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Abstract

Deep CNNs have achieved superior performance in

many tasks of computer vision and image understanding.

However, it is still difficult to effectively apply deep C-

NNs to video object segmentation(VOS) since treating video

frames as separate and static will lose the information hid-

den in motion. To tackle this problem, we propose a Motion-

guided Cascaded Refinement Network for VOS. By assum-

ing the object motion is normally different from the back-

ground motion, for a video frame we first apply an active

contour model on optical flow to coarsely segment objects

of interest. Then, the proposed Cascaded Refinement Net-

work(CRN) takes the coarse segmentation as guidance to

generate an accurate segmentation of full resolution. In

this way, the motion information and the deep CNNs can

well complement each other to accurately segment object-

s from video frames. Furthermore, in CRN we introduce

a Single-channel Residual Attention Module to incorporate

the coarse segmentation map as attention, making our net-

work effective and efficient in both training and testing. We

perform experiments on the popular benchmarks and the

results show that our method achieves state-of-the-art per-

formance at a much faster speed.

1. Introduction

Video object segmentation (VOS) is an important prob-

lem in computer vision, since it benefits other tasks like

object tracking [72], video retrieval [26], activity recog-

nition [20], video editing [38] and so on. Due to

the strong spatiotemporal correlation between consecutive

video frames, motion plays a key role in many state-of-the-

art methods for video object segmentation [61, 68, 1, 62,

36, 15]. Motion estimations like optical flow [2, 27, 25]

and pixel trajectory [52, 57] reveal the pixel correspon-

dence between frames and enable the propagation of fore-

ground/background labels from one frame to the next. Fur-

thermore, motion contains rich spatiotemporal structure in-

formation which can benefit the segmentation of moving

(a) (b) (c) (d)

Figure 1. Examples of our method. (a) Input frame and the initial

active contour. (b) Optical flow. (c) Segmentation by evolving the

active contour on (b). (d) Final results with (c) as guidance.

objects. However, motion estimation itself is still a very

difficult task and often produces inaccurate results. Some

common situations like noise, blurring, deformation, and

occlusion can further exacerbate the difficulty.

Different from previous methods which mainly rely on

motion, recent attempts based on CNNs[63, 8, 3, 54, 59,

30, 45, 11, 19] tackle the problem of VOS by learning. Due

to the powerful learning ability and the large amounts of

training data, deep CNNs have achieved very good perfor-

mance in static image segmentation [7, 39]. While for VOS,

the annotated training data is lacking and treating frames as

static will lose the information hidden in motion. It has been

shown in [3, 63] that after finetuning on the first frame, deep

CNNs can ”recognize” the object with similar appearance

from subsequent frames. However, only relying on ”memo-

rizing” the appearance of the target object may suffer from

several limitations. For example, the object’s appearance

may change along with the time, and objects in the back-

ground may share similar appearance to the target object.

To utilize the spatiotemporal structure information hid-

den in motion and the superior learning ability of CNNs,

in this paper we propose a motion-guided cascaded refine-

ment network for video object segmentation. The proposed

method is composed of two parts: optical flow-based mov-

ing object segmentation and Cascaded Refinement Network

(CRN). Specifically, for an input frame, a coarse segmenta-
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tion of the target object is first extracted from optical flow.

The CRN then takes the coarse segmentation as guidance

and outputs an accurate segmentation.

To generate the coarse segmentation, which provides in-

formation about coarse shape and location of the target ob-

ject, we apply the active contour [35, 5, 6] to segment the

optical flow estimated by [27]. Active contour is a classical

tool for image segmentation and works by finding the opti-

mal segmentation that maximises the homogeneity in fore-

ground region and background region respectively. Since

the target object normally has a different motion pattern

from background regions, we apply the active contour to

segment the optical flow. Furthermore, with a proper initial-

ization, active contour model can converge very efficiently.

At each time frame, we first compute optical flow between

the current frame and next one, and then initialize an active

contour on the optical flow image using the final segmenta-

tion result of the last frame. After iteratively evolving the

active contour, we can obtain a coarse segmentation of the

target object. Examples are shown in Fig. 1(a)-(c).

Given the coarse segmentation, we propose a Cascad-

ed Refinement Network that takes as guidance the coarse

map to generate an accurate segmentation (Fig. 1(d)). In

the Cascaded Refinement Network, the guidance map serves

as a priori knowledge of the target object to help the net-

work to focus on object regions and ignore background

regions, thus benefit both training and testing. Further-

more, since the Cascaded Refinement Network tackles a

problem of segmentation in static images, we are able to

effectively train it using datasets for other tasks like in-

stance segmentation [12]. Experimental results on bench-

mark datasets validate the effectiveness and efficiency of

our method. In summary, we make the following contri-

butions: (1) We propose a optical flow-based active con-

tour model that can effectively and efficiently segment mov-

ing objects from video. (2) Our Cascaded Refinement Net-

work(CRN) is effective and efficient in both training and

testing. In CRN, we propose a Single-channel Residual At-

tention Module that effectively utilizes the guidance map

as attention so as to help CRN to focus on regions of in-

terest and ease the burden of training and model size. (3)

Our method achieves state-of-the-art performance on three

benchmarks. On the DAVIS dataset [46], we achieve mIOU

of 84.4% at 0.73 second/frame for semi-supervised task,

and 76.4% at 0.36 second/frame for unsupervised task, out-

performing the current methods without post processing at

a much faster speed.

2. Related Work

Video Object Segmentation (VOS). Due to today’s need

of automatically processing the huge amount of video data,

related research works in recent years mainly focus on un-

supervised methods and semi-supervised methods for VOS.

