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Abstract

Linking between two data sources is a basic building

block in numerous computer vision problems. In this pa-

per, we set to answer a fundamental cognitive question: are

prior correspondences necessary for linking between differ-

ent domains?

One of the most popular methods for linking between do-

mains is Canonical Correlation Analysis (CCA). All cur-

rent CCA algorithms require correspondences between the

views. We introduce a new method Unsupervised Corre-

lation Analysis (UCA), which requires no prior correspon-

dences between the two domains. The correlation maxi-

mization term in CCA is replaced by a combination of a re-

construction term (similar to autoencoders), full cycle loss,

orthogonality and multiple domain confusion terms. Due to

lack of supervision, the optimization leads to multiple al-

ternative solutions with similar scores and we therefore in-

troduce a consensus-based mechanism that is often able to

recover the desired solution. Remarkably, this suffices in or-

der to link remote domains such as text and images. We also

present results on well accepted CCA benchmarks, showing

that performance far exceeds other unsupervised baselines,

and approaches supervised performance in some cases.

1. Introduction

Computer vision seeks an understanding of the scene be-

hind the image, mapping an image to a non-image represen-

tation. Linking visual data X with an external data source

Y is, therefore, the defining task of computer vision. When

applying machine learning tools to solve such tasks, we of-

ten consider the non-vision source Y to be univariate. A

more general scenario is the one in which Y is also multidi-

mensional. Examples of such view to view linking include

matching a video to a concurrent audio, matching an image

with its textual description, matching images from two fixed

views, etc.

The classical method of tying two different domains is

Canonical Correlation Analysis (CCA), which links match-

ing vectors by maximizing the correlation between the

two views. The algorithm has been generalized in many

ways: regularization was added [35], kernels were intro-

duced [2, 36, 4], versions for more than two sources were

developed [46], etc. Recently, with the advent of deep

learning methods, deep versions were created and showed

promise [3, 52, 10, 41].

All of these methods are fully supervised and the loss

terms are based on having access to matching representa-

tions in the two domains. Recently, a large body of work

quickly emerged, which maps between two domains in an

unsupervised way, i.e., without observing matching sam-

ples. The success of such methods is extraordinary, since

there is no evidence in the existing machine learning or cog-

nitive science literature suggesting that this would be possi-

ble.

The success, however, is limited to two visual do-

mains [27, 57, 55, 5], or, much less commonly (and employ-

ing mostly semi-supervised learning) to two languages [53]

and very recently [12, 31]. This leads to the hypothesis that

the methods merely perform sophisticated style transfer, as

discussed in [57], are unable to perform geometrical trans-

formations (see discussion in [27]), focus on simple trans-

formations [14], or compute a transformation that can be

well approximated by a fixed permutation of the pixels, as

demonstrated in [5].

In this work, we demonstrate the capability of matching

between completely different domains in an unsupervised

way. As far as we know, this is the first time that such a

method is presented. By doing so we, therefore, both (i)

significantly extend what is known to be possible in unsu-

pervised learning and, (ii) provide a new practical method

for many computer vision applications.

Similarly to the CCA literature, we assume the data in

the two domains is already encoded, e.g., by a preexist-

ing deep CNN for images, or a thought-vector technique

for text. In order to link between the domains, our method

employs multiple sub-networks of two types: to transform

between domains, we employ shallow projection matrices;

to link between the two data sources, we employ deeper do-

main confusion networks [15].

Even the computation of CCA, as is typically done with
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SVD or eigenvalue decomposition is ambiguous [9] since

the projections is given up to a flipping of a sign. This can

be easily resolved in the supervised case by making the re-

covered correlations positive. In the unsupervised case, cor-

relations cannot be computed since there are no matches. In

addition, there may be many more ambiguities (e.g., match-

ing an image to a description of the same image after some

transformation). In order to overcome this, we run our

method k times. Then, we analyze the relations between

the recovered solutions by considering the first Principle

Component of a data-driven similarity kernel between the

solutions. The final solution emerges as the solution with

the maximal value along this dimension.

Taken together, our method is able to solve a variety of

computer vision tasks, inferring a missing half of an image

from the given part, and link text and images.

We review related work in Sec. 2, our method UCA is

detailed in Sec. 3. Experimental evaluation is presented in

Sec. 4. We conclude in Sec. 5.

