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Abstract

We present a novel method to incorporate the recent

advent in static saliency models to predict the saliency in

videos. Our model augments the static saliency models

with the Attentional Push effect of the photographer and

the scene actors in a shared attention setting. We demon-

strate that not only it is imperative to use static Atten-

tional Push cues, noticeable performance improvement is

achievable by learning the time-varying nature of Atten-

tional Push. We propose a multi-stream Convolutional Long

Short-Term Memory network (ConvLSTM) structure which

augments state-of-the-art in static saliency models with dy-

namic Attentional Push. Our network contains four path-

ways, a saliency pathway and three Attentional Push path-

ways. The multi-pathway structure is followed by an aug-

menting convnet that learns to combine the complementary

and time-varying outputs of the ConvLSTMs by minimiz-

ing the relative entropy between the augmented saliency

and viewers fixation patterns on videos. We evaluate our

model by comparing the performance of several augmented

static saliency models with state-of-the-art in spatiotempo-

ral saliency on three largest dynamic eye tracking datasets,

HOLLYWOOD2, UCF-Sport and DIEM. Experimental re-

sults illustrates that solid performance gain is achievable

using the proposed methodology.

1. Introduction

Visual attention is a temporal selection mechanism in

which a subset of available sensory information is chosen

for further processing in the human visual system. Visual

attention tracking- determining where, and to what, peo-

ple are paying attention while viewing static photographs

or while watching videos and cinematic movies- has at-

tracted much interest recently. Despite the many applica-

tions of computational visual attention models for dynamic

stimuli such as visual surveillance [3], human-robot inter-

Figure 1: Attentional Push Cues: (top) Actor gaze shift: Actors

gaze dynamically directs the viewers attention; (middle) Rapid

scene changes: The viewers attention is pushed to the center after

rapid scene changes; (bottom) Bounce of Attention: An attended

actor is moved out of the video frame and pushes the viewers at-

tention to the center.

action [18], video compression [19], and advertising [55],

the majority of the existing models focus on static images

and spatiotemporal visual attention models are a relatively

unexplored problem.

Almost all computational visual attention models are

based on Treisman and Gelades feature integration theory

[61] and the Koch and Ullmans [35] feed-forward neural

model and are inspired by the pioneering work of Itti et

al. [28] where early visual features across multiple scales

are linearly combined into a static saliency map. Tradi-

tional spatiotemporal saliency models have also benefited

from employing early visual features or other static hand-

crafted features, along with various motion-based features

to capture the spatiotemporal nature of dynamic stimuli.

The addition of temporal dimension in videos makes dy-

17501



namic visual attention modeling a much more challenging

task. Since the added dimension not only requires signif-

icantly more data processing, it also needs the computa-

tional model to effectively fuse the static and the dynamic

features, for even a non-salient (in the static sense) region

might have attention allocated to it due to different motion

direction. In addition, while the viewing duration of a video

frame is limited to a fraction of a second, static images can

be viewed leisurely, which complicates moving from image

to video saliency.

The recent publication of large-scale eye movement

datasets (SALICON [29] and iSUN [66]) has enabled the

static visual attention models to benefit from more advanced

learning-based techniques, namely deep convolutional neu-

ral networks (convnets). The resulting performance gain of

the static convnet-based models has been to the extent that

newer models achieve only marginal improvements over

state-of-the-art (the MIT saliency benchmark [6] and [30]).

However, these advancements are yet to be employed by the

spatiotemporal saliency models, many of which only con-

sider simple motion cues and are mere straightforward ex-

tension of static models (see [32] for a recent review). To

the best of our knowledge, the only recent convnet-based

spatiotemporal saliency models are: the CMASS method

[45], in which shallow neural nets are trained to fuse static

hand-crafted features with dense optical flow fields; [10]

where a five-layer convnets is trained on RGB color planes

and residual motion for each video frame; and the recent

work in [39], where RGB color planes, dense optical flow

map, depth map and the previous saliency map are fed to a

seven-layered encoder-decoder structure. All three models

employ very short-term and fixed temporal information, ob-

tained from every two consecutive frames, and do not take

into account longer temporal correlations between video

frames.

In addition to the relative lack of research and the short-

term temporal span of spatiotemporal visual attention mod-

els, recent research has shown that even state-of-the-art in

static models, including both traditional hand-crafted fea-

tures and data-driven convnets, suffer from inability to ex-

ploit semantic scene information [57], [5], [8] and [21]. For

instance, the effect of the gaze direction of the scene actors

on the viewers attention has been studied well, e.g. [53],

[37], [9], [60], [4], [8], and has been used as a high-level im-

age semantic in recent static models [47], [50], [21]. Specif-

ically, [21] introduced the idea that by considering the scene

actors as active and the viewers as passive participants in

a shared attention setting, it becomes possible to augment

static saliency models with the gaze direction of the scene

actors. The model in [21] formulated the manipulating ef-

fect of the actors upon the viewers attention as an Atten-

tional Push effect, in which an abstract scene information,

i.e. actors gaze here, is used to enhance the saliency of some

other image region, i.e. the gazed-at region. The Atten-

tional Push effect is important in the sense that nearly all tra-

ditional hand-crafted features and data-driven convnets are

restricted to use a local neighborhood of image regions for

their power to attract the viewers’ attention and employing

attentional cues that push the viewers attention can greatly

benefit the current models. In addition, while effective in

augmenting static visual attention models, the Attentional

Push effect becomes stronger in dynamic situations, for the

viewer is in a more immersive shared attention setting and

is more likely to be affected by Attentional Push.

