
Distributable Consistent Multi-Object Matching

Nan Hu

Stanford University

Qixing Huang

UT Austin

Boris Thibert

UG Alpes

Leonidas Guibas

Stanford University

Abstract

In this paper we propose an optimization-based frame-

work to multiple object matching. The framework takes

maps computed between pairs of objects as input, and out-

puts maps that are consistent among all pairs of objects.

The central idea of our approach is to divide the input ob-

ject collection into overlapping sub-collections and enforce

map consistency among each sub-collection. This leads to

a distributed formulation, which is scalable to large-scale

datasets. We also present an equivalence condition between

this decoupled scheme and the original scheme. Experi-

ments on both synthetic and real-world datasets show that

our framework is competitive against state-of-the-art multi-

object matching techniques.

1. Introduction

Object matching techniques have been widely used in

many fields of computer vision, including 2D and 3D image

analysis, object recognition, biomedical identification, and

object tracking. There is a rich literature on finding mean-

ingful approximate isomorphisms between pair of objects

that are represented as graphs [24, 6, 9, 10, 26, 8, 13, 14].

Many tasks, however, require to solve the so-called multi-

object matching problem, i.e., finding consistent maps

among all pairs of objects within a collection. Examples

include non-rigid structure from motion [1, 7] and shared

object discovery [3]. In this context, a central task is

how to utilize the data collection as a regularizer to im-

prove the maps computed between pairs of objects in iso-

lation [15, 4, 32].

A generic constraint that one can utilize to improve maps

among a collection is the so-called cycle consistency con-

straint, namely composition of maps along any two paths

sharing the same starting and end objects are identical. A

technical challenge of utilizing this constraint is that it is

impossible to check all cycles for consistency, due to the

fact that the number of paths increase exponentially with

the total number of objects. Recent works on joint match-

ing have shown that the cycle consistency constraint can

be translated into a much more manageable constraint, i.e.,

the data matrix that stores pair-wise maps in blocks is posi-

tive semidefinite and low-rank [15, 22]. Based on this con-

nection, people have formulated multi-object matching as

solving semidefinite programs (or SDP), which are con-

vex relaxations of the corresponding matrix recovery prob-

lem. These algorithms achieved near-optimal exact recov-

ery conditions [15, 4]. On the other hand, solving semidef-

inite programs are computationally expensive. In a recent

work, Zhou et al [32] attempt to address the computational

issue using alternating minimization for efficient low-rank

matrix recovery.

In this paper, we propose a novel framework that uti-

lizes the cycle-consistency constraint in a hierarchical man-

ner for scalable multiple object matching. We show how

to apply this framework to extend the methods described

in [15, 4, 32]. In particular, instead of jointly impos-

ing the global consistency constraint among all pair-wise

maps [15, 4, 32], we split the input object collection into

overlapping subsets, and impose consistency within each

subset. We then impose consistency between maps across

the subsets. Interestingly, we show that by combing these

two consistency constraints together, we can guarantee

global consistency under mild conditions (See Section 2).

Yet computationally, such a decoupled approach yields sig-

nificant performance gains, when compared with existing

approaches.

1.1. Related Work

Early works on multi-object matching (e.g., [31, 16]) ex-

tend pairwise matching schemes to the multi-object setting

without explicitly considering the map consistency con-

straint. [30, 20] proposed to detect inconsistent cycles, and

formulate multi-object matching as solving combinatorial

optimizations, i.e., removing bad maps to break all incon-

sistent cycles. Recently, people have proposed to formu-

late non-convex optimization problems by using the cycle

consistency constraint as an explicit constraint for either

pixel-wise flow computation [32], sparse feature matching

[27], sparse shape modeling [5], or structure from motion

[21]. These problems are, as a consequence, hard to solve

and do not admit exact recovery conditions. Recent works

[15, 22] showed that consistent maps could be extracted
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from the spectrum of a data matrix that encodes pair-wise

