
Deep Back-Projection Networks For Super-Resolution

Muhammad Haris1, Greg Shakhnarovich2, and Norimichi Ukita1

1Toyota Technological Institute, Japan 2Toyota Technological Institute at Chicago, United States

{mharis, ukita}@toyota-ti.ac.jp, greg@ttic.edu

Abstract

The feed-forward architectures of recently proposed

deep super-resolution networks learn representations of

low-resolution inputs, and the non-linear mapping from

those to high-resolution output. However, this approach

does not fully address the mutual dependencies of low- and

high-resolution images. We propose Deep Back-Projection

Networks (DBPN), that exploit iterative up- and down-

sampling layers, providing an error feedback mechanism

for projection errors at each stage. We construct mutually-

connected up- and down-sampling stages each of which

represents different types of image degradation and high-

resolution components. We show that extending this idea

to allow concatenation of features across up- and down-

sampling stages (Dense DBPN) allows us to reconstruct

further improve super-resolution, yielding superior results

and in particular establishing new state of the art results

for large scaling factors such as 8× across multiple data

sets.

1. Introduction

Significant progress in deep learning for vision [15, 13,

5, 39, 26, 33, 17] has recently been propagating to the field

of super-resolution (SR) [19, 29, 6, 12, 20, 21, 24, 42].

Single image SR is an ill-posed inverse problem where

the aim is to recover a high-resolution (HR) image from

a low-resolution (LR) image. A currently typical ap-

proach is to construct an HR image by learning non-linear

LR-to-HR mapping, implemented as a deep neural net-

work [6, 7, 37, 24, 21, 22, 42]. These networks compute

a sequence of feature maps from the LR image, culminat-

ing with one or more upsampling layers to increase reso-

lution and finally construct the HR image. In contrast to

this purely feed-forward approach, human visual system is

believed to use a feedback connection to simply guide the

task for the relevant results [9, 23, 25]. Perhaps hampered

by lack of such feedback, the current SR networks with only

feed-forward connections have difficulty in representing the

LR to HR relation, especially for large scaling factors.

Figure 1. Super-resolution result on 8× enlargement. PSNR: Lap-

SRN [24] (15.25 dB), EDSR [30] (15.33 dB), and Ours (16.63 dB)

On the other hand, feedback connections were used ef-

fectively by one of the early SR algorithms, the iterative

back-projection [18]. It iteratively computes the reconstruc-

tion error then fuses it back to tune the HR image intensity.

Although it has been proven to improve the image quality,

the result still suffers from ringing effect and chessboard ef-

fect [4]. Moreover, this method is sensitive to choices of

parameters such as the number of iterations and the blur op-

erator, leading to variability in results.

Inspired by [18], we construct an end-to-end trainable

architecture based on the idea of iterative up- and down-

sampling: Deep Back-Projection Networks (DBPN). Our

networks successfully perform large scaling factors, as

shown in Fig. 1. Our work provides the following contri-

butions:

(1) Error feedback. We propose an iterative error-

correcting feedback mechanism for SR, which calculates

both up- and down-projection errors to guide the reconstruc-

tion for obtaining better results. Here, the projection errors

are used to characterize or constraint the features in early

layers. Detailed explanation can be seen in Section 3.

(2) Mutually connected up- and down-sampling stages.

Feed-forward architectures, which is considered as a one-

way mapping, only map rich representations of the input to
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Figure 2. Comparisons of Deep Network SR. (a) Predefined upsampling (e.g., SRCNN [6], VDSR [21], DRRN [42]) commonly uses

the conventional interpolation, such as Bicubic, to upscale LR input images before entering the network. (b) Single upsampling (e.g.,

FSRCNN [7], ESPCN [37]) propagates the LR features, then construct the SR image at the last step. (c) Progressive upsampling uses

a Laplacian pyramid network which gradually predicts SR images [24]. (d) Iterative up and downsampling approach is proposed by our

DBPN which exploit the mutually connected up- (blue box) and down-sampling (gold box) stages to obtain numerous HR features in

different depths.

the output space. This approach is unsuccessful to map LR

and HR image, especially in large scaling factors, due to

limited features available in the LR spaces. Therefore, our

networks focus not only generating variants of the HR fea-

tures using upsampling layers but also projecting it back to

the LR spaces using downsampling layers. This connection

is shown in Fig. 2 (d), alternating between up- (blue box)

and down-sampling (gold box) stages, which represent the

mutual relation of LR and HR image.

(3) Deep concatenation. Our networks represent different

types of image degradation and HR components. This abil-

ity enables the networks to reconstruct the HR image using

deep concatenation of the HR feature maps from all of the

up-sampling steps. Unlike other networks, our reconstruc-

tion directly utilizes different types of LR-to-HR features

without propagating them through the sampling layers as

shown by the red arrow in Fig. 2 (d).

(4) Improvement with dense connection. We improve the

accuracy of our network by densely connected [15] each up-

and down-sampling stage to encourage feature reuse.