The model in [21] is limited to a single Attentional Push

cue, yet, there are other such cues arising from the literature.

One of the most prominent of these is the central bias effect,

which have been explicitly infused in many modern static

visual attention models [13], [31], [36], [62] and [64]. The

fact that even deep convnet-based saliency models such as

[36] and [13], which are based on the VGG-16 [58] and the

ResNet-50 [24] networks, need to explicitly combine cen-

tral bias maps with deep features is evidence to the fact that

even a seemingly straightforward Attentional Push cue such

as central bias cannot be learned with the location invari-

ance feature of convnets. However, the central bias effect

can be seamlessly integrated in the shared attention setting,

by treating the photographer as an active participant which

tries to put semantically salient elements in the center of the

frame and thus, pushes the viewers attention. Although the

center bias effect decreases with dynamic stimuli [42], its

dynamic counterpart, i.e. abrupt scene changes, similarly

affect the viewers attention as assessed in [48]. In addition,

[59] shows the bounce of the viewers attention back to the

center of the screen when tracking an actor which moves off

the screen to one side.

In this work we show that not only it is imperative

to incorporate Attentional Push in spatiotemporal models,

but also noticeable performance improvement is achievable

by learning its time-varying effect on the viewers atten-

tion in social scenes (everyday scenes depicting human ac-

tivities). We design a novel spatiotemporal saliency aug-

mentation model which benefits from the recent advent in

static saliency to estimate video saliency. Here, we ex-

tend the model in [21] by including the photographer in

the shared attention setting and augment state-of-the-art in

static saliency with dynamic Attentional Push. We propose

an end-to-end trainable multi-stream Convolutional Long

Short-Term Memory network (ConvLSTM) structure. Our

network contains four pathways, a saliency pathway and

three Attentional Push pathways, i.e. actors gaze, atten-

tional bounce and abrupt scene changes as shown in 1. The

saliency pathway embeds static saliency models and cap-

tures the temporal dependencies between consecutive video

frames by sequentially analyzing the static saliency maps in

the ConvLSTM recurrent mechanism. The first Attentional
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Push pathway contains a deep convnet which learns to fol-

low the actors gaze on a 2-D spatial grid. This is then pro-

cessed by a ConvLSTM to capture the dynamic influence of

the actors gaze on viewers attention. In Section 4.3, we re-

port the performance after removing the recurrent structure

and show that although static Attentional Push is to some

extent effective for dynamic stimuli, solid performance im-

provement is achievable by employing the dynamic nature

of Attentional Push with the recurrent mechanism. The sec-

ond and the third Attentional Push pathways are responsible

to infuse 2-D Gaussian center bias priors upon the detection

of attentional bounce and abrupt scene changes. For each

case, the Gaussian priors are fed to a ConvLSTM which

learns their temporal effect. The multi-pathway structure

is followed by an augmenting convnet that combines the

outputs of the four ConvLSTM and generates augmented

saliency for each video frame. For training, validating and

performance evaluation of the proposed model, we use the

largest datasets available for video saliency, i.e. HOLLY-

WOOD2 [43], UCF-Sport [43] and DIEM [44] datasets.

Partial annotations for the scene actors head and gaze loca-

tion are provided and used for training and validation (see

Section 4.1).

The contribution of this work is threefold: First, we pro-

pose a novel spatiotemporal visual attention model that in-

corporates state-of-the-art in static saliency and learns long-

term temporal dependencies to estimate video saliency.

Second, we expand the notion of Attentional Push to dy-

namic stimuli and show its effectiveness in augmenting

static saliency in dynamic scenes. Third, we provide com-

prehensive experimental evaluation on publicly available

video saliency datasets which demonstrates significant im-

provement in predicting viewers fixation patterns on videos

containing human activities. The rest of this paper is orga-

nized as follows. Section 2 presents related work. We ex-

plain the structure and the training scheme for the proposed

model in Section 3. Section 4 outlines the experiments and

Section 5 concludes the paper.

2. Related work

We describe closely related work on static and spa-

tiotemporal saliency models and saliency models benefiting

from gaze following as a subcomponent.

Video Saliency: Most existing spatiotemporal saliency

models are based on adding various motion cues to the ex-

isting static hand-crafted features in the literature. Among

these, some are based on probabilistic modeling while oth-

ers use various spectral domain transformation for the fea-

ture integration stage. An early attempt was proposed by

Itti and Baldi [27] where motion energy is used along with

orientation, color and intensity contrast as static features.

In [22], intensity, color and motion features are combined

based on their spectral phase. Similarly, in [16], intensity,

color, texture and motion features are extracted and com-

bined based on the discrete cosine transform differences

while [14] uses two spatiotemporal Fourier transform to

compute video saliency. In [41], a dynamic center-surround

model based on the KullbackLeibler (KL) divergence be-

tween dynamic patches is proposed. The model in [26] uses

incremental coding length to maximize the entropy gain of

features on each frame and models the temporal correla-

tion among consecutive frame as a Laplacian distribution.