maps in blocks. Along this line of research, Huang and

Guibas [15] proposed an elegant solution by formulating

the problem as convex relaxation and discussed the the-

oretical conditions for exact recovery. The result is fur-

ther analyzed in [4] under the condition that the underly-

ing rank of the variable matrix is known or can be reliably

estimated. Yan et al. [29, 28] also proposed matrix fac-

torization based methods to enforce the cycle-consistency

constraint. These methods, however, are not scalable to

large-scale datasets, due to the cost of solving semidefinite

programs. Zhou et al. [32] enforce the positive semidefi-

nite constraint using explicit low-rank factorizations, lead-

ing to improved computational efficiency. In contrast to

these methods, our approach opens a new direction to en-

forcing the cycle-consistency constraint, i.e., by splitting

the datasets into overlapping subsets. This leads to further

improvements in terms of computational efficiency. Most

recently, Leonardos et. al. [17] proposed a distributed

consensus-based algorithm as an extension of [22]. Their

method, however, cannot handle partial matches.

We organize the reminder of this paper as follows. First,

we discuss the problem setup and analyze the conditions in

Section 2. Second, we discuss the formulation of our ap-

proach in Section 3. In Section 4, we present an alternating

direction method of multipliers (ADMM) for solving the in-

duced optimization problem, leading to a parallel algorithm

via generalized message passing. Last but not the least, we

demonstrate the effectiveness of our approach on both syn-

thetic and real examples in Section 5.

2. Consistency

In this section, we extend the cycle-consistency formu-

lation described in [15] to the distributed setting. The key

result is a sufficient condition on which cycle-consistency

among sub-collections induces global cycle-consistency.

We begin with introducing the notations that are neces-

sary to formally state this sufficient condition. For simplic-

ity, we assume maps between objects are given by permu-

tations. However, the argument can be easily extended to

the case where objects are partially similar with each other.

Formally speaking, we consider a map graph G = (V =
(H1, · · · , Hn), E). The vertex set V consists of objects to

be matched, and each object Hi is given by m points (e.g.,

key points extracted from an image). The edge set E con-

nects a subset of pairs of objects. Each edge (i, j) ∈ E is

associated with a permutation φij : Hi → Hj . We first

define the global consistency of φij , ∀(i, j) ∈ E :

Definition 1 (Cycle Consistency). A map graph G =
{V, E} is cycle consistent if for every node vi and every

cycle vi − vi1 − · · · − vik − vi, the composite map along

Gi Gj

Gij

G

(a) joint normal

G

G

G

Gi Gj

Gij

violation edge

(b) Counter joint normal

Figure 1: Examples of subgraphs that are (a) joint normal

and (b) not joint normal.

this cycle is the identity map, i.e.

φii1 ◦ · · · ◦ φiki = identity.

Now we introduce an equivalent formulation of enforc-

ing the cycle-consistency among G as enforcing the cycle-

consistency among subgraphs of G, if these subgraphs sat-

isfy certain conditions. Towards this end, we introduce two

conditions among collection of subgraphs of G. The first

condition concerns a pair of sub-graphs:

Definition 2 (Joint Normal). Let Gi = {Vi, Ei}, Gj =
{Vj , Ej} be the two subgraphs of G = {V, E}. We say Gi
and Gj are joint normal if the vertex sets Vi \Vj and Vj \Vi
are not connected by any edge of E:

(s, t) /∈ E , ∀Hs ∈ Vi\Vj , Ht ∈ Vj\Vi

As illustrated in Figure 1, two subgraphs Gi = {Vi, Ei}
and Gj = {Vj , Ej} are joint normal if their common sub-

graph {Vi∩Vj , Ei∩Ej} is either (i) empty, or (ii) connected,

and there is no edge between a vertex in one subgraph to a

vertex in the other subgraph except those in the common

subgraph. In contrast, the two subgraphs illustrated in Fig-

ure 1(b) are not joint normal since there exists an edge that

connects the non-overlapping sets of these two subgraphs.