2. Related Work

2.1. Image superresolution using deep networks

Deep Networks SR can be primarily divided into four

types as shown in Fig. 2.

(a) Predefined upsampling commonly uses interpola-

tion as the upsampling operator to produce middle resolu-

tion (MR) image. This schema was firstly proposed by SR-

CNN [6] to learn MR-to-HR non-linear mapping with sim-

ple convolutional layers. Later, the improved networks ex-

ploited residual learning [21, 42] and recursive layers [22].

However, this approach might produce new noise from the

MR image.

(b) Single upsampling offers simple yet effective way

to increase the spatial resolution. This approach was pro-

posed by FSRCNN [7] and ESPCN [37]. These methods

have been proven effective to increase the spatial resolu-

tion and replace predefined operators. However, they fail

to learn complicated mapping due to limited capacity of the

networks. EDSR [30], the winner of NTIRE2017 [43], be-

longs to this type. However, it requires a large number of

filters in each layer and lengthy training time, around eight

days as stated by the authors. These problems open the op-

portunities to propose lighter networks that can preserve HR

components better.

(c) Progressive upsampling was recently proposed in

LapSRN [24]. It progressively reconstructs the multiple SR

images with different scales in one feed-forward network.

For the sake of simplification, we can say that this network

is the stacked of single upsampling networks which only

relies on limited LR features. Due to this fact, LapSRN is

outperformed even by our shallow networks especially for

large scaling factors such as 8× in experimental results.

(d) Iterative up and downsampling is proposed by our

networks. We focus on increasing the sampling rate of SR

features in different depths and distribute the tasks to calcu-

late the reconstruction error to each stage. This schema en-

ables the networks to preserve the HR components by learn-

ing various up- and down-sampling operators while gener-

ating deeper features.

2.2. Feedback networks

Rather than learning a non-linear mapping of input-

to-target space in one step, the feedback networks com-

pose the prediction process into multiple steps which al-
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low the model to have a self-correcting procedure. Feed-

back procedure has been implemented in various computing

tasks [3, 34, 46, 28, 48, 38, 31].

In the context of human pose estimation, Carreira et

al. [3] proposed an iterative error feedback by iteratively

estimating and applying a correction to the current estima-

tion. PredNet [31] is an unsupervised recurrent network to

predictively code the future frames by recursively feeding

the predictions back into the model. For image segmenta-

tion, Li et al. [28] learn implicit shape priors and use them to

improve the prediction. However, to our knowledge, feed-

back procedures have not been implemented to SR.

2.3. Adversarial training

Adversarial training, such as with Generative Adversar-

ial Networks (GANs) [10] has been applied to various im-

age reconstruction problems [27, 36, 33, 5, 19]. For the

SR task, Johnson et al. [19] introduced perceptual losses

based on high-level features extracted from pre-trained net-

works. Ledig et al. [27] proposed SRGAN which is consid-

ered as a single upsampling method. It proposed the natu-

ral image manifold that is able to create photo-realistic im-

ages by specifically formulating a loss function based on

the euclidian distance between feature maps extracted from

VGG19 [40] and SRResNet.

Our networks can be extended with the adversarial loss

as generator network. However, we optimize our network

only using an objective function such as mean square root

error (MSE). Therefore, instead of training DBPN with the

adversarial loss, we can compare DBPN with SRResNet

which is also optimized by MSE.

2.4. Backprojection

Back-projection [18] is well known as the efficient it-

erative procedure to minimize the reconstruction error.

Previous studies have proven the effectivity of back-

projection [50, 11, 8, 45]. Originally, back-projection is

designed for the case with multiple LR inputs. However,

given only one LR input image, the updating procedure can

be obtained by upsampling the LR image using multiple

upsampling operators and calculate the reconstruction er-

ror iteratively [4]. Timofte et al. [45] mentioned that back-

projection can improve the quality of SR image. Zhao et

al. [50] proposed a method to refine high-frequency texture

details with an iterative projection process. However, the

initialization which leads to an optimal solution remains un-

known. Most of the previous studies involve constant and

unlearnable predefined parameters such as blur operator and

number of iteration.

To extend this algorithm, we develop an end-to-end

trainable architecture which focuses to guide the SR task

using mutually connected up- and down-sampling stages to

learn non-linear relation of LR and HR image. The mu-

tual relation between HR and LR image is constructed by

creating iterative up and down-projection unit where the

up-projection unit generates HR features, then the down-

projection unit projects it back to the LR spaces as shown

in Fig. 2 (d). This schema enables the networks to pre-

serve the HR components by learned various up- and down-

sampling operators and generates deeper features to con-

struct numerous LR and HR features.

3. Deep Back-Projection Networks

Let Ih and I l be HR and LR image with (M × N) and

(M
′

×N
′

), respectively, where M
′

< M and N
′

< N . The

main building block of our proposed DBPN architecture is

the projection unit, which is trained (as part of the end-to-

end training of the SR system) to map either an LR feature

map to an HR map (up-projection), or an HR map to an LR

map (down-projection).