2. Related work

This paper aims to identify analogies between datasets

without supervision. Analogy identification as formulated

in this paper is highly related to image matching methods.

As we perform matching by synthesis across domains, our

method is related to unsupervised style-transfer and image-

to-image mapping. In this section we give a brief overview

of the most closely related works.

Style transfer Style transfer methods [16, 47, 26] typically

receive as input a style image and a content image and create

a new image that has the style of the first and the content of

the second. Style is captured by local image statistics (“tex-

ture”) and content is measured by the activations of a neu-

ral net classifier. The problem of image translation between

domains differs since when mapping between domains, part

of the content is replaced with new content that matches the

target domain and not just the style.

Generative Adversarial Networks GAN [17] methods

train a generator network G that synthesizes samples from

a target distribution, given noise vectors, by jointly train-

ing a second network D. In image mapping, the cre-

ated image is based on an input image and not on random

noise [27, 57, 55, 33, 45, 25], using a similar adversarial

network D. Earlier, fully supervised, conditional GANs in-

clude generating samples from a specific class [40], based

on a textual description [42, 56], or invert mid-level network

activations [13].

Unsupervised Mapping Unsupervised mapping does

not employ supervision apart from sets of sample images

from the two domains. This was done very recently [27, 57,

55, 22] for image to image translation and slightly earlier

for translating between natural languages [53, 31].

[45] match between the source domain and the target do-

main by incorporating a fixed pre-trained feature map f and

requiring f -constancy, i.e, that the activations of f are the

same for the input samples and for mapped samples. We do

not use such assumptions in this work.

Domain Adaptation In this setting, we typically are

given two domains, one having supervision in the form of

matching labels, while the second has little or no supervi-

sion. The goal is to learn to label samples from the second

domain. In [8], what is common to both domains and what

is distinct is separated thus improving on existing models.

In [7], a transformation is learned, on the pixel level, from

one domain to another, using GANs. In [21], an unsuper-

vised adversarial approach to semantic segmentation, which

uses both global and category specific domain adaptation

techniques, is proposed.

A principled way for performing domain adaptation us-

ing an adversarial network is presented by Ganin et al. [15].

The adversarial network tries to distinguish between the fea-

tures extracted from samples of two the domains, after these

were processed by a feature extraction network. A similar

“domain confusion” network is employed in our work (al-

though two different projects are used) and in many other

recent contributions, for example, for the task of imitation

learning [20].

Canonical Correlation Analysis (CCA) [23] is a statis-

tical method for computing a linear projection for two views

into a common space, which maximizes their correlation.

CCA plays a crucial role in many computer vision applica-

tions including multiview analysis [1], multimodal human

behavior analysis [44], action recognition [28], and linking

text with images [30]. There are a large number of CCA

variants including: regularized CCA [50], Nonparametric

canonical correlation analysis (NCCA) [37], and Kernel

canonical correlation analysis (KCCA) [2, 36, 4], a method

for producing non-linear, non-parametric projections using

the kernel trick. Recently, randomized non-linear compo-

nent analysis (RCCA) [39] emerged as a low-rank approxi-

mation of KCCA. While CCA is restricted to linear projec-

tions, KCCA is restricted to a fixed kernel. Both methods

do not scale well with the size of the dataset and the size of

the representations. A number of methods [3, 52, 10, 41]

based on Deep Learning were recently proposed that aim

to overcome these drawbacks. Deep canonical correlation

analysis [3] processes the pairs of inputs through two net-

work pipelines and compares the results of each pipeline via

the CCA loss.

Two contributions [54] and [51], extend DeepCCA [3]

to the task of images and text matching. The first employs

the same model and training process of [3] while the lat-

ter employs a different training scheme on the same ar-

chitecture. Other deep CCA methods, are inspired by a

family of encoding/decoding unsupervised generative mod-

els [19, 6, 34, 48, 49] that aim to capture a meaningful rep-
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resentation of input x by applying a non-linear encoding

function, decoding the encoded signal using a non-linear

decoding function and minimizing the squared L2 distance

between the original input and the decoded output. Need-

less to say, all of these methods are supervised and rely on

matching samples between the domains.