The second condition concerns a topological constraint

among all the sub-graphs. We state this condition using the

notation of simplicial complex as detailed below:

Definition 3 (Cover Complex). Let {Gi = (Vi, Ei), 1 ≤
i ≤ K} be a set of sub-graphs that cover G, i.e., ∪Ki=1Vi =
V . We define the cover complex K of these sub-graphs

{Gi = (Vi, Ei), 1 ≤ i ≤ K} so that K collects every

subset {i1, · · · , ik} ⊂ {1, · · · ,K} if the intersections of

Vi1 , · · · ,Vik is non-empty, i.e. ∩jVij 6= ∅.

We now state the decoupled cycle-consistency theorem

that relates the global cycle consistency and the cycle con-

sistency on each subgraph:

Theorem 1 (Decoupled Cycle-Consistency). Let G be a

map graph, G1, · · · ,GK be a cover of G, andK be the cover

complex. Then G is cycle consistent if
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1. Gi is cycle consistent ∀i,

2. Gi and Gj are joint normal ∀(i, j) ∈ E ,

3. K is simply connected (c.f. [12]).

Here we say the cover complex K is simply connected

if every closed curve can be deformed to a point (or in

other words the region enclosed by this curve has no-holes).

Please refer to [12] for a more general definition. This the-

orem states that the cycle consistency property on each sub-

graph would be propagated to the global consistency, if the

cover complex K satisfies the conditions stated in Theo-

rem 1. The proof to Theorem 1 is left to the supplementary

material.

Note that the 3nd condition in Theorem 1 is necessary.

Figure 2(a) provides a simple counter example, which sat-

isfies the 1st and 2nd conditions in Theorem 1. The cover

complexK, however, is homologous to the Torus T 2, which

is not simply connected. It is easy to see that the local-

consistency (which is trivial as each sub-graph is given by

an edge) does not lead to the global consistency among

these three edges.

Figure 2(c) provides another example to understand the

correctness of Theorem 1. In this case, there are four ob-

jects. It is clear that enforcing the cycle-consistency among

all four triple sub-graphs induces the cycle-consistency on

the original graph. This argument aligns with Theorem 1 as

K is simply connected. We defer detailed explanations to

the supplementary material.

Algorithm 1: Greedy Construction of K

Input : Map graph G = (V, E)
Number of cover nodes K

Output: Cover nodes {Gi}
K
1

1 Compute a graph clustering of G to K clusters (graph

cut or K-means on graph embeddings)

2 Assign each of the cluster to Gi, i = 1, · · · ,K
3 while condition not satisfied do

4 Assign Hj to Gi if Hj is neighboring to Gi in G or

within distance of ǫ to Gi in the embedding space

5 Build K from {Gi}
K
i

6 Check if K is connected

7 Compute homology group using [33]

8 Check ifH1(K) is trivial

9 if Both conditions satisfied then

10 Break

11 end

12 end

To develop an algorithm based on Theorem 1, we pro-

posed a greedy algorithm to construct K as in Algorithm

1. Note that a complex K is simply connected, if 1) it is

connected; 2) the 1-dimensional homology groupH1(K) is

G G

(a) Subgraphs that forms an empty triangle cover complex

G G

G G

(b) Subgraphs that form a solid triangle cover complex

(c) Subgraphs that form an empty tetrahedron cover complex

Figure 2: Given local consistency, (a) is not globally con-

sistent, while (b) and (c) are guaranteed to be globally con-

sistent. (Left: the map graph with subgraphs circled out.

Right: the corresponding cover complex.)

trivial. Condition 1) could be easily verified by any graph

traversal algorithm (BFS/DFS), and condition 2) can be ver-

ified computationally as in [33].

3. Distributed Optimization

In this section, we introduce the proposed distributed for-

mulation of recovering cycle-consistent maps from noisy

pair-wise maps.

3.1. Formulation

Our formulation takes as input the pairwise base maps

φij . We follow the state-of-the-art work on convex relax-

ation of enforcing cycle-consistent maps [15, 4] to encode

φij into a data matrix Xij . Following the common strategy

for optimizing point-based maps, we relax φij to be a par-

tial map and/or soft map, i.e. Xij ∈ [0, 1]mi×mj , where mi

denote the number of vertices in Hi.

Let XV be the matching matrix that encodes pair-wise
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maps in its blocks, i.e.

XV =













I X12 · · · X1n

X21 I · · ·
...