3.1. Projection units

The up-projection unit is defined as follows:

scale up: Ht

0 = (Lt−1 ∗ pt) ↑s, (1)

scale down: Lt

0 = (Ht

0 ∗ gt) ↓s, (2)

residual: elt = Lt

0 − Lt−1, (3)

scale residual up: Ht

1 = (elt ∗ qt) ↑s, (4)

output feature map: Ht = Ht

0 +Ht

1 (5)

where * is the spatial convolution operator, ↑s and ↓s are, re-

spectively, the up- and down-sampling operator with scaling

factor s, and pt, gt, qt are (de)convolutional layers at stage

t.

This projection unit takes the previously computed LR

feature map Lt−1 as input, and maps it to an (intermediate)

HR map Ht
0; then it attempts to map it back to LR map Lt

0

(“back-project”). The residual (difference) elt between the

observed LR map Lt−1 and the reconstructed Lt
0 is mapped

to HR again, producing a new intermediate (residual) map

Ht
1; the final output of the unit, the HR map Ht, is obtained

by summing the two intermediate HR maps. This step is

illustrated in the upper part of Fig. 3.

The down-projection unit is defined very similarly, but

now its job is to map its input HR map Ht to the LR map

Lt as illustrated in the lower part of Fig. 3.

scale down: Lt

0 = (Ht ∗ g′t) ↓s, (6)

scale up: Ht

0 = (Lt

0 ∗ p
′

t) ↑s, (7)

residual: eht = Ht

0 −Ht, (8)

scale residual down: Lt

1 = (eht ∗ g′t) ↓s, (9)

output feature map: Lt = Lt

0 + Lt

1 (10)
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Figure 3. Proposed up- and down-projection unit in the DBPN.

We organize projection units in a series of stages, alter-

nating between H and L. These projection units can be un-

derstood as a self-correcting procedure which feeds a pro-

jection error to the sampling layer and iteratively changes

the solution by feeding back the projection error.

The projection unit uses large sized filters such as 8 × 8
and 12 × 12. In other existing networks, the use of large-

sized filter is avoided because it slows down the conver-

gence speed and might produce sub-optimal results. How-

ever, iterative utilization of our projection units enables the

network to suppress this limitation and to perform better

performance on large scaling factor even with shallow net-

works.

3.2. Dense projection units

The dense inter-layer connectivity pattern in

DenseNets [15] has been shown to alleviate the vanishing-

gradient problem, produce improved feature, and encour-

age feature reuse. Inspired by this we propose to improve

DBPN, by introducing dense connections in the projection

units called, yielding Dense DBPN (D-DBPN).

Unlike the original DenseNets, we avoid dropout and

batch norm, which are not suitable for SR, because they

remove the range flexibility of the features [30]. Instead,

we use 1 × 1 convolution layer as feature pooling and di-

mensional reduction [41, 12] before entering the projection

unit.

In D-DBPN, the input for each unit is the concatenation

of the outputs from all previous units. Let the Lt̃ and H t̃

be the input for dense up- and down-projection unit, re-

spectively. They are generated using conv(1, nR) which is

used to merge all previous outputs from each unit as shown

in Fig. 4. This improvement enables us to generate the fea-

ture maps effectively, as shown in the experimental results.

3.3. Network architecture

The proposed D-DBPN is illustrated in Fig. 5. It can

be divided into three parts: initial feature extraction, pro-

jection, and reconstruction, as described below. Here, let

conv(f, n) be a convolutional layer, where f is the filter

size and n is the number of filters.

1. Initial feature extraction. We construct initial LR

Figure 4. Proposed up- and down-projection unit in the D-DBPN.

The feature maps of all preceding units (i.e., [L1, ..., Lt−1] and

[H1, ..., Ht] in up- and down-projections units, respectively) are

concatenated and used as inputs, and its own feature maps are used

as inputs into all subsequent units.

feature-maps L0 from the input using conv(3, n0).
Then conv(1, nR) is used to reduce the dimension

from n0 to nR before entering projection step where

n0 is the number of filters used in the initial LR fea-

tures extraction and nR is the number of filters used in

each projection unit.

2. Back-projection stages. Following initial feature ex-

traction is a sequence of projection units, alternating

between construction of LR and HR feature maps Ht,

Lt; each unit has access to the outputs of all previous

units.

3. Reconstruction. Finally, the target HR image

is reconstructed as Isr = fRec([H
1, H2, ..., Ht]),

where fRec use conv(3, 3) as reconstruction and

[H1, H2, ..., Ht] refers to the concatenation of the

feature-maps produced in each up-projection unit.