3. Method

In this section, we describe Unsupervised Correlation

Analysis (UCA). Similarly to CCA, the method projects the

data from the two domains into a shared space. By using

domain confusion networks, we ensure that the statistics of

the two projected views are indistinguishable in the shared

space. We are thus able to link between the two domains.

There are several technical challenges including the domain

confusion constraints and managing the instability of adver-

sarial training.

In Sec. 3.1 we describe our architecture and training pro-

cedure. In Sec. 3.2 we describe our unsupervised network

selection criterion.

3.1. Architecture

In order to explain our method we briefly review CCA.

CCA takes as input sets of matching views Xi and Yi,

which are stacked as the matching columns of two ma-

trices X and Y . The views are assumed to be centered,

i.e.,
∑

i Xi = 0 and
∑

i Yi = 0. CCA sets to project

both views to a common space, by employing projection

matrices Wx and Wy , such that the sum of correlations∑
i(WxXi)

⊤(WyYi) is maximized, subject to the projected

data being uncorrelated, i.e.,
∑

i(WxXi)(WxXi)
⊤ = I

and similarly for WyYi.

In the unsupervised setting, we would like to learn simi-

lar projection matrices Wx and Wy . We cannot compute the

cross-domain correlations without having access to match-

ing training samples, but we can compute the correlation of

each projection. The latter allows us to apply the orthogo-

nality constraint in order to ensure uncorrelated projections.

In addition to these projections our method also employs

projections Vx, Vy from the shared space to the two views as

well as three domain confusion matrices: DC in the shared

(post-projection) domain, and Dx, Dy for the two input do-

mains. The variables, networks, constants, and parameters

that define our method are listed in Tab. 1.

We center the training data by removing the mean in

each of the domains. The CCA-like projections Wx and

Wy project the input data into R
d:

Cx = WxX (1)

Cy = WyY (2)

Similarly to CCA, the projections dimensions are set to

be uncorrelated. In our method, this is done in a soft way

with the following loss

LOrth = ‖C⊤

x Cx − I‖22 + ‖C⊤

y Cy − I‖22 (3)

In order to make the two projections indistinguishable,

we train an adversarial network Dc to distinguish between

Cx and Cy .

LDc
= BCE(Dc(Cx), 0) +BCE(Dc(Cy), 1) (4)

where the Binary Cross Entropy function is defined based

on the sigmoid function σ as:

BCE(x, z) = −z log(σ(x))− (1− z) log(1− σ(x)) (5)

The networks Wx and Wy , on the other hand, increase

the domain confusion by minimizing the negation of LDc
,

given as:

LGc
= BCE(Dc(Cx), 1) +BCE(Dc(Cy), 0) (6)

The goal of the inverse projections (Vx, Vy), from the

shared domain in R
d to the input domains is to allow do-

main confusion to take place in these domains, while en-

suring that the inverse projection Cx and Cy is close to the

original X and Y :

LRec = ‖VxCx, X‖22 + ‖VyCy, Y ‖22 (7)

We also incorporate a ”Cycle” constraint as in [57, 27,

55]. The constraint enforces a view projected to the oppo-

site view and back to be unchanged. It provides a strong

way of tying Vx and Wx with Vy and Wy . The cycle con-

straint can be written as:

LCyc = ‖VxWyVyWxX −X‖22 + ‖VyWxVxWyY − Y ‖22
(8)

The domain confusion networks Dx and Dy minimize

the following loss:

LDx
= BCE(Dx(VxCy), 0) +BCE(Dx(VxCx), 1) (9)

LDy
= BCE(Dy(VyCx), 0)+BCE(Dy(VyCy), 1) (10)

These networks act as adversaries to Vx and Vy , as well

as to Wx and Wy , which minimize the two losses:

LGx
= BCE(Dx(VxCy), 1) (11)

LGy
= BCE(Dy(VyCx), 1) (12)

Taken together, the “generator” networks Wx, Wy , Vx

and Vy minimize the following loss
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Figure 1. An illustration of the suggested method. The one-sided arrows denote projections. The double headed ones denote loss terms.

Green – “generative” losses. Red – adversarial losses.