In [15], spatial and temporal dissimilarity (based on motion

vectors) are linearly combined. In [49], the difference be-

tween the optical flow and accumulated flow map is linearly

combined with low-level static features.

There are also spatiotemporal models based on hand-

crafted features which use various learning algorithm for

the feature integration stage. In [17], static features such

as color, intensity and texture are combined with optical

flow using uncertainty weighing. In [43] , optical flow-

based temporal HoG and MBH descriptor are calculated

and their bag of words representation are used to train a

multiple kernel learning model. In Rudoy et al. [56], static

candidate locations and motion candidates are employed by

a random forest regressor. In [33], motion features, based

on the number of bits needed to encode a video patch by

an optimal encoder, is used to train a Markov random field.

Similarly in [65], a video coding feature is used to train a

support vector machine for video saliency. The CMASS

method [45] uses three-layered fully connected neural nets

to fuse static features, ranging from color channels to ex-

isting saliency models, with dense optical flow fields. And

finally, spatiotemporal models based on feature-learning in-

cludes [10], where a five-layer convnets is trained on RGB

color planes and residual motion for each video frame and

the recent work in [39], which uses RGB color planes, dense

optical flow map, depth map and the previous saliency map

are fed to a seven-layered encoder-decoder structure.

Static Saliency: The recent advancements in static

saliency are mostly benefited from the advent of deep neu-

ral networks. The eDN model [62] uses convnet-based fea-

ture extractors and linear SVM classifier. Similarly, the

model in [40] uses three convnets, each trained for a spe-

cific scale, are followed by two fully connected layers.

Other models usually benefit from transfer learning in their

convnets. More recent models use transfer learning and

fine-tune the state-of-the-art models in object recognition.

Namely, DeepGaze [38] uses pre-trained AlexNet, SALI-

CON [29] benefits from two pre-trained convnets, DeepFix

[36] and ML-Net [11] are based on the pre-trained VGG

network. The recent model in [46] contains ten convolu-

tional layers with the first three initialized using the VGG

network.

Gaze following: Parks et al. [47] proposed a static atten-

tion tracking model which predicts whether the next fixation
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Figure 2: Dynamics of Attentional Push: Viewers eye fixation

pattern after the actor changes his gaze direction. From left to

right: time frame 1, time frame +300ms, time frame +600ms and

time frame +1500ms.

is gaze related or being saliency driven using a two-state

Markov chain. Our model is inspired by the Attentional

Push model in [21], which augments static saliency mod-

els with the actors gaze for static scenes. While the model

in [21] only uses a single Attentional Push cue and is only

applicable for static images, in this work, we extend the At-

tentional Push notion to augment static saliency models to

deal with dynamic stimuli. Similarly, Recasens et al. [50]

proposed a two-stream convnet to learn the gazed-at object

in a scene and recently, they extend the model in [50] to es-

timate the gaze-at object on videos [51]. Although related,

there is a major distinction between saliency prediction and

gaze following. While the model in [50] focuses on estimat-

ing the gazed-at objects in a scene, from the point of view

of the scene actor, our model learns the impact of the actors

gaze upon the viewers attention. Although there are cases

in which the actors gaze pushes the viewers attention to the

gazed-at object(s), this does not hold in all circumstances.

Consider situations in which there are multiple objects in

the actors gaze direction. From the point of view of [50],

the actor is looking at one the objects. From our point of

view, the viewers attention is pushed to all of these poten-

tial foci of attention with some uncertainty. This is why in

our model we limit the input of the gaze following path-

way to a cropped region around the actors face and do not

feed the whole image content to it. This enables our model

to learn and benefit from the manipulating effect of the ac-

tors gaze direction on viewers attention. Similarly, when

an actor is looking at something that fall outside the current

video frame, the model in [51] looks for possible attended

objects on separate video frames, while our model learns

the manipulating effect of the actors gaze direction both on

the same frame, and by using the recurrent structure, con-

secutive next frames.

3. Network Architecture

While being effective in static scenes, the Attentional

Push effect becomes stronger in dynamic situations where

the viewer is in a more immersive shared attention setting

and is more likely to be affected by the scene actors. In-

spired by [21], our attention augmentation model is based

on a shared attention setting, in which the viewer, the scene

actors and the photographer are all participant in the activ-

ity occurring in the scene. While the viewer has no con-

trol over what is going on in the scene, the attentional state

of the scene actors and the photographer can nonetheless

affect the viewer attention. We explicitly model the ma-

nipulating effect of the scene actors and the photographer

via time-varying Attentional Push maps. In this work, we

use three Attentional Push cues, i.e. actors gaze, attentional

bounce and abrupt scene changes and combine them with

static saliency to estimate the fixation patterns on videos.

Figure 2 shows a time-sampled video frame sequence of

a scene where the actor changes his gaze direction. Let us

consider the video sequence as separate static images first.