Due to the definitions of these building blocks, our net-

work architecture is modular. We can easily define and train

networks with different numbers of stages, controlling the

depth. For a network with T stages, we have the initial ex-

traction stage (2 layers), and then T up-projection units and

T − 1 down-projection units, each with 3 layers, followed

by the reconstruction (one more layer). However, for the

dense network, we add conv(1, nR) in each projection unit,

except the first three units.

4. Experimental Results

4.1. Implementation and training details

In the proposed networks, the filter size in the projec-

tion unit is various with respect to the scaling factor. For

2× enlargement, we use 6× 6 convolutional layer with two

striding and two padding. Then, 4× enlargement use 8× 8
convolutional layer with four striding and two padding. Fi-

nally, the 8× enlargement use 12 × 12 convolutional layer

with eight striding and two padding.1

1We found these settings to work well based on general intuition and

preliminary experiments.
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Figure 5. An implementation of D-DBPN for super-resolution. Unlike the original DBPN, D-DBPN exploits densely connected projection

unit to encourage feature reuse.

We initialize the weights based on [14]. Here, std is com-

puted by (
√

2/nl) where nl = f2
t nt, ft is the filter size,

and nt is the number of filters. For example, with ft = 3
and nt = 8, the std is 0.111. All convolutional and decon-

volutional layers are followed by parametric rectified linear

units (PReLUs).

We trained all networks using images from DIV2K [43],

Flickr [30], and ImageNet dataset [35] without augmenta-

tion.2 To produce LR images, we downscale the HR images

on particular scaling factors using Bicubic. We use batch

size of 20 with size 32× 32 for LR image, while HR image

size corresponds to the scaling factors. The learning rate is

initialized to 1e − 4 for all layers and decrease by a factor

of 10 for every 5 × 105 iterations for total 106 iterations.

For optimization, we use Adam with momentum to 0.9 and

weight decay to 1e−4. All experiments were conducted us-

ing Caffe, MATLAB R2017a on NVIDIA TITAN X GPUs.

4.2. Model analysis

Depth analysis. To demonstrate the capability of our

projection unit, we construct multiple networks S (T = 2),

M (T = 4), and L (T = 6) from the original DBPN.

In the feature extraction, we use conv(3, 128) followed by

conv(1, 32). Then, we use conv(1, 1) for the reconstruc-

tion. The input and output image are luminance only.

The results on 4× enlargement are shown in Fig. 6.

DBPN outperforms the state-of-the-art methods. Starting

from our shallow network, the S network gives the higher

PSNR than VDSR, DRCN, and LapSRN. The S network

uses only 12 convolutional layers with smaller number of

filters than VDSR, DRCN, and LapSRN. At the best per-

formance, S networks can achieve 31.59 dB which better

0.24 dB, 0.06 dB, 0.05 dB than VDSR, DRCN, and Lap-

SRN, respectively. The M network shows performance

improvement which better than all four existing state-of-

2The comparison with only DIV2K dataset are available in the supple-

mentary material.

Figure 6. The depth analysis of DBPNs compare to other networks

(VDSR [21], DRCN [22], DRRN [42], LapSRN [24]) on Set5

dataset for 4× enlargement.

the-art methods (VDSR, DRCN, LapSRN, and DRRN). At

the best performance, the M network can achieve 31.74
dB which better 0.39 dB, 0.21 dB, 0.20 dB, 0.06 dB than

VDSR, DRCN, LapSRN, and DRRN respectively. In to-

tal, the M network use 24 convolutional layers which has

the same depth as LapSRN. Compare to DRRN (up to 52

convolutional layers), the M network undeniable shows the

effectiveness of our projection unit. Finally, the L network

outperforms all methods with 31.86 dB which better 0.51
dB, 0.33 dB, 0.32 dB, 0.18 dB than VDSR, DRCN, Lap-

SRN, and DRRN, respectively.

The results of 8× enlargement are shown in Fig. 7. The

S,M,L networks outperform the current state-of-the-art for

8× enlargement which clearly show the effectiveness of our

proposed networks on large scaling factors. However, we

found that there is no significant performance gain from

each proposed network especially for L and M networks

where the difference only 0.04 dB.

Number of parameters. We show the tradeoff between

performance and number of network parameters from our

networks and existing deep network SR in Fig. 8 and 9.
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Figure 7. The depth analysis of DBPN on Set5 dataset for 8× en-

largement. S (T = 2), M (T = 4), and L (T = 6)

For the sake of low computation for real-time processing,

we construct SS network which is the lighter version of the

S network, (T = 2). We only use conv(3, 64) followed

by conv(1, 18) for the initial feature extraction. However,

the results outperform SRCNN, FSRCNN, and VDSR on

both 4× and 8× enlargement. Moreover, our SS network

performs better than VDSR with 72% and 37% fewer pa-

rameters on 4× and 8× enlargement, respectively.

Our S network has about 27% fewer parameters and

higher PSNR than LapSRN on 4× enlargement. Finally, D-

DBPN has about 76% fewer parameters, and approximately

the same PSNR, compared to EDSR on 4× enlargement.