Symbol Description Computed as:

V
ar

ia
b

le
s X ∈ R

dx×nx Samples in the first domain X Input

Y ∈ R
dy×ny Samples in the first domain Y Input

CX ∈ R
d×nx X projected to shared space WxX

CY ∈ R
d×ny Y projected to shared space Wyy

N
et

w
o

rk
s Wx : dx → d Projection form X to the shared vector space

Wy : dy → d Projection form Y to the shared vector space

Vx : d → dx Projection form the shared space in Rd to X
Vy : d → dy Projection form the shared space in Rd to Y
Dc : d → [0, 1] The domain confusion discriminator CX vs. CY

Dx : dx → [0, 1] Discriminator for VxCx vs. VxCy

Dy : dy → [0, 1] Discriminator for VxCx vs. VxCy

C
o

n
st dx Dimensionality of the input domain X

dy Dimensionality of the input domain Y

P
ar

am
et

er
s d Dimensionality of the shared space 10

λc Weight of the loss term LGc
1

λxy Weight of the losses LGx
, LGx

, LDx
, LDx

1
λRec Weight of the loss term LRec 1
λOrth Weight of the loss term LOrth 1
λCyc Weight of the loss term LCyc 1
k Number of reruns per experiment 100

Table 1. The components of the Unsupervised Component Analysis model
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LG = λcLGc
+ λxyLGx

+ λxyLGy
+

λRecLRec + λOrthLOrth + λCycLCyc (13)

while each of the discriminator networks Dc, Dx, and

Dy , minimizes its individual loss.

We also present two other variants, of UCA, CycUCA

and LatentUCA. We noticed that using all constraint to-

gether tended to decrease the total performance. CycUCA

is a simplified case of UCA, without the GAN on the la-

tent code, and the orthogonality and reconstruction loss

(λc = λOrth = λRec = 0). LatentUCA is the same as

the full UCA without the cycle constraint (λCyc = 0).

We train all losses using mini-batch stochastic gradi-

ent descent (SGD) using the ADAM optimization algo-

rithm [29]. As typical for adversarial loss functions we use

alternating optimization, where for each mini-batch we first

train the discriminator loss function and then the generator

loss function. We used a learning rate of 1e−2 and decayed

it by a factor of 2 after 15 epochs. Training was performed

for a total of 26 epochs. The discriminator consisted of 2

hidden layers each with 2048 nodes, followed by Batch-

Norm layer and ReLU activation. We used weight decay of

1e− 5 for all networks.

After training we use the projection matrices Wx and Wy

as feature extractors from views X and Y respectively.

3.2. Unsupervised Selection Among the Runs

Performing the procedure described in Sec. 3.1 suffers

both from the inherent ambiguity of unsupervised learning

as well as from the well-documented instabilities in genera-

tive adversarial networks. In practice, we observe that some

runs yield good performance whereas others result is pro-

jection to uncorrelated dimensions. Furthermore, since our

constraints deal with the distribution level and only indi-

rectly encourage positive correlations, we occasionally find

runs that have negative correlations.

We have found that running training multiple times re-

sults in a number of runs with good performance. The chal-

lenge is being able to select the best performing runs. If we

have access to an aligned (perhaps small) validation set, it

can be used for choosing the best performing runs in terms

of correlation or AUC. We denote this method: the Ora-

cle. In the completely unsupervised setting, however, we

do not have access to any aligned data1. Simple averaging

was found in our experiments to be sub-optimal. Simple

heuristics based on training loss have not yielded success-

ful outcomes.

Our proposed method is based on the idea that although

we do not have ground truth labels, projections that are cor-

1For testing purposes only, the performance is measured using match-

ing points. However this cannot be done for a validation split.

Algorithm 1 Unsupervised Correlation Analysis

Require: Unmatched samples from two domains X , Y ,

and the parameters listed in Tab. 1.

1: X = removeMean(X)
2: Y = removeMean(Y )
3: for j ∈ 1 . . . k do

4: Obtain W
(j)
x and W

(j)
y by minimizing Eq. 13 over

Wx, Wy , Vx, and Vy , while minimizing Eq. 4, 9 10

over Dc, Dx and Dy , respectively.

5: end for

6: Synthetic pairs: (xi, ỹi = V
(j)
y W

(j)
x xi) : xi ∈ X , j

randomized for each pair.