... · · ·
. . .

...

Xn1 · · · · · · I













The goal of our formulation is to find a matrix XV that

encodes cycle-consistent maps from the noisy input XV . To

achieve this goal, one observation is that the desired match-

ing matrix XV is low-rank (c.f. [15]). Specififcally, we

assume there is an universal object of size m, i.e. there

are totally m distinct entities for all the objects Hi’s in

V . For each object Hi, we have a latent map encoded by

AHi
∈ {0, 1}mi×m, which maps a vertex from Hi to an en-

tity in the universal object. Let AV be a tall matrix that con-

catenates AHi
, i.e., AV = (AT

H1
, · · · ,AT

Hn
)T . It is easy to

see that the map matrix XV admits a low-rank factorization

as XV = AVA
⊤
V . In [15, 32], the authors use this property

to develop robust algorithms for recovering XV from noisy

input maps.

Without losing generality. we assume h(XV) is an ob-

jective function that measures the quality of a set of cycle-

consistent maps encoded by XV , e.g., it promotes the low-

rankness of XV . The precise expression of h(XV) will be

discussed later. Our distributed formulation is given by

min
∑

i h (XVi
)

s.t. XVi
i∩j

= X
V

j

i∩j
, ∀(i, j) ∈ E , (1)

where XVi
i∩j

is the matching matrix of Vi∩j in Vi, i.e. a sub-

matrix of XVi
by picking blocks that belong to the matching

graphs in Vi∩j . Each h(XVi
) indicates local consistency

in Vi, and the condition that XVi
i∩j

= X
V

j

i∩j
will guaran-

tee that the overlapping subgraph are consistent. In such a

manner, the consistency condition will propagate through

the overlapping sub-graph to each component Vi conceptu-

ally similar to our proof of Theorem 1.

In the state-of-the-art methods of [15] and [32], the au-

thors proposed different formulations of objective function

h(XV). We will use the formulation described in [32] to

demonstrate our framework, because of its competent per-

formance and superior computational speed.

As in [32], h(XV) can be written as

min 〈WV ,XV〉+ λ‖XV‖∗
s.t. XV � 0,

XV(ii) = Imi
, ∀i

XV(ij) = X
⊤
V(ji), ∀i 6= j

0 ≤ X ≤ 1

(2)

where 〈·, ·〉 is the matrix inner product, ‖ · ‖∗ is the matrix

nuclear norm, and WV = α1−XV , and 1 denote the matrix

whose elements are 1. The purpose of adding constant α is

to impose a L1 constraint on XV to promote sparsity. We

use XV(ij) to denote the (i, j)th block of the block matrix

XV . As has been shown in [32], the constraint XV � 0
may be relaxed for a sufficiently large λ. Let Ci encode the

convex set induced by the constraints for Vi, we could then

simplify the formulation of our distributed problem as

min
∑

i (〈WVi
,XVi

〉+ λ‖XVi
‖∗)

s.t. XVi
∈ Ci

XVi
i∩j

= X
V

j

i∩j
, ∀(i, j) ∈ E

(3)

4. Alternating minimization

4.1. Algorithms

The nuclear norm minimization in (3) can be efficiently

optimized using recent results on low-rank matrix recovery,

which directly enforce low-rank decompositions XVi
=

AVi
B

⊤
Vi

(c.f. [2, 11, 32]). Here AVi
and BVi

are latent

variables. According to [23], we can write the nuclear norm

as

‖X‖∗ = min
A,B:AB⊤=X

1

2

(

‖A‖2F + ‖B‖2F
)

.

To make the notations uncluttered, we will shorten XVi
and

X
i
Vi∩j

as Xi and Xij , respectively. Moreover, let Eij de-

note the selection matrix to extract the part of Xi that be-

longs to the set of Vi ∩ Vj , i.e. Xij = E
⊤
ijXiEij . With this

setup, the condition on intersection consistency becomes

E
⊤
ijXiEij = E

⊤
jiXjEji.