On the 8× enlargement, D-DBPN has about 47% fewer

parameters with better PSNR compare to EDSR. This evi-

dence show that our networks has the best trade-off between

performance and number of parameter.

Deep concatenation. Each projection unit is used to

distribute the reconstruction step by constructing features

which represent different details of the HR components.

Deep concatenation is also well-related with the number of

T (back-projection stage), which shows more detailed fea-

tures generated from the projection units will also increase

the quality of the results. In Fig. 10, it is shown that each

stage successfully generates diverse features to reconstruct

SR image.

Dense connection. We implement D-DBPN-L which is

a dense connection of the L network to show how dense

connection can improve the network’s performance in all

cases as shown in Table 1. On 4× enlargement, the dense

network, D-DBPN-L, gains 0.13 dB and 0.05 dB higher

than DBPN-L on the Set5 and Set14, respectively. On 8×,

the gaps are even larger. The D-DBPN-L has 0.23 dB and

0.19 dB higher that DBPN-L on the Set5 and Set14, respec-

tively.

4.3. Comparison with thestateofthearts

To confirm the ability of the proposed network, we

performed several experiments and analysis. We com-

pare our network with eight state-of-the-art SR algo-

rithms: A+ [44], SRCNN [6], FSRCNN [7], VDSR [21],

Figure 8. Performance vs number of parameters. The results are

evaluated with Set5 dataset for 4× enlargement.

Figure 9. Performance vs number of parameters. The results are

evaluated with Set5 dataset for 8× enlargement.

Figure 10. Sample of activation maps from up-projection units in

D-DBPN where t = 7. Each feature has been enhanced using the

same grayscale colormap for visibility.

Table 1. Comparison of the DBPN-L and D-DBPN-L on 4× and

8× enlargement. Red indicates the best performance.

Set5 Set14

Algorithm Scale PSNR SSIM PSNR SSIM

DBPN-L 4 31.86 0.891 28.47 0.777
D-DBPN-L 4 31.99 0.893 28.52 0.778

DBPN-L 8 26.63 0.761 24.73 0.631
D-DBPN-L 8 26.86 0.773 24.92 0.638

DRCN [22], DRRN [42], LapSRN [24], and EDSR [30].

We carry out extensive experiments using 5 datasets:

Set5 [2], Set14 [49], BSDS100 [1], Urban100 [16] and

Manga109 [32]. Each dataset has different characteris-

tics. Set5, Set14 and BSDS100 consist of natural scenes;

Urban100 contains urban scenes with details in different

frequency bands; and Manga109 is a dataset of Japanese
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Figure 11. Qualitative comparison of our models with other works on 4× super-resolution.

manga. Due to computation limit of Caffe, we have to di-

vide each image in Urban100 and Manga109 into four parts

and then calculate PSNR separately.

Our final network, D-DBPN, uses conv(3, 256) then

conv(1, 64) for the initial feature extraction and t = 7 for

the back-projection stages. In the reconstruction, we use

conv(3, 3). RGB color channels are used for input and out-

put image. It takes less than four days to train.

PSNR and structural similarity (SSIM) [47] were used

to quantitatively evaluate the proposed method. Note that

higher PSNR and SSIM values indicate better quality. As

used by existing networks, all measurements used only the

luminance channel (Y). For SR by factor s, we crop s pixels

near image boundary before evaluation as in [30, 7]. Some

of the existing networks such as SRCNN, FSRCNN, VDSR,

and EDSR did not perform 8× enlargement. To this end, we

retrained the existing networks by using author’s code with

the recommended parameters.

We show the quantitative results in the Table 2. D-DBPN

outperforms the existing methods by a large margin in all

scales except EDSR. For the 2× and 4× enlargement, we

have comparable PSNR with EDSR. However, EDSR tends

to generate stronger edge than the ground truth and lead

to misleading information in several cases. The result of

EDSR for eyelashes in Fig. 11 shows that it was interpreted

as a stripe pattern. On the other hand, our result gener-

ates softer patterns which subjectively closer to the ground

truth. On the butterfly image, EDSR separates the white pat-

tern which shows that EDSR tends to construct regular pat-

tern such ac circle and stripe, while D-DBPN constructs the

same pattern as the ground truth. The previous statement

is strengthened by the results from the Urban100 dataset

which consist of many regular patterns from buildings. In

Urban100, EDSR has 0.54 dB higher than D-DBPN.

Our network shows it’s effectiveness in the 8× enlarge-

ment. The D-DBPN outperforms all of the existing meth-

ods by a large margin. Interesting results are shown on

Manga109 dataset where D-DBPN obtains 25.50 dB which

is 0.61 dB better than EDSR. While on the Urban100

dataset, D-DBPN achieves 23.25 which is only 0.13 dB bet-

ter than EDSR. The results show that our networks perform

better on fine-structures images such as manga characters,

even though we do not use any animation images in the

training.