Since the contents of the images are similar, we can expect

that in a static setting, the viewers fixation patterns would

be nearly identical and we can expect the Attentional Push

effect of the actors gaze to similarly influence the viewers

attention in all three images. However, it is clear that in the

actual dynamic setting, the Attentional Push effect varies

over time. While being the strongest attentional cue after

the actor gaze shift, it becomes less influential and the view-

ers fixation patterns diverge to other stimuli during the fol-

lowing video frames. This inherent dynamic nature of the

Attentional Push effect requires the attention augmentation

model to either learn time-varying Attentional Push maps

or use a non-static augmentation procedure. Our proposed

methodology learns the time-varying manipulating effect of

Attentional Push using recurrent mechanisms. As shown

in Figure 3, we employ a multi-pathway structure and em-

ploy Convolutional LSTM modules to learn the dynamics

of each Attentional Push cue. In addition, to benefit from

the strong temporal correlation of the fixation patterns in

consecutive video frames, a ConvLSTM cell is also used in

the saliency pathway. This ensure the propagation of pre-

vious information throughout the model. In the following

sections, we describe each subsystem and the training pro-

cedure of the proposed methodology.

3.1. Saliency Pathway

The saliency pathway embeds state-of-the-art static

saliency models. Given a video frame I(t) ∈ R
cols×rows×3

at time t, the static saliency sstatic(t) ∈ R
cols×rows×1 is

computed and fed to a ConvLSTMs module. ConvLSTMs

are variants of the LSTM [25] where convolutional oper-

ations are used instead of the original dot products. This

not only significantly reduces the number of parameters, but

also exploits the underlying local spatial dependencies be-

tween nearby pixels.

Let x(t), h(t) and c(t) denote the input, hidden unit and

the memory cell of a ConvLSTM module. The update equa-

tions of the ConvLSTM module are:

i(t) = σ(Wxi ∗ x(t) +Whi ∗ ht−1 + bi) (1)
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Figure 3: Network Architecture: Our network contains four pathways, a saliency pathway and three Attentional Push pathways, gaze

following, rapid scene changes and attentional bounce. The network computes the augmented saliency map s̃(t) for each video frame I(t).

f(t) = σ(Wxf ∗ x(t) +Whf ∗ ht−1 + bf ) (2)

o(t) = σ(Wxo ∗ x(t) +Who ∗ ht−1 + bo) (3)

g(t) = tanh(Wxc ∗ x(t) +Whc ∗ ht−1 + bc) (4)

c(t) = f(t) · c(t− 1) + i(t) · g(t) (5)

h(t) = o(t) · tanh(c(t)) (6)

where W and b are trainable 2-D convolutional kernels and

biases while i(t), f(t) and o(t) denote the input, forget and

output gates of the LSTM, respectively. We sequentially

pass static saliency maps to the ConvLSTM input by setting

x(t) = sstatic(t), and obtain a refined sequence of time-

correlated saliency maps as s(t) = h(t). During training,

the saliency ConvLSTM learns to estimate video saliency,

by leveraging the temporal correlation between consecutive

static saliency maps. This enables our model to benefit from

complementary saliency-based and Attentional Push-based

information.

3.2. Gaze Following

We formulate the problem of estimating the actors gaze

as classifying the gazed-at location to one a pre-defined set

of possible locations on an M × M spatial grid. We used

a similar structure as [21] for the static gaze estimation net-

work. The network is based on the VGG-16 model and

consists of fourteen weight layers, four of which are fully

connected layers, and four max-pool layers, three of which

having strides of two. We provide a cropped image region

around the actor’s head and the location of the head within

the M × M spatial grid. Given the head location of the

actor as (xhead(t), yhead(t)), we extract a close-up head re-

gion as F (t) and resize it to 224 × 224 pixels. We provide

partial head and gaze location annotations for the training

set (see Section 4.1). For testing, a YOLO9000-based face

detector [52] is used to locate the actors head. This makes

the final feature maps to be of the size of (28× 28× 512).
The first fully connected layer is responsible to project the

above into a compressed representation, which is then con-

catenated with the flattened head location and is fed through

the remaining weight layers. A softmax layer is applied to

the output of the last layer to obtain a 2-D probability dis-

tribution of the actor’s gaze over the M × M spatial grid.

The above static Attentional Push map is then fed to a Con-

vLSTM module to deal with the dynamic aspect of Atten-

tional Push effect. When a new gaze shift occurs, the LSTM

learns to use the forget gate f(t) to erase the previous mem-

ory and to transfer the current Attentional Push input to the

memory cell (Eqn. 5) and therefore, to the output AP1(t),
given by Eqn. 6. On the other hand, during the subsequent

video frames for which the input Attentional Push map re-

mains mostly the same, the LSTM learns to apply temporal

inhibition of the current input.

3.3. Attentional Bounce and Rapid Scene Change

Bounce of attention occurs when an attended scene ac-

tor moves off the screen to one side. As shown in Fig-

ure 1, this pushes the viewers attention to the center of
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the screen. To incorporate the bounce of attention and

rapid scene change, we use a set of 2-D Gaussian func-

tions with diagonal covariance matrices. Similar to [36],

we use 16 Gaussian blobs with fixed horizontal and vertical

variance as static Attentional Push maps. For each video

frame, a binary map is generated based on the detection of

bounce of attention b(t) and rapid scene change r(t), where

r(t), b(t) ∈ R
cols×rows, and {rij}, {bij} ∈ {0, 1}. Using

element-wise multiplication, these signal are used as gates

to control the corresponding ConvLSTM modules. Upon

detection of the bounce of attention or rapid scene change,

the corresponding signal is set which allows the Gaussian

priors to be fed to the ConvLSTM module. The LSTM

learns to forget the previous memory and to transfer the in-

put Attentional Push maps to its hidden state and therefore,

its output (AP2(t) and AP3(t) in Figure 3). When the de-

tection signals go back to zero during the subsequent video

frames, zero-filled maps are fed to the LSTM instead, which

learns to apply temporal inhibition on the subsequent output

frames. To detect rapid scene changes we adopt the method

in [34] which is based on comparing the edge strength and

orientation of consecutive video frames. To detect bounce

of attention, we adopted the tracking method in [63] on the

head location data.