7: for i ∈ 1 . . . n do

8: for j ∈ 1 . . . k do

9: M (j)[i] = (W
(j)
x x̂i)

⊤(W
(j)
y ỹi)

10: end for

11: end for

12: P = largestSingularVector(removeMean(M))

13: return W
(j∗)
x ,W

(j∗)
y such that: j∗ = argmax

j∈1...k
P⊤M (j)

related with the ground truth should also be highly corre-

lated with each other and therefore agree on more labels

than failed uncorrelated projections (“crowd-wisdom”). Us-

ing randomly sampled pairs of projected points however,

yields a very unbalanced set of pairs as the proportion of

matching pairs is the inverse of the number of examples in

the training set (this is the reason our problem is challeng-

ing in the first place). Instead, we synthesize matching pairs

as follows. We pick a random example x in X , and projec-

tion matrices from a randomly selected run (Wx and Vy).

We then project point x to its paired synthetic Y example

ỹ = VyWxx. We then treat (x, ỹ) as a synthetic validation

pair. we evaluate the similarity matrix of the projected syn-

thetic pairs according to each run, Mij = W j
xxi ·W

j
y ỹi. for

run j and pair i.

In order to find the run that is most correlated with the

other runs, we calculate the factors of variation of matrix

M using PCA and retain only the first principle component.

The first PC approximates, using a rank-1 matrix, the ker-

nel that measures the pair-wise similarities between runs.

Therefore, the runs associated with the extremal factors in

the first principle component are usually the most and least

correlated runs. We show evidence for the effectiveness of

this method in the experimental section. The entire method

is listed in Alg. 1.

4. Experiments

Our experiments employ five datasets:

1. A toy problem, in which the first domain contains the

MNIST images, and the second domain contains the
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mirrored image.

2. A much more challenging problem in which the do-

main X contains the upper half of the MNIST [32]

images, and Y contains the lower part.

3. The annotated bird dataset from [42], contains 11,788

images of birds with matching sentences. The dataset

has predefined train and test splits which we follow.

We encode the images using ResNet50 [18] and en-

code the sentences using the InferSent method of [11].

4. A similar dataset of flowers [56], with 8,189 matching

pairs, encoded similarly.

5. The 8,000 images of the Flickr citeflicker 8k datasets.

Each image was annotated by five sentences. We en-

code each image using the VGG network [43], and en-

code the sentences by employing fastICA [24] over the

word2vec [38] representation. Namely, all word2vec

representation of dictionary words were projected to

300D using fastICA. Then, the text associated with

each image was taken as the average of all words in

the five sentences describing it.

We evaluated multiple variants of our method and a set of

baselines. The most related baseline is unsupervised gener-

ative adversarial methods. We also provide supervised CCA

baselines to give an understanding of the upper bound for

the performance on the evaluated datasets.

Two quantitative metrics are used for evaluation: (1)

Correlation - average of the 1D dimension by dimension

correlations of the code representations (Cx and Cy), and

(2) Area Under Curve (AUC) - We compute the similarity,

in the latent space, between pairs of positive and negative

matches (each pair has one sample from view X and one

from view Y) and report the area under the ROC curve.

The unsupervised methods include the direct GAN base-

line and our three variants: CycUCA, LatentUCA, AllUCA.

An additional variant termed Oracle selects the run out of

all CycUCA, LatentUCA, and AllUCA runs, which maxi-

mizes the correlation. It therefore serves as an upper bound

for the potential utility of the selection method presented in

Sec. 3.2.

GAN: This method trains a generative adversarial model

directly between the source domain and target domain. It

does not use a shared latent space, and the shared space ef-

fectively becomes the original target space. This method

has a much larger number of parameters than our method,

since the input space is of much larger dimensionality than

the latent space. As its dimensionality is very high the cor-

relation metric is not very meaningful for this method, and

is not reported.

UCA: UCA is described in Sec. 3 with its three vari-

ant CycUCA and LatentUCA and AllUCA. CycUCA uses

cycle constraints but no domain confusion loss on the la-

tent space. LatentUCA has a domain confusion loss on the

latent space but no cycle constraints. AllUCA contains all

constraints.

We used a shared latent space of dimensionality d = 10.

To calculate similarity between code vectors from different

views we a correlation based similarity measure. This has

been found to work better than the euclidean similarity. We

compute 100 different training runs for each dataset, yield-

ing 100 different projection matrices from each of the views

to the shared space. For each set of projections we calculate

the similarity scores on a fixed set of pairs of samples from

the two views, resulting in the matrix M . We compute the

PCA decomposition of the matrix, and represent every set

of projections as the value of the top principle component.