The results of 8× enlargement are visually shown

in Fig. 12. Qualitatively, D-DBPN is able to preserve the

HR components better than other networks. It shows that

our networks can extract not only features but also create

contextual information from the LR input to generate HR

components in the case of large scaling factors, such as 8×
enlargement.

5. Conclusion

We have proposed Deep Back-Projection Networks for

Single Image Super-resolution. Unlike the previous meth-

ods which predict the SR image in a feed-forward manner,

our proposed networks focus to directly increase the SR fea-

tures using multiple up- and down-sampling stages and feed

the error predictions on each depth in the networks to revise

the sampling results, then, accumulates the self-correcting

features from each upsampling stage to create SR image.

We use error feedbacks from the up- and down-scaling steps

to guide the network to achieve a better result. The results

show the effectiveness of the proposed network compares to

other state-of-the-art methods. Moreover, our proposed net-

work successfully outperforms other state-of-the-art meth-

ods on large scaling factors such as 8× enlargement.

This work was partly supported by FCRAL.
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Figure 12. Qualitative comparison of our models with other works on 8× super-resolution. 1st line: LapSRN [24] (19.77 dB), EDSR [30]

(19.79 dB), and Ours (19.82 dB). 2nd line: LapSRN [24] (16.45 dB), EDSR [30] (19.1 dB), and Ours (23.1 dB). 3rd line: LapSRN [24]

(24.34 dB), EDSR [30] (25.29 dB), and Ours (28.84 dB)

Table 2. Quantitative evaluation of state-of-the-art SR algorithms: average PSNR/SSIM for scale factors 2×, 4× and 8×. Red indicates

the best and blue indicates the second best performance. (* indicates that the input is divided into four parts and calculated separately due

to computation limitation of Caffe)

Set5 Set14 BSDS100 Urban100 Manga109

Algorithm Scale PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 2 33.65 0.930 30.34 0.870 29.56 0.844 26.88 (27.39∗) 0.841 30.84 (31.05∗) 0.935
A+ [44] 2 36.54 0.954 32.40 0.906 31.22 0.887 29.23 0.894 35.33 0.967
SRCNN [6] 2 36.65 0.954 32.29 0.903 31.36 0.888 29.52 0.895 35.72 0.968
FSRCNN [7] 2 36.99 0.955 32.73 0.909 31.51 0.891 29.87 0.901 36.62 0.971
VDSR [21] 2 37.53 0.958 32.97 0.913 31.90 0.896 30.77 0.914 37.16 0.974
DRCN [22] 2 37.63 0.959 32.98 0.913 31.85 0.894 30.76 0.913 37.57 0.973
DRRN [42] 2 37.74 0.959 33.23 0.913 32.05 0.897 31.23 0.919 37.92 0.976
LapSRN [24] 2 37.52 0.959 33.08 0.913 31.80 0.895 30.41 (31.05∗) 0.910 37.27 (37.53∗) 0.974
EDSR [30] 2 38.11 0.960 33.92 0.919 32.32 0.901 32.93 (33.56∗) 0.935 39.10 (39.33∗) 0.977
D-DBPN 2 38.09 0.960 33.85 0.919 32.27 0.900 − (33.02∗) 0.931 − (39.32∗) 0.978

Bicubic 4 28.42 0.810 26.10 0.704 25.96 0.669 23.15 (23.64∗) 0.659 24.92 (25.15∗) 0.789
A+ [44] 4 30.30 0.859 27.43 0.752 26.82 0.710 24.34 0.720 27.02 0.850
SRCNN [6] 4 30.49 0.862 27.61 0.754 26.91 0.712 24.53 0.724 27.66 0.858
FSRCNN [7] 4 30.71 0.865 27.70 0.756 26.97 0.714 24.61 0.727 27.89 0.859
VDSR [21] 4 31.35 0.882 28.03 0.770 27.29 0.726 25.18 0.753 28.82 0.886
DRCN [22] 4 31.53 0.884 28.04 0.770 27.24 0.724 25.14 0.752 28.97 0.886
DRRN [42] 4 31.68 0.888 28.21 0.772 27.38 0.728 25.44 0.764 29.46 0.896
LapSRN [24] 4 31.54 0.885 28.19 0.772 27.32 0.728 25.21 (25.87∗) 0.756 29.09 (29.44∗) 0.890
EDSR [30] 4 32.46 0.897 28.80 0.788 27.71 0.742 26.64 (27.30∗) 0.803 31.02 (31.41∗) 0.915
D-DBPN 4 32.47 0.898 28.82 0.786 27.72 0.740 − (27.08∗) 0.795 − (31.50∗) 0.914