3.4. Augmented Saliency

To fuse the saliency and the Attentional Push pathways,

we use a set of trainable dilated convolutional layers. Hav-

ing strides of larger than one, effectively increases the re-

ceptive field of each convolutional kernel without increas-

ing the network parameters. The last convolutional layer

has a (1 × 1) kernel which effectively maps the deep fea-

tures of the previous layer into the augmented saliency map,

s̃(t). The augmenting convnet is trained to learn an opti-

mal combination strategy to fuse the complementary infor-

mation given by the saliency and Attentional Push ConvL-

STMs.

4. Evaluation and Comparison

4.1. Datasets

We use the three largest video eye tracking datasets to

train, validate and test the performance of proposed method-

ology which are summarized in Table 1.

DIEM is a widely used dataset, containing 84 videos and

free-viewing fixation data from 50 subjects. The dataset

contains videos from various categories and a wide range of

duration (20 to more than 200 seconds). We use 40 videos

(more than 104k frames) containing human activities from

the DIEM dataset, ranging from movie trailers, news seg-

ments, advertisements and sport scenes. We use 30 videos

for training, 5 for validation and 5 for performance evalua-

tion. We provide partial head location and gaze annotations

for 8 training videos ( 12k frames) which are used during

the fine-tuning of the whole model.

HOLLYWOOD2 is the largest dynamic eye tracking

dataset containing 823 training and 884 validation se-

quences, with free-viewing fixation data for 3 subjects (we

only used the data under the free-viewing condition). The

videos in this dataset are short video sequences from a set

of 69 Hollywood movies, containing 12 different human ac-

tion classes, ranging from answering phone, eating, driv-

ing, running and etc. We use all the training sequences and

split the validation set into a 442 validation and 442 test

sequences. We also provide partial head location and gaze

annotations on 35 training videos ( 11k frames) which are

used during the fine-tuning of the whole model.

UCF-Sports dataset contains 150 videos on 9 sports ac-

tion classes with an average duration of 6.39 seconds. We

divide the videos of this dataset onto a training set contain-

ing 100 videos, a validation set with 10 videos and a test set

with 40 videos. We provide partial head location and gaze

annotations for 40 training videos ( 2500 frames) which are

used during the fine-tuning of the whole model.

In addition, we use the large-scale static gaze following

dataset, GazeFollow [50], for pre-training the gaze-follow

convnet, as suggested in [21].

4.2. Evaluation protocol

Static saliency models: We evaluate the performance

of the proposed model with several state-of-the-art in spa-

tiotemporal saliency models. To illustrate the effectiveness

of dynamic Attentional Push in augmenting static saliency

models, we use several neural network-based and tradi-

tional static saliency models and train and test the perfor-

mance of the network in Figure 3. We use four neural

network-based, i.e. eDN [62], ML-Net [12], SalNet [46]

and SAM-ResNet [13], and two best-performing traditional

static saliency models, BMS [67] and RARE [54]. For eval-

uation, we report the performance of the models using three

popular evaluation metrics: the Area Under the ROC Curve

(AUC), the Normalized Scan-path Saliency (NSS), and the

Correlation Coefficient (CC) to ensure that the main quali-

tative conclusions are independent of the choice of metric.

We use the implementation of the evaluation scores from

[7].

Training: To the best of our knowledge, an eye track-

ing database for video sequences containing the actors gaze

information is yet to be developed. As noted in 4.1, we pro-

vide head and gaze annotations for a subset of the training

sets ( 25k frames), which constitutes a small portion of the

available data. Furthermore, if not pre-trained, the atten-

tional bounce and the rapid scene change ConvLSTM mod-

ules are likely to diverge during training, given the sparse

nature of the corresponding detections. Therefore, we do

not proceed by training the whole model in Figure 3, and
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Table 1: Summaries of the used datasets. The last three columns indicate the number of videos for each case.

Dataset Annotations Viewers Added annotations Training Validation Test

DIEM Eye movement 50 Partial Head & gaze location 30 5 5

HOLLYWOOD2 Eye movement 3 Partial Head & gaze location 823 442 442

UCF-Sports Eye movement 3 Partial Head location 100 10 40

GazeFollow Head and gaze location Crowd - 119125 3018 -

instead pre-train each of the four pathways separately, and

then fine tune the model using the annotated portion of the

training sets. To pre-train each pathway, we use stochastic

gradient descent to minimize the KL divergence between

the corresponding ConvLSTM output and the ground truth

fixation density map. Given two probability distribution

maps P,Q ∈ R
2, the KL-divergence loss measures the loss

of information when P is used to estimate Q and is given

by KL(P,Q) = ΣiQi log(
Qi

Pi

) where i varies over all pixel

locations. The kernel parameters of all ConvLSTMs are ini-

tialize by the Xavier method [20], and their hidden states

and memory cells are initialized to zero.