We have found that the solution (run) with the largest AUC

and correlation typically has either the maximum or min-

imum first principle component among all solutions. We

therefore report the AUC and correlation of the classifier

with extremal value of the first principle components on the

train set. For HalfMNIST, the second component was found

to work better for all methods.

We also evaluate two supervised methods. We stress that

they are only used to upper bound the performance obtain-

able by our method, and are not directly comparable due to

inherent supervision.

Regularized CCA (CCA): CCA is an established tech-

nique for finding an optimal shared latent space given su-

pervised data from two views; it maximizes correlation be-

tween the two views while enforcing orthonormality in the

code space. The regularized version [50] generalizes much

better, and we report results for the best regularization co-

efficient found.

Supervised UCA (SupUCA): In order to test the expres-

siveness of our architecture, we evaluate UCA with super-

vised data. Several changes are performed to accommo-

date the new setting. the domain confusion terms are re-

moved. Euclidean loss terms are added for matching be-

tween the following three pairs: (VyWxXi, Yi) , (VxWyYi,

Xi), (WxXi, WyYi).

4.1. Results

AUC and Correlation results can be seen in Tables. 2

and 3. All UCA and supervised methods performed well on

MNIST Flipped digits. This is the simplest of the tasks, as

the transformation can be expressed exactly by a sparse ma-

trix. For such simple tasks where the distributions of train

and test match exactly no supervision is required to achieve

perfect matching. The GAN method did not achieve a high

AUC on this task, but did far better on this task than all

others, which are more challenging.

MNIST Halves is a significantly harder task than MNIST

Flipped. The transformation function between the top half
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Dataset

Method MNIST Flipped MNIST Halves Birds [42] Flowers Flickr8k

GAN * * * * *

CycUCA 0.96/0.95 0.13/0.11 0.36/0.33 0.06/0.07 0.38/0.38

LatentUCA 1.00/1.00 0.25/0.25 0.38/0.32 0.10/0.10 0.23/0.23

AllUCA 1.00/1.00 0.23/0.23 0.28/0.26 0.05/0.02 0.00/0.00

Oracle 1.00/1.00 0.34/0.34 0.57/0.56 0.26/0.23 0.46/0.47

CCA10 1.00/0.99 0.91/0.88 0.88/0.70 0.96/0.68 0.79/0.73

CCA50 1.00/1.00 0.55/0.52 0.69/0.38 0.77/0.37 0.64/0.51

SupUCA 0.90/0.90 0.90/0.90 0.83/0.74 0.90/0.74 0.80/0.75

Table 2. Mean Cross-Domain Correlation (% train/test) on the [42] dataset. CCA10 and CCA50 differ in the dimensionality of the latent

space. The UCA methods all use a latent space of size 10. ∗ The correlation, in the sense of the other methods, is ill defined for GAN since

there is no latent space.

Dataset

Method MNIST Flipped MNIST Halves Birds [42] Flowers Flickr8k

GAN 0.69/0.69 0.55/0.55 0.54/0.54 0.54/0.53 0.58/0.58

CycUCA 1.00/1.00 0.60/0.59 0.72/0.70 0.52/0.55 0.76/0.76

LatentUCA 1.00/1.00 0.73/0.73 0.80/0.76 0.60/0.59 0.68/0.68

AllUCA 1.00/1.00 0.67/0.67 0.74/0.74 0.57/0.53 0.51/0.50

Oracle 1.00/1.00 0.74/0.74 0.86/0.83 0.68/0.70 0.82/0.81

CCA10 1.00/1.00 0.96/0.96 0.94/0.92 0.94/0.94 0.93/0.91

CCA50 1.00/1.00 0.98/0.98 0.97/0.95 0.97/0.96 0.97/0.97

SupUCA 0.98/0.98 0.95/0.95 0.98/0.94 0.99/0.95 0.97/0.95

Table 3. Cross-Domain Matching AUC (% train/test).

and the bottom half or vice versa cannot perfectly recon-

struct the target image. We can, however, see from the

supervised baselines that a correlated latent space can be

learned with near perfect accuracy given correspondences.

On this task LatentUCA has outperformed all other unsu-

pervised methods.