We then finalize our formation of the problem in (1) as

min
∑

i

(

〈Wi,Xi〉+
λ
2 ‖Ai‖

2
F + λ

2 ‖Bi‖
2
F

)

s.t. Xi = AiB
⊤
i ,

E
⊤
ijXiEij = E

⊤
jiXjEji,

Xi ∈ Ci,

(4)

In all our experiments, we set α = 0.1, λ = 50, µ = 64,

and β = 1.

We apply ADMM to solve (4). The solver is summarized

in Algorithm 2. In particular, Yi and Zij are dual variables.

The constraints on X are handled implicitly and updated in

the alternating algorithm. The ADMM algorithm updates

primal variables by minimizing L and then applies gradient

descent to update the dual variables. Moreover, Ai and Bi

admit closed-form solution via solving least-squares. More-

over, Xi0 is the solution to the linear equation

µXi+2β
∑

j

EijE
⊤
ijXiEijE

⊤
ij = µAiB

⊤
i −(Wi+Yi)

+
∑

j

Eij(2βM
k
j→i − Zij + Zji)E

⊤
ij .

Furthermore, the update on Xi requires a projection onto

the convex set C, PC(·), i.e. PC(X0) is the solution to the
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Algorithm 2: Distributed Graph Matching via ADMM

Input : Initial pairwise maps Xi

Output: Consistent matches Xi

1 Initialize Ai, Bi randomly, and set Yi, Zij to be 0

2 Wi = α1−Xi

3 while not converged do
/* inner-node update */

4 Ai ← (Xi +
1
µ
Yi)Bi(B

⊤
i Bi +

λ
µ
I)†

5 Bi ← (Xi +
1
µ
Yi)Ai(A

⊤
i Ai +

λ
µ
I)†

6 Xi ← PCi
(Xi0)

7 Yi ← Y
k
i + µ

(

Xi −AiB
⊤
i

)

8 Zij ← Z
k
ij + β

(

M
k+1
i→j −M

k+1
j→i

)

/* inter-node information exchange */

9 node j send Mj→i = E
⊤
jiXjEji to node i

10 end

11 Round Xi with a threshold of 0.5.

problem

min
X∈C
‖X−X0‖

2
F .

This is essentially a linear programming problem, and can

be solved efficiently. We refer to the supplementary mate-

rial for a derivation.

The key point in Algorithm 2 is the separation of inner-

node update and inter-node information exchange. It can

be seen that all the matrix computations are done in each

node separately, which indicates a distributed computation.

While after each iteration, adjacent nodes will need to ex-

change information by passing messages. Namely, for node

Vj and all its neighboring nodes Vi, a message will be sent

in the form of Mj→i = E
⊤
jiXjEji. Note that there is no

overhead on generating these messages. Recall that Eji

is just a sub-block extraction matrix, and the way Mj→i

is computed is simply by extracting the sub-block of the

matching matrix Xj that belongs to the intersection Vi∩Vj .

Since all the computations are indeed done on each node in-

dividually, the proposed algorithm is essentially completely

distributed, and the only add-on is a syncing stage.

4.2. Complexity

The computational complexity of Algorithm 2 is dom-

inated by matrix multiplication. In our approach, the per-

iteration complexity is controlled by the leading node in

G, i.e. O
(

maxi(
∑

Hj∈Vi
mj)

2 maxi(|Vi|)
)

, where |Vi| is

the total number of distinct entities among all the objects in

Vi. In contrast, the per-iteration complexity of [4] and [32]

is O((
∑

i mi)
3) and O((

∑

i mi)
2m) respectively. Further-

more, in our experiments, we found the total number of it-

erations to converge for our method is comparable to that of

[32].

5. Experiments

5.1. Simulation

In this section, we perform experimental evaluation us-

ing synthetic datasets.

We followed the same experimental setup as in [4, 32].

Given an optimized matching matrix X
∗ and the ground

truth mapping Xg , we access the quality of X
∗ by mea-

suring the intersection over union (or IOU) score:

1−
|τ(X∗) ∩ τ(Xg)|

|τ(X∗) ∪ τ(Xg)|

where τ(·) denotes the mapping induced from the match-

ing matrix, and | · | denotes the set size. Note in our dis-

tributed setting, we could only partially recover X∗ given

X
∗
i . Therefore, our ground truth setting is also different

from [4, 32] in this regard.