We pre-train the saliency ConvLSTM using all the train-

ing samples listed in Table 1 with a learning rate of 1×10−4

and a weight decay of 5 × 10−5. This way, the saliency

ConvLSTM is trained to estimate video saliency, by lever-

aging the temporal correlation between consecutive video

frames. This later enables the augmenting layers to benefit

from complementary saliency-based and Attentional Push-

based information. We use temporal segments containing

16 consecutive video frames from the training sets. Al-

though the training segments mostly contain more than 100

frames, we use training on shorter video clips as a method

of data augmentation. The training stops if the performance

saturates on the validation set, to prevent over-fitting.

The gaze-following pathway is pre-trained in two steps.

Following [21], the static gaze-following layers are first

trained on the GazeFollow dataset. We initialize the con-

volutional layers with the VGG-16 network while the fully

connected layers are randomly initialized by the Xavier

method. For this phase of training, stochastic gradient de-

scent is used to minimize the multinomial logistic regres-

sion loss between the soft-max output and the ground truth

gaze location, with a learning rate of 1× 10−5 for the fully

connected layers and a learning rate of 1 × 10−7 for the

convolutional layers. Drop-out and batch normalization are

used after each of the fully connected layers to speedup con-

vergence. Then, we train the gaze-following layers and the

corresponding ConvLSTM by minimizing the error on the

annotated subset of the training set. Here, we set the learn-

ing rate of the ConvLSTM to 1 × 10−5 while the learning

rate of the static gaze-following layers are set to 1 × 10−7.

This enables the gaze-following ConvLSTM to learn the

temporal dynamics of the Attentional Push map in estimat-

ing dynamic fixation patterns. To pre-train the attentional

bounce and the rapid scene change ConvLSTMs, we first

generate the corresponding detection signals r(t) and b(t)
for the entire training set in Table 1 and select temporal seg-

ments containing 16 consecutive video frames around each

positive detection. Given the smaller number of training in-

stances, we also use an overlap of 10 frames in cutting the

video clips and train the ConvLSTMs with learning rate of

1× 10−6, a weight decay of 5× 10−5 and a dropout rate of

0.25.

After pre-training, we then use the annotated portion of

the training set to fine-tune the whole model. The aug-

menting convolutional layers are randomly initialized with

the Xavier method and are trained by back propagating the

KL divergence loss between the augmented saliency maps

and the ground truth fixation densities with a learning rate

1× 10−5. During the fine-tuning stage, we set the learning

rate of the pre-trained modules to 1 × 10−7. We use the

validation performance to stop the training. A YOLO9000-

based face detector [52] is used during the validation and

for performance evaluation.

4.3. Results

In this section, we compare the accuracy of the aug-

mented saliency models in predicting video saliency with

three state-of-the-art in spatiotemporal saliency models,

OBDL [33] , Rudoy [56] and PQFT [23]. Table 2 com-

pares the prediction performance. The results clearly show

that the augmented saliency consistently improves upon

the static saliency models and achieve considerable perfor-

mance gain over spatiotemporal saliency models on all three

test sets. The results indicated that the augmented eDN

and augmented SAM-ResNet outperform all other mod-

els with a significant margin. Interestingly, although the

Rudoy model outperform four of the static saliency mod-

els, including the convnet-based ML-Net and SalNet, all

the augmented saliency models achieve considerable gain

over the Rudoy model showing that not only it is possi-

ble to benefit from the recent static saliency models in dy-

namic scenes, augmenting them with the dynamic Atten-

tional Push maps results in solid performance improvement

over the spatiotemporal models.

We perform ablation analysis to assess the relative im-

pact of each component in the augmented saliency. For

this, we use the eDN model and train an augmented eDN

model, with one or more components of the model in Fig-
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Table 2: Average evaluation scores for the augmented saliency vs. static and spatiotemporal saliency models on the DIEM, HOLLY-

WOOD2 and UCF-Sports test sets.