One may question whether CycleGAN/DiscoGAN ar-

chitectures may simply solve this task, due to their care-

ful design for unsupervised image mapping (and conse-

quently matching). We therefore evaluate DiscoGAN on the

MNIST Halves task, which is an image-to-image task and

is challenging in the unsupervised setting (as opposed to the

Flipped task). We use DiscoGAN rather than CycleGAN,

since it uses an encoder-decoder rather than U-NET archi-

tecture, and is thus designed for global rather than spatially

local transformations. Some example results are depicted

in Fig. 2. As can be seen from the images, the DiscoGAN

method creates realistic looking half-digits. However, the

DiscoGAN results are not similar to the ground truth and

do not perform well on this task, providing evidence for its

difficulty.

Our results for MNIST-Halves are shown in Fig. 3. We

show the top half (domain X), the matching bottom half

(A) (AB) (B) (BA)

Figure 2. Each row depicts the DiscoGAN mapping (AB) of the

top half of an MNIST [32] digit (A) to its matching bottom half

(B). Mapping (BA) is also shown between the bottom half (B) to

the top half (A).
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Figure 3. Shown, row by row, are the input sample [32] (top half of

digit), the ground truth target (bottom half), the estimated target,

and the retrieved target. The blurriness of the estimated sample

is due to the 10D bottleneck but both the estimation and the top-

retrieval match the target well.

(a) (b)

Figure 4. (a) Ground truth image and (b) top-5 retrievals for the

matching descriptions on the Birds [42] dataset which are, row by

row: “small whit and brown spotted bird with a small beak ”, “this

bird has wings that are black and orange and has a black throat”, “a

round bird with a blue head, orange throat cream belly, and black

wings”

(domain Y ), the recovered image in domain Y , and the re-

trieval in domain Y . Note that in this experiment, it is possi-

ble to show the recovered image since the raw image pixels

are used as the features. The recovered image is blurred

since the reconstruction goes through a bottleneck of size

10. However, using it for retrieving from the target domain

results in results that are both correct and sharp.

All UCA variants performed well on the birds dataset,

with some advantage to LatentUCA. GAN has not per-

formed well on this dataset. We hypothesize that this is due

to the size of the projection matrix and the lack of low di-

mensional shared space in the GAN baseline method. Sam-

ple retrieval results, using LatentUCA for the text to birds

benchmark are shown in Fig. 4.

Flowers proved quite challenging for all unsupervised

methods. LatentUCA was the best performer on this dataset

as well, but its performance was still quite low. CycGAN

did particularly poorly, this might be because the utility of

the cycle constraint is much reduced when the reconstruc-

(a) (b)

Figure 5. (a) Ground truth image and (b) top-5 retrievals for the

matching descriptions, on Flowers [56], which are, row by row:

“petals are white in color, many stamne with anthers that are yel-

low in color”, “the petals are very uniform, white, and oblong,

forming a circle”, “the petals of this flower are yellow with a short

stigma.”

tion quality is low. Sample retrieval results for LatentUCA

on this benchmark are shown in Fig. 5.

CycUCA and LatentUCA performed well on Flickr8k,

whereas AllUCA failed. We actually found that it AllUCA

had several high accuracy runs, but the unsupervised selec-

tion step did not find them.

In all experiments, the encoder-decoder architecture en-

sures that we are able to project views into a space where

related data are highly correlated. This is not possible in

the input space as done by the GAN method, due to high

dimensionality.

Consensus-based methods ware effective for unsuper-

vised run selection, when combined with our PCA selection

method. The difference in performance in comparison the

to Oracle Method in most cases, is only moderate.

5. Conclusions

In this paper, we presented a method for linking un-

paired samples from two sources. This contributes towards

answering an important cognitive question, is it necessary

to have prior correspondences to learn the links between

domains? We presented a method to solve this important

task and have shown our method to work well on image-

to-image and image-to-text unsupervised linking. Linking

image to text in an unsupervised way is an unintuitive result

and has not been successfully performed before.

Learning unsupervised CCA is challenging and multi-

ple constraints were found to be important for its success

(orthogonality, cycle, autoencoder and domain confusion).

Another challenge we overcame was training instability,

which was tackled by training multiple runs and selecting

the top solution using a consensus-based method.
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