5.1.1 Matching Errors

In the first experiment, we aimed to evaluate the match-

ing performance between our algorithm, DMatch, and the

global algorithm, MatchALS, as in [32]. We considered the

following model to generate the testing examples. The total

number of graphs is denoted by n. The size of the universe

is fixed at r = 20 points. In each graph, a point is randomly

observed with a probability ρ0. We simulated error corrup-

tion by randomly removing true mapping and adding false

ones with a corruption rate ρe.

We considered two settings in our experiments. In the

first setting, we constructed our cover graph by making a

sparse three way tree. This was done by randomly selecting

a subset of V as a common intersection Vc and then split

the rest evenly into the three cover nodes V ′
1,V

′
2,V

′
3. As a

consequence, each cover node is equal to Vi = Vc ∪ V
′
i .

In the second setting, we increased the overlap density by

circularly adding one more split to each cover, i.e. Vi =
Vc ∪ V

′
i ∪ V

′
i+1. We compared DMatch to MatchALS by

varying the parameters ρ0, ρe, and n. For both algorithms,

we used m = 2r and λ = 50.

Figure 3 shows matching errors under various configura-

tions, for both DMatch and MatchALS. In general, lower-

ing input error and increasing observation ratio or increas-

ing the total number of objects will improve the matching

performance, i.e. with a lower matching error. In addition,

we can see that increasing the overlap between cover nodes

would have a positive impact on the recovery (comparison

between Figure 3(a) and Figure 3(b)).

Furthermore, in a comparison between Figure 3(b) and

Figure 3(c), we can see that when the cover is dense enough,

i.e. the size of the overlaps are sufficiently large, the match-

ing error would approach that of MatchALS, which is the

global recovery.
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Figure 3: Matching error comparison. Darker color means

lower matching error. The fixed parameter is set to ρ0 = 0.6
and n = 50 respectively.

5.1.2 Graph Covers

In the second experiment, we aimed to understand more

on the effects of graph covers. Specifically, we construct

a ground truth graph cover by selecting a sparse cover as

in Section 5.1.1. For every pair of graphs within the same

cover node, we set the error rate to be ρin, and for every

pair between different cover node, we set the error rate to

be ρout. The experiment is then conducted by comparing

DMatch to 1) using the ground truth cover and 2) using a

randomly constructed cover.

in-node error rate ;
in

0.4 0.6 0.8

ou
t-

no
de

 e
rr

or
 r

at
e 
;

ou
t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

sparse

in-node error rate ;
in

0.4 0.6 0.8

ou
t-

no
de

 e
rr

or
 r

at
e 
;

ou
t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

dense

(a) ground truth cover

in-node error rate ;
in

0.4 0.6 0.8

ou
t-

no
de

 e
rr

or
 r

at
e 
;

ou
t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

sparse

in-node error rate ;
in

0.4 0.6 0.8

ou
t-

no
de

 e
rr

or
 r

at
e 
;

ou
t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

dense

(b) randomly constructed cover

Figure 4: Effects on recovery from the construction of graph

cover. Darker color means lower matching error. The fixed

parameter is set to ρ0 = 0.6 and n = 50.

Figure 4 shows the experimental results. In Figure 4(a),

we can see that using the ground truth cover, the match-

ing performance does not depend much on ρout, because

we explicitly disregarded any information from ρout. While

on the randomly constructed cover, the two error rates are

mixed up. Specifically, the results favor more on small ρin
and small ρout at the same time. This situation, however,

starts to change when the cover becomes denser, i.e. the

increasing overlap between cover nodes. The dependency

on ρout disappears as shown in Figure 4(b). One poten-

tial explanation is that with the increasing overlap between

cover nodes, the portion of out-node pairs become smaller,

as well as the resultant portion of induced error from them.

As a consequence, the mixed error rate is dominated by ρin.

In addition, we could also see that with denser cover, the al-

gorithm is more error tolerant. This comes with a trade-off

that on average the size of each cover becomes bigger and

the computational cost also increases.

