to achieve two distinct goals. The

former network was designed to have maximal accuracy (on

ImageNet) while the latter was designed to have low com-

putation foot-print (FLOPs) on mobile devices while main-

taining good overall ImageNet accuracy.

For MobileNet we use the smallest published resolution

(128 × 128) and the two smallest width multipliers (50%
and 25%). We choose these as it focuses MorphNet on the

low-FLOPs regime, thus furthest away from the Inception

V2 regime.

5.1.2 JFT

At its introduction, ImageNet was significant for its size.

Recent years have seen ever larger datasets. To evaluate

the scalability of MorphNet, we choose the JFT dataset [12,

25], an especially large collection of labelled images, with

about 350M images and about 20K labels. For this dataset

we chose to start with the ResNet101 architecture [10], thus

examining the applicability of MorphNet to residual net-

works.

5.1.3 AudioSet

Finally, as a dataset encompassing a different domain, we

evaluate on AudioSet [7]. The published AudioSet con-

tains 2M audio segments encompassing 500 distinct labels.

We use a larger version of the dataset which contains 20M

labelled audio segments, while maintaining approximately

the same number of labels. We seeded our model architec-

ture with a residual network based on a structure previously

used for this dataset [11].

5.2. A Case Study: Inception V2 on ImageNet

We provide a detailed look at each step of MorphNet (de-

scribed in Section 4.1) on ImageNet with the seed network

design O◦
1:M corresponding to Inception V2 [26].

The shrinking stage of MorphNet trains the network with

a sparsity-inducing regularizer G. We use a FLOPs-based

regularizer and show the effect of this regularizer on the ac-

tual FLOPs during training in Figure 3. Although the form

of G is only a proxy to the true FLOPs, it is clear that the

regularizer adequately targets the desired constraint.

0.0 0.2 0.4 0.6 0.8 1.0
Traning Images (×108)

2

4

6

8 1e9

FLOP Regularizer Value

Effective FLOPs

Figure 3. Rapid convergence of of the FLOP regularization (green,

dashed) and projected number of FLOPs (purple) for ImageNet

trained with a FLOP regularizer strength of λ = 1.3 · 10−9. The

projected number of FLOPs is computed by assuming all |γ| <
0.01 are zeroed-out.

Applying G with different strengths (different values of
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λ) leads to different shrunk networks.1 We show the results

of these distinct trained networks (blue line) compared to a

naı̈ve application of the width multiplier (red line) in Fig-

ure 4. While it is clear that sparsifying using G is more

effective than applying a width multiplier, our main goal in

this work is to demonstrate that the accuracy of the DNN

can be improved while maintaining a constrained resource

usage (FLOPs in this case).

1 2 3 4
FLOPs per inference (×109)

0.64

0.69

0.74

A
cc

u
ra

cy

Width multiplier

FLOP regularizer

FLOP regularizer x1

FLOP regularizer x2

Figure 4. ImageNet evaluation accuracy for various downsized

versions of Inception V2 using both a naı̈ve width multiplier (red

circles) and a sparsifying FLOP regularizer (blue squares). We

also show the result of re-expanding one of the networks induced

by the FLOP regularizer to match the FLOP cost of the origi-

nal network (pentagon point). A further increase in accuracy is

achieved by performing the sparsifying and expanding process a

second time (star point).

This leads us to MorphNet’ expansion stage (Step 3). We

choose the DNN obtained by using λ = 1.3 · 10−9 to re-

scale using a uniform width multiplier until the number of

FLOPs per inference matches that of the seed Inception V2

architecture. See results in Figure 4 and Table 1. The result-

ing DNN achieves an improved accuracy compared to the

Inception V2 baseline of 0.6%. We then repeat our proce-

dure again, first applying a sparsifying regularizer and then

re-scaling to the original FLOPs usage. On the second it-

eration we achieve a further improvement of 0.5%, adding

up to a total improvement of 1.1% compared to the base-

line. Since the improved DNN structures exhibited stronger

overfitting than the seed, we introduced a dropout layer be-

fore the classifier (crucially, we were not able to improve

the accuracy of the seed network in a significant manner

by applying dropout). The dropout values and the accura-

cies are summarized in Table 1. Except for the dropout, all

other hyperparameters used at training were identical for all

DNNs.

In this case study we focused on improving accuracy

while preserving the FLOPs per inference. However, it is

1For a fixed λ, results are fairly reproducible across repeated experi-

ments. See the supplementary material.

clear that MorphNet can trade-off the two objectives when

a practitioner’s priorities are different. For example, we

found that the architecture learned in the second iteration

can be shrunk by applying a width multiplier until the num-

ber of FLOPs is reduced by 30%, and the resulting DNN

matches the original Inception V2 accuracy.