DIEM HOLLYWOOD2 UCF-Sports

AUC NSS CC AUC NSS CC AUC NSS CC

ML-Net [12] 0.67 0.46 0.13 0.73 0.72 0.26 0.69 0.7 0.22

augmented ML-Net 0.82 1.84 0.41 0.84 1.85 0.41 0.83 1.88 0.49

SalNet [46] 0.72 1.31 0.26 0.73 1.16 0.31 0.70 0.87 0.21

augmented SalNet 0.85 1.94 0.54 0.84 1.79 0.43 0.84 1.72 0.42

SAM-ResNet [13] 0.88 1.98 0.43 0.87 1.96 0.46 0.89 2.01 0.49

augmented SAM-ResNet 0.91 2.34 0.54 0.91 2.29 0.55 0.92 2.31 0.58

eDN [62] 0.88 1.43 0.32 0.87 1.53 0.33 0.88 1.44 0.33

augmented eDN 0.90 2.21 0.42 0.90 2.11 0.49 0.90 2.15 0.49

RARE [54] 0.75 0.54 0.08 0.76 0.68 0.14 0.78 0.69 0.16

augmented RARE 0.84 1.16 0.26 0.83 1.32 0.27 0.85 1.19 0.35

BMS [67] 0.77 1.28 0.28 0.76 1.08 0.26 0.77 1.15 0.17

augmented BMS 0.85 1.66 0.35 0.85 1.68 0.36 0.84 1.55 0.35

Spatiotemporal Models

OBDL [33] 0.74 1.16 0.26 0.79 1.45 0.32 0.78 1.08 0.30

Rudoy [56] 0.78 1.31 0.36 0.79 1.37 0.33 0.78 1.34 0.34

PQFT [23] 0.70 0.8 0.19 0.70 0.7 0.14 0.7 0.75 0.16

STS [1] 0.88 2.18 0.48 0.82 2.13 0.48

RMDN [2] 0.90 2.64 0.61

Table 3: Ablation analysis of the proposed methodology. The re-

sults are based on eDN saliency and the DIEM test set.

NSS

Augmented saliency 2.21

No dynamic Attentional Push 1.53

Saliency and gaze following pathways 1.98

No gaze following 1.63

No attentional bounce 2.06

No rapid scene change 2.01

No saliency 1.89

Saliency pathway only 1.57

Static Saliency 1.43

ure 3 disabled at a time. We only report the NSS score for

comparison. The first and the last entries in Table 3 are the

baseline performance of the eDN and augmented eDN as re-

ported in Table 2. The second row reports the performance

by removing all the ConvLSTMs, which reduces the model

into the model in [21]. The results indicates that if the dy-

namic nature of Attentional Push is not employed, the aug-

mented model would perform marginally better compared

to the static model. The third entry is the result of aug-

menting the static saliency model with dynamic gaze fol-

lowing, which achieves considerable performance. Overall,

the results indicate that while dynamic gaze following has

the strongest effect, other Attentional Push push cues also

contribute to the performance of the augmented saliency.

5. Conclusion

We presented a framework which benefits from the re-

cent development in static saliency models in predicting the

fixation patterns on videos. Our model extends the notion of

Attentional Push and learns the dynamic influence of it upon

the viewers attention. Our multi-stream structure could be

readily extended to incorporate other abstract attentional

cues which cannot be learned either as the results of model

restrictions or the limited amount of available training data.

We performed extensive experimental tests and found the

augmented saliency models to outperform both the static

and spatiotemporal saliency models.
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[1] Ç. Bak, A. Erdem, and E. Erdem. Two-stream convolu-

tional networks for dynamic saliency prediction. CoRR,

abs/1607.04730, 2016. 8

[2] L. Bazzani, H. Larochelle, and L. Torresani. Recurrent

mixture density network for spatiotemporal visual attention.

In International Conference on Learning Representations

(ICLR), 2017. 8

[3] B. Benfold and I. Reid. Guiding visual surveillance by track-

ing human attention. In Proceedings of the 20th British Ma-

chine Vision Conference, pages 1–11, 2009. 1

[4] A. Borji, D. Parks, and L. Itti. Complementary effects of

gaze direction and early saliency in guiding fixations during

free viewing. Journal of Vision, 14(13):1–32, 2014. 2

[5] A. Borji, D. N. Sihite, and L. Itti. What stands out in a

scene? a study of human explicit saliency judgment. Vision

Research, 91:62 – 77, 2013. 2

[6] Z. Bylinskii, T. Judd, A. Borji, L. Itti, F. Durand,

A. Oliva, and A. Torralba. Mit saliency benchmark.

http://saliency.mit.edu. 2

[7] Z. Bylinskii, T. Judd, A. Oliva, A. Torralba, and F. Durand.

What do different evaluation metrics tell us about saliency

models? arXiv preprint, arXiv:1604.03605, 2016. 6

[8] Z. Bylinskii, A. Recasens, A. Borji, A. Oliva, A. Torralba,

and F. Durand. Where should saliency models look next? In

Computer Vision – ECCV 2016: 14th European Conference,

2016. 2

[9] M. S. Castelhano, M. Wieth, and J. M. Henderson. I see what

you see: Eye movements in real-world scenes are affected by

perceived direction of gaze. In Attention in Cognitive Sys-

tems. Theories and Systems from an Interdisciplinary View-

point, pages 251–262. Springer Berlin Heidelberg, 2007. 2

[10] S. Chaabouni, J. Benois-Pineau, and C. B. Amar. Transfer

learning with deep networks for saliency prediction in natu-

ral video. In 2016 IEEE International Conference on Image

Processing (ICIP), pages 1604–1608, Sept 2016. 2, 3

[11] M. Cornia, L. Baraldi, G. Serra, and R. Cucchiara. A deep

multi-level network for saliency prediction. In 2016 23rd

International Conference on Pattern Recognition (ICPR),

pages 3488–3493, Dec 2016. 3

[12] M. Cornia, L. Baraldi, G. Serra, and R. Cucchiara. A deep

multi-level network for saliency prediction. In 23rd Interna-

tional Conference on Pattern Recognition (ICPR), 2016. 6,

8

[13] M. Cornia, L. Baraldi, G. Serra, and R. Cucchiara. Predict-

ing human eye fixations via an lstm-based saliency attentive

model. CoRR, abs/1611.09571, 2016. 2, 6, 8

[14] X. Cui, Q. Liu, and D. Metaxas. Temporal spectral residual:

Fast motion saliency detection. In Proceedings of the 17th

ACM International Conference on Multimedia, pages 617–

620, New York, NY, USA, 2009. ACM. 3

[15] L. Duan, T. Xi, S. Cui, H. Qi, and A. C. Bovik. A spa-

tiotemporal weighted dissimilarity-based method for video

saliency detection. Signal Processing: Image Communica-

tion, 38(Supplement C):45 – 56, 2015. Recent Advances in

Saliency Models, Applications and Evaluations. 3

[16] Y. Fang, W. Lin, Z. Chen, C. M. Tsai, and C. W. Lin. A

video saliency detection model in compressed domain. IEEE

Transactions on Circuits and Systems for Video Technology,

24(1):27–38, Jan 2014. 3

[17] Y. Fang, Z. Wang, W. Lin, and Z. Fang. Video saliency in-

corporating spatiotemporal cues and uncertainty weighting.

IEEE Transactions on Image Processing, 23(9):3910–3921,

Sept 2014. 3

[18] J. Ferreira and J. Dias. Attentional mechanisms for socially

interactive robots- a survey. Autonomous Mental Develop-

ment, IEEE Transactions on, 6(2):110–125, June 2014. 1

[19] Y. Gitman, M. Erofeev, D. Vatolin, B. Andrey, and F. Alexey.

Semiautomatic visual-attention modeling and its application

to video compression. In Proceedings of the 2014 IEEE In-

ternational Conference on Image Processing (ICIP), page

11051109, 2014. 1

[20] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. In In Proceed-

ings of the International Conference on Artificial Intelligence

and Statistics (AISTATS10). Society for Artificial Intelligence

and Statistics, 2010. 7

[21] S. Gorji and J. J. Clark. Attentional push: A deep convolu-

tional network for augmenting image salience with shared

attention modeling in social scenes. In Computer Vision

and Pattern Recognition (CVPR), 2017 IEEE Conference on,

2017. 2, 4, 5, 6, 7, 8

[22] C. Guo, Q. Ma, and L. Zhang. Spatio-temporal saliency

detection using phase spectrum of quaternion fourier trans-

form. In 2008 IEEE Conference on Computer Vision and

Pattern Recognition, pages 1–8, June 2008. 3

[23] C. Guo and L. Zhang. A novel multiresolution spatiotem-

poral saliency detection model and its applications in image

and video compression. IEEE Transactions on Image Pro-

cessing, 19(1):185–198, Jan 2010. 7, 8

[24] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Computer Vision and Pattern

Recognition (CVPR), 2016 IEEE Conference on, 2016. 2

[25] S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural Comput., 9(8):1735–1780, Nov. 1997. 4

[26] X. Hou and L. Zhang. Dynamic visual attention: search-

ing for coding length increments. In D. Koller, D. Schuur-

mans, Y. Bengio, and L. Bottou, editors, Advances in Neural

Information Processing Systems 21, pages 681–688. Curran

Associates, Inc., 2009. 3

[27] L. Itti and P. Baldi. A principled approach to detecting

surprising events in video. In 2005 IEEE Computer Soci-

ety Conference on Computer Vision and Pattern Recognition

(CVPR’05), volume 1, pages 631–637 vol. 1, June 2005. 3

[28] L. Itti, C. Koch, and E. Niebur. A model of saliency-based vi-

sual attention for rapid scene analysis. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 20(11):1254–

1259, 1998. 1

[29] M. Jiang, S. Huang, J. Duan, and Q. Zhao. Salicon: Saliency

in context. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2015. 2, 3

[30] T. Judd, F. Durand, and A. Torralba. A benchmark of com-

putational models of saliency to predict human fixations. In

MIT Technical Report, 2012. 2

7509



[31] T. Judd, K. Ehinger, F. Durand, and A. Torralba. Learning to

predict where humans look. In Computer Vision, 2009 IEEE

12th International Conference on, pages 2106–2113, 2009.

2

[32] Y. Kavak, E. Erdem, and A. Erdem. A comparative study for

feature integration strategies in dynamic saliency estimation.

Signal Processing: Image Communication, 51(Supplement

C):13 – 25, 2017. 2

[33] S. H. Khatoonabadi, N. Vasconcelos, I. V. Baji, and Y. Shan.

How many bits does it take for a stimulus to be salient?

In 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 5501–5510, June 2015. 3, 7, 8

[34] Y.-M. Kim, S. W. Choi, and S.-W. Lee. Fast scene change

detection using direct feature extraction from mpeg com-

pressed videos. In Pattern Recognition, 2000. Proceedings.

15th International Conference on, volume 3, pages 174–177

vol.3, 2000. 6

[35] C. Koch and S. Ullman. Shifts in selective visual attention:

Towards the underlying neural circuitry. Human Neurobiol-

ogy, 4(4):219–227, 1985. 1

[36] S. S. S. Kruthiventi, K. Ayush, and R. V. Babu. Deep-

fix: A fully convolutional neural network for predicting hu-

man eye fixations. IEEE Transactions on Image Processing,

26(9):4446–4456, Sept 2017. 2, 3, 6

[37] G. Kuhn and A. Kingstone. Look away! eyes and arrows

engage oculomotor responses automatically. Attention, Per-

ception and Psychophysics, 71:314–327, 2009. 2
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