5.2. Real Experiments

5.2.1 CMU House Sequence

In this part of the experiment, we intend to test the scala-

bility of our distributed algorithm. We use the CMU House

sequence1 as the testing images. This sequence has been

widely used to test different graph matching algorithms. It

consists of 110 frames, and there are 30 feature points la-

beled consistently across all frames. We used the geometry

based constraint in pairwise matching as is done in [14].

To construct a valid cover complex K, we first computed

all pairwise matches and for each match, the result is en-

coded using a binary matrix. We then built a fully con-

nected matching quality graph, where each vertex repre-

sents an image, and the edge weight represents the match-

ing score associated with each image pair. Since we knew

the sequence was roughly generated by moving a camera

in a single dimension, we computed the Laplacian embed-

ding of the vertices onto 1 dimensional space using Fielder

vector, and then we applied Algorithm 1 to build the cover

complex. We compared our DMatch algorithm with the

global methods, MatchALS [32], MatchLift [4], Spectral

[22], and the distributed method described in [17]. Besides

running global algorithms on fully connected map graph,

we also ran them on the sparse map graph induced by our

cover complex, marked with different K values. The algo-

rithm was implemented in a single laptop with Intel Core

i7 2.0GHz CPU and 16GB DDR3 Memory. We measured

the time used in each cover node separately and then took

the max as the total computational time per iteration, where

we assumed the cost for messages passed between adjacent

cover nodes was negligible.

Table 1 shows the matching accuracy, timing and itera-

tions used in these algorithms. In our experiments, Spec-

tral method appeared to be the fastest method among all the

methods. On the other hand, it has the largest reported er-

ror. The consensus algorithm is not error-driven, hence we

used a preset 150 iterations to match the lowest number of

iterations among all experiments. In general, distributed al-

gorithms used less iterations to converge, and achieved at

1http://vasc.ri.cmu.edu//idb/html/motion/house/

index.html
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Error Rate Iterations Time

Original 0.1445 - -

MatchALS 0.1031 266 98.8

MatchLift 0.1027 1000 3791.1

Spectral 0.1277 - 0.6

MatchALS (K = 4) 0.0161 380 103.5

MatchALS (K = 6) 0.0648 1000 268.2

MatchLift (K = 4) 0 1000 4066.1

MatchLift (K = 6) 0 1000 3972.3

DMatch (K = 4) 0 203 28.9

DMatch (K = 6) 0 150 7.6

Consensus (K = 4) 0 150 28.3

Consensus (K = 6) 0.0071 150 18.7

Table 1: The error rate and the total computational time

(seconds) on CMU House sequence.

least an order of magnitude speed-up compared with global

methods, while maintaining an error rate of 0 (almost 0 for

Consensus algorithm with K = 6). It can also be seen

that for distributed algorithms once we increased the num-

ber of clusters from K = 4 to K = 6, both the num-

ber of iterations and total computational time decreased.

This, on the other hand, proved our complexity analysis,

since increasing the number of clusters would in general re-

duce the number of vertices in each cluster. Although both

DMatch and Consensus algorithms achieved similar results

in terms of accuracy and time, the latter requires knowledge

of the number of universal entities and has limitations deal-

ing with partial matches. Another interesting observation is

after convergence, the error of MatchALS on the sparse map

graph induced by our cover complex is reduced, when com-

pared with that on the fully connected map graph. One ex-

planation is that the graph cover structure grouped together

images that have high pairwise matching quality and explic-

itly disregard any pairwise matches that are of low quality

(covers are joint normal), and as a consequence, it is ro-

bust against noisy pair-wise matches. In addition, we also

extended the experiments for K = 8, 10 and found the run-

ning time was not reduced significantly, in comparison with

that from K = 4 to K = 6. Since we need to have a reason-

able amount of overlaps between clusters to pass matching

information around, increasing the number of clusters does

not necessarily reduce the maximum size of the clusters.

5.2.2 Graffiti datasets

In this experiment, we followed the procedure described in

[32]. We used the benchmark datasets from Graffiti datasets
2. In each dataset, there are 6 images of a scene with various

2http://www.robots.ox.ac.uk/˜vgg/data/data-aff.

html

image transformations, including viewpoint change, blur-

ring, and illumination variation etc.