Bicubic 8 24.39 0.657 23.19 0.568 23.67 0.547 20.74 (21.24∗) 0.516 21.47 (21.68∗) 0.647
A+ [44] 8 25.52 0.692 23.98 0.597 24.20 0.568 21.37 0.545 22.39 0.680
SRCNN [6] 8 25.33 0.689 23.85 0.593 24.13 0.565 21.29 0.543 22.37 0.682
FSRCNN [7] 8 25.41 0.682 23.93 0.592 24.21 0.567 21.32 0.537 22.39 0.672
VDSR [21] 8 25.72 0.711 24.21 0.609 24.37 0.576 21.54 0.560 22.83 0.707
LapSRN [24] 8 26.14 0.738 24.44 0.623 24.54 0.586 21.81 (22.42∗) 0.582 23.39 (23.67∗) 0.735
EDSR [30] 8 26.97 0.775 24.94 0.640 24.80 0.596 22.47 (23.12∗) 0.620 24.58 (24.89∗) 0.778
D-DBPN 8 27.21 0.784 25.13 0.648 24.88 0.601 − (23.25∗) 0.622 − (25.50∗) 0.799

1671



References

[1] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Con-

tour detection and hierarchical image segmentation. IEEE

transactions on pattern analysis and machine intelligence,

33(5):898–916, 2011. 6

[2] M. Bevilacqua, A. Roumy, C. Guillemot, and M.-L. A.

Morel. Low-complexity single-image super-resolution based

on nonnegative neighbor embedding. In British Machine Vi-

sion Conference (BMVC), 2012. 6

[3] J. Carreira, P. Agrawal, K. Fragkiadaki, and J. Malik. Hu-

man pose estimation with iterative error feedback. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4733–4742, 2016. 3

[4] S. Dai, M. Han, Y. Wu, and Y. Gong. Bilateral back-

projection for single image super resolution. In Multimedia

and Expo, 2007 IEEE International Conference on, pages

1039–1042. IEEE, 2007. 1, 3

[5] E. L. Denton, S. Chintala, R. Fergus, et al. Deep genera-

tive image models using a laplacian pyramid of adversarial

networks. In Advances in neural information processing sys-

tems, pages 1486–1494, 2015. 1, 3

[6] C. Dong, C. C. Loy, K. He, and X. Tang. Image

super-resolution using deep convolutional networks. IEEE

transactions on pattern analysis and machine intelligence,

38(2):295–307, 2016. 1, 2, 6, 8

[7] C. Dong, C. C. Loy, and X. Tang. Accelerating the super-

resolution convolutional neural network. In European Con-

ference on Computer Vision, pages 391–407. Springer, 2016.

1, 2, 6, 7, 8

[8] W. Dong, L. Zhang, G. Shi, and X. Wu. Nonlocal back-

projection for adaptive image enlargement. In Image Pro-

cessing (ICIP), 2009 16th IEEE International Conference

on, pages 349–352. IEEE, 2009. 3

[9] D. J. Felleman and D. C. Van Essen. Distributed hierarchical

processing in the primate cerebral cortex. Cerebral cortex

(New York, NY: 1991), 1(1):1–47, 1991. 1

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in neural information

processing systems, pages 2672–2680, 2014. 3

[11] M. Haris, M. R. Widyanto, and H. Nobuhara. First-order

derivative-based super-resolution. Signal, Image and Video

Processing, 11(1):1–8, 2017. 3

[12] M. Haris, M. R. Widyanto, and H. Nobuhara. Inception

learning super-resolution. Appl. Opt., 56(22):6043–6048,

Aug 2017. 1, 4

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. arXiv preprint arXiv:1512.03385,

2015. 1

[14] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 1026–1034, 2015. 5

[15] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger.

Densely connected convolutional networks. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, 2017. 1, 2, 4

[16] J.-B. Huang, A. Singh, and N. Ahuja. Single image super-

resolution from transformed self-exemplars. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 5197–5206, 2015. 6

[17] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and

T. Brox. Flownet 2.0: Evolution of optical flow estimation

with deep networks. In IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), Jul 2017. 1

[18] M. Irani and S. Peleg. Improving resolution by image reg-

istration. CVGIP: Graphical models and image processing,

53(3):231–239, 1991. 1, 3

[19] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In European

Conference on Computer Vision, pages 694–711. Springer,

2016. 1, 3

[20] A. Kappeler, S. Yoo, Q. Dai, and A. K. Katsaggelos.

Video super-resolution with convolutional neural networks.

IEEE Transactions on Computational Imaging, 2(2):109–

122, 2016. 1

[21] J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image super-

resolution using very deep convolutional networks. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 1646–1654, June 2016. 1, 2, 5,

6, 8

[22] J. Kim, J. Kwon Lee, and K. Mu Lee. Deeply-recursive con-

volutional network for image super-resolution. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1637–1645, 2016. 1, 2, 5, 6, 8

[23] D. J. Kravitz, K. S. Saleem, C. I. Baker, L. G. Ungerleider,

and M. Mishkin. The ventral visual pathway: an expanded

neural framework for the processing of object quality. Trends

in cognitive sciences, 17(1):26–49, 2013. 1

[24] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep

laplacian pyramid networks for fast and accurate super-

resolution. In IEEE Conferene on Computer Vision and Pat-

tern Recognition, 2017. 1, 2, 5, 6, 8

[25] V. A. Lamme and P. R. Roelfsema. The distinct modes of vi-

sion offered by feedforward and recurrent processing. Trends

in neurosciences, 23(11):571–579, 2000. 1

[26] G. Larsson, M. Maire, and G. Shakhnarovich. Fractalnet:

Ultra-deep neural networks without residuals. arXiv preprint

arXiv:1605.07648, 2016. 1

[27] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham,

A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, et al.