Iteration ω Dropout Weights Accuracy

0 NA 0 1.12 · 107 74.1%

1 1.69 10% 1.61 · 107 74.7%

2 1.57 20% 1.55 · 107 75.2%

Table 1. MorphNet applied to the seed network of Inception V2 on

ImageNet. A regularization strength of λ = 1.3·10−9 was used in

both iterations. The network was expanded to match the original

FLOPs of 3.88·109. Dropout rate was increased to mitigate over-

fit caused by the increased model capacity. Although the number

of FLOPs is constant, our method is capable of and chooses to

increase the number of weights in the model.

5.3. Improved Performance at No Cost

Network Baseline MorphNet Relative Gain

Inception V2 74.1 75.2 +1.5%

MobileNet 50% 57.1 58.1 +1.78%

MobileNet 25% 44.8 45.9 +2.58%

ResNet101 0.477 0.487 +2.1%

AudioResNet 0.182 0.186 +2.18%

Table 2. The result of applying MorphNet to a variety of datasets

and model architectures while maintaining FLOP cost.

We present the collective results of MorphNet on all ex-

perimental setups on a FLOPs constraint in Table 2. In each

setup we report the application of MorphNet to the seed net-

work for a single iteration (two for Inception V2). Thus,

each result requires up to three training runs.

We see improvements in performance across all datasets.

The 1% improvement on MobileNet is especially impres-

sive because MobileNet was specifically hand-designed to

optimize accuracy under a FLOPs-constraint.

On JFT, an especially large dataset, we achieve over

2.1% relative improvement. We note that the first training

run is run until the convergence of the FLOPs cost, which is

approximately 20 times faster than the convergence of the

performance metric (MAP). Thus, for a given value of λ,

a single iteration of MorphNet adds only 5% to the cost of

training a single model. Since more than one attempt may

be required to find a suitable λ, the actual added cost may

be higher.

In AudioSet we continue to see the benefits of Mor-

phNet, observing a 2.18% relative increase in MAP. To put

this into perspective, an equivalent drop of 2.18% from the
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Figure 5. MAP vs. FLOPs (left) and MAP vs. model-size (right) curves on JFT (top) and AudioSet (bottom). The magenta points in the

AudioSet figures represent models expanded from a FLOP (diamond) or size (pentagon) regularizes.

seed model corresponds to a FLOPs per inference reduction

of over 50% (see Figure 5).

5.4. Resource Targeting

One of the contributions of this work is the form of the

regularizer G, which methodically targets a particular re-

source. In this section we demonstrate its effectiveness.

Figure 5 shows the results of applying a FLOPs-targeted

G and a model size-targeted G at varying strengths. It

is clear that the structures induced when targeting FLOPs

form a better FLOPs/performance tradeoff curve, but poor

model size/performance tradeoff curves, and vice versa

when targeting model size.

We may also examine the learned structures when target-

ing different resources. In Figure 1 we present the induced

network structures when targeting FLOPs and when target-

ing model size. One thing to notice is that the FLOP regular-

izer tends to remove neurons from the lower layers near the

input, whereas the model size regularizer tends to remove

neurons from upper layers near the output. This makes

sense, as the lower layers of the neural network are applied

to a high-resolution image, and thus consume a large num-

ber of the total FLOPs. In contrast, the upper layers of a

neural network are typically where the number of channels

is higher and thus contain larger weight matrices. The two

very different learned structures in Figure 1 achieve similar

MAP (0.428 and 0.421, whereas the baseline model with

similar cost is 0.405).

An interesting byproduct of applying MorphNet to resid-

ual networks is that the network also learns to shrink the

number of layers, as shown in the FLOP regularized struc-

ture in Figure 1. When all the residual filters in a layer are

pruned, the output is a direct copy of the input and the layer

essentially can be removed. Therefore MorphNet achieves

automatic layer shrinkage without any added complexity.

6. Conclusion

We presented MorphNet, a technique for learning DNN

structures under a constrained resource. In our analysis

of FLOP and model size constraints, we have shown that

the form of the tradeoff between constraint and accuracy

is highly dependent on the specific resource, and that Mor-

phNet can successfully navigate this tradeoff when target-

ing either FLOPs or model size. Furthermore, we have ap-

plied MorphNet to large scale problems to achieve improve-

ments over human-designed DNN structures, with little ex-

tra training cost compared to training the DNN once. While

being highly effective, MorphNet is simple to implement

and fast to apply, and thus we hope it becomes a general

tool for machine learning practitioners aiming to better au-

tomate the task of neural network architecture design.
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