To construct an affinity score matrix X, we employed the

same procedure as in [32] for comparison purpose. We first

detected 1000 affine covariant feature [19] points in each

image of the dataset and computed their SIFT [18] descrip-

tors using VLFeat library [25]. The affinity scores were

computed as the inner product between every pair of de-

tected feature points on each pair of images. We excluded

apparent mismatches by keeping only affinity scores that

are above the threshold 0.7. Furthermore, any potential

matches that are indistinguishable was removed, i.e. if the

first and the second top matches were below the ratio thresh-

old 1.1, the candidate point was removed. Finally, any fea-

ture point that has only one candidate match in the dataset

was also excluded.

In a comparison, to construct our cover graph, we first

built a matching quality graph, using the matching score

as the edge weight and used the Fiedler vector of the graph

laplacian as the embedding and applied Algorithm 1 to build

the cover complex.

To evaluate the performance, we used the ground truth

homography matrix given in the dataset, and adopted the

procedure used in [4]. For a testing point, we calculated the

true correspondence using homography and compared with

the matched correspondence. If they were within a prede-

fined distance threshold, we deemed the matching is correct,

and otherwise, wrong. Then we swept along the threshold

dimension to draw an error curve that is dependent on the

threshold chosen.

We tested our DMatch algorithm against

MatchALS [32], MatchLift [4], Spectral [22] and the

original pairwise matchings. We ignored the Consen-

sus algorithm [17] as it cannot explicitly handle partial

matches. Figure 5 shows the curve for three datasets,

Graffiti, Bikes, and Leuven. Note that DMatch will not

give a full pairwise matching between images, instead,

we only have a matching when the two images belong

to the same cover node. Therefore, we computed the

one-hop composite match between image pairs across

different cover nodes3. From the performance curve, we

can see that our DMatch performs very similar to the best

global methods in all datasets as shown in [32]. In another

word, DMatch achieved performance gains without loss of

matching quality.

In Figure 6, we show the example matches between the

first and the fourth image for each dataset. The bottom

match is DMatch, the middle is MatchALS and the top one

is the original pairwise map. Clearly, our matching shows at

least as good as the results of MatchALS, where both cor-

3For each image i and j not in the same cover node, we loop through

all k 6= i, j and accumulate the composite matchings from i → k and

k → j.
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Figure 5: The performance curve on Graffiti, Bikes and Leuven datasets. The y-axis is the correct match ration and the x-axis

is the threshold value over the image width. We compare DMatch (red solid) with MatchALS [32] (blue dashed), MatchLift

[15], Spectral [22], and original pairwise matching (black dotted).

(a) Graffiti (b) Bikes (c) Leuven

Figure 6: Example of matching results. The bottom one is from DMatch, the middle one is from MatchALS, and the top

one is from original pairwise matching respectively. Yellow lines encode the correct matches, while blue lines are for wrong

ones.

rected mismatches (reduced blue lines) and increased cor-

rect matches (denser yellow lines).

In our implementation we notice that the total number of

iterations to converge for both DMatch and MatchALS are

roughly the same (around 60 iterations).

6. Conclusion

In this paper, we introduced a scalable framework for

establishing consistent matches across multiple graphs in

a distributed manner. We showed how to use our frame-

work to extend state-of-the-art global methods. By running

an iterative optimization algorithm locally and exchange in-

formation in every iteration, our framework would achieve

local and global consistent matching at the same time. Fur-

thermore, we theoretically proved the sufficient conditions

under which locally consistent matching would guarantee

global consistency. In our experiments, we showed that in

practice, the assumptions and the conditions in our theorem

could be relaxed without sacrificing performance. In addi-

tion, our proposed distributed framework achieved order of

magnitude improvements in speed. We believe this is a very

important first step for large scale exploration of images for

object matching as well as building 3D object models from

crowd-sourced collections. Future work includes matching

large collection of different deformable objects that have

high similarity and enough variance, e.g. a collection of

different dogs or cats.
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