Photo-realistic single image super-resolution using a genera-

tive adversarial network. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Jul 2017. 3

[28] K. Li, B. Hariharan, and J. Malik. Iterative instance segmen-

tation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 3659–3667, 2016. 3

[29] R. Liao, X. Tao, R. Li, Z. Ma, and J. Jia. Video super-

resolution via deep draft-ensemble learning. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 531–539, 2015. 1

[30] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee. Enhanced

deep residual networks for single image super-resolution.

In The IEEE Conference on Computer Vision and Pattern

1672



Recognition (CVPR) Workshops, July 2017. 1, 2, 4, 5, 6, 7,

8

[31] W. Lotter, G. Kreiman, and D. Cox. Deep predictive cod-

ing networks for video prediction and unsupervised learning.

arXiv preprint arXiv:1605.08104, 2016. 3

[32] Y. Matsui, K. Ito, Y. Aramaki, A. Fujimoto, T. Ogawa, T. Ya-

masaki, and K. Aizawa. Sketch-based manga retrieval us-

ing manga109 dataset. Multimedia Tools and Applications,

pages 1–28, 2016. 6

[33] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-

sentation learning with deep convolutional generative adver-

sarial networks. arXiv preprint arXiv:1511.06434, 2015. 1,

3

[34] S. Ross, D. Munoz, M. Hebert, and J. A. Bagnell. Learning

message-passing inference machines for structured predic-

tion. In Computer Vision and Pattern Recognition (CVPR),

2011 IEEE Conference on, pages 2737–2744. IEEE, 2011. 3

[35] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet large scale visual recognition challenge.

International Journal of Computer Vision, 115(3):211–252,

2015. 5

[36] M. S. Sajjadi, B. Schölkopf, and M. Hirsch. Enhancenet:

Single image super-resolution through automated texture

synthesis. arXiv preprint arXiv:1612.07919, 2016. 3

[37] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken,

R. Bishop, D. Rueckert, and Z. Wang. Real-time single im-

age and video super-resolution using an efficient sub-pixel

convolutional neural network. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1874–1883, 2016. 1, 2

[38] A. Shrivastava and A. Gupta. Contextual priming and feed-

back for faster r-cnn. In European Conference on Computer

Vision, pages 330–348. Springer, 2016. 3

[39] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang,

and R. Webb. Learning from simulated and unsupervised

images through adversarial training. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2017. 1

[40] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 3

[41] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1–9, 2015. 4

[42] Y. Tai, J. Yang, and X. Liu. Image super-resolution via deep

recursive residual network. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, 2017.

1, 2, 5, 6, 8

[43] R. Timofte, E. Agustsson, L. Van Gool, M.-H. Yang,

L. Zhang, B. Lim, S. Son, H. Kim, S. Nah, K. M. Lee,

et al. Ntire 2017 challenge on single image super-resolution:

Methods and results. In Computer Vision and Pattern Recog-

nition Workshops (CVPRW), 2017 IEEE Conference on,

pages 1110–1121. IEEE, 2017. 2, 5

[44] R. Timofte, V. De Smet, and L. Van Gool. A+: Adjusted

anchored neighborhood regression for fast super-resolution.

In Asian Conference on Computer Vision, pages 111–126.

Springer, 2014. 6, 8

[45] R. Timofte, R. Rothe, and L. Van Gool. Seven ways to im-

prove example-based single image super resolution. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 1865–1873, 2016. 3

[46] Z. Tu and X. Bai. Auto-context and its application to high-

level vision tasks and 3d brain image segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

32(10):1744–1757, 2010. 3

[47] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.

Image quality assessment: from error visibility to struc-

tural similarity. Image Processing, IEEE Transactions on,

13(4):600–612, 2004. 7

[48] A. R. Zamir, T.-L. Wu, L. Sun, W. Shen, J. Malik,

and S. Savarese. Feedback networks. arXiv preprint

arXiv:1612.09508, 2016. 3

[49] R. Zeyde, M. Elad, and M. Protter. On single image scale-up

using sparse-representations. In Curves and Surfaces, pages

711–730. Springer, 2012. 6

[50] Y. Zhao, R.-G. Wang, W. Jia, W.-M. Wang, and W. Gao. It-

erative projection reconstruction for fast and efficient image

upsampling. Neurocomputing, 226:200–211, 2017. 3

1673