Unsupervised methods [51, 43, 44, 67, 58] assume no man-

ually annotation about the target objects. In order to auto-

matically identify primary objects in a video, cues like mo-

tion [73, 40, 13], object proposals [40, 36, 14, 70, 47], and

saliency [67, 73] are utilized. In [44, 73] the authors first

locate moving objects via motion boundaries and then seg-

ment the object region with appearance-based models. The

recurrence of objects and the coherence of the appearance

are considered in [16, 18, 31] to segment primary objects

from frames across the video. Semi-supervised approach-

es [66, 10, 47, 42, 29] accept target objects identified by

user at the first frame and then segment the objects from

subsequent frames. To propagate the labels, dense point

trajectory is adopted in [68, 1]. Graphs are defined on su-

perpixels locally [69, 61] or globally [65, 47] to efficiently

propagate labels in spatiotemporal space. Based on the bi-

lateral formulation, segmentation is performed in bilateral

space [42] and bilateral networks [29] are trained to propa-

gate more general information.

Recently, deep learning based methods[63, 41, 8, 3, 54,

59, 58, 30, 45, 11, 54, 33] have advanced the state-of-the-art

performance for VOS. These methods can be grouped in-

to two types based on whether motion information is used.

One class of methods train network to incorporate motion

information explicitly [33, 11, 59, 45, 58] or implicitly [8].

Although motion contributes to the performance in these

methods, directly applying networks to extract target object

from motion may be suboptimal due to the lack of training

data and the quality of optical flow estimation. The other

category of methods ignores motion information and only

relies on appearance learning [63, 3] or matching [54]. By

driving the network to ”memorize” the appearance of the

target object, this type of models can achieve state-of-the-

art performance. However, these methods are still limited

by object deformation, interference of background object-

s, and the time-consuming training process. Different from

these methods, we first coarsely extract the object’s segmen-

tation from motion, then apply the Cascaded Refinemen-

t Network to refine the coarse segmentation into an accurate

one. Since both components of our method can work ef-

fectively and complementarily, we achieves state-of-the-art

performance at a much faster speed.

Active Contour. Active contour [32] is a classical mod-

el for segmentation. It detects object regions by iteratively

evolving a curve under constraints from the given image.

Due to its efficiency and advantages [9], active contour has

been widely used in image segmentation [5, 35, 24, 71, 49,

74] and tracking [23, 53, 56]. In general, there are two type-

s of active contours: edge-based models and region-based

models. Edge-based models [4, 35] utilize image gradient

and converge to objects boundaries. However, these meth-

ods are sensitive to initial state and may fail when object

boundaries are weak. Region-based models [5, 60, 6] focus

1401



Cascaded Refinement

Network

FlowNet2

Active Contour Model

Frame t

Frame t+1

Segmentation of frame t-1

Guidance Map

Estimated optical flow

Input Segmentation from Motion Segmentation Refinement

… …

frame t-1

…
Iteration 0 Iteration N

frame t frame t+1
Segmentation Result

Figure 2. An overview of the proposed method. For each frame, optical flow [27] is estimated at first. Then we use the segmentation result

of the last frame to initialize an active contour (shown as the blue curve in Active Contour Model ) on the optical flow, and evolve it N

steps to minimize an energy function so that to coarsely segment the object. Finally, the coarse object mask is used as guidance to help the

Cascaded Refinement Network to accurately segment the target object instance. To begin this process, user annotation is used to initialize

frame 0 in semi-supervised VOS, and a predefined rectangle is used to initialize frame 0 in unsupervised VOS.

on region homogeneity rather than gradient, and therefore

work better for situations like weak boundary and less sen-

sitive to the initial state. In this work, we build our method

based on the region-based model [5].

3. Method

An overview of the proposed algorithm is shown in

Fig. 2. Video frames are processed sequentially. For each

frame, we first segment the target object from optical flow,

then apply the Cascaded Refinement Network(CRN) to pro-

duce an accurate result.

3.1. Object Segmentation from Motion

In the task of VOS, extracting the spatiotemporal struc-

ture information hidden in motion [44, 73, 55] is popular

but difficult for situations like inaccurate motion estimation

and static objects. To make better use of motion informa-

tion, we propose to apply the active contour model on op-

tical flow. In videos, objects of interests normally have d-

ifferent motion patterns from the background. This makes

region-based active contour [5, 6] models, which segment

images by maximizing the homogeneity within each of the

segmented regions, suitable for video object segmentation.

In this section, we first introduce how to formulate the active

contour using level set, and then present the active contour

model for segmenting objects from optical flow.

3.1.1 Level Set Formulation for Active Contour

Level Set is a tool for implementing active contours [5, 6].

Given a 2D pixel domain Ω, a curve C is defined as the

boundary of an open subset ω of the 2D pixel space Ω (i.e.

ω ∈ Ω, C = ∂ω). Subsequently, the image is segmented

into two subregions: region ω denoted by inside(C) and

region Ω \ω denoted by outside(C). With level set formu-

lation, the curve C can be represented by the zero level set

of a Lipschitz function φ : Ω → R such that,






C = {(x, y) ∈ Ω : φ(x, y) = 0},

inside(C) = {(x, y) ∈ Ω : φ(x, y) > 0},

outside(C) = {(x, y) ∈ Ω : φ(x, y) < 0},

(1)

With this formulation, evolving the curve C on the image

can be achieved by gradually changing the value of the level

set function φ(·).
Since the sign of φ(·) indicates the whether a pixel or

inside or outside the contour, φ(·) can be converted into the

binary foreground/background labels via a Heaviside step

function H(φ), which projects nonnegative input to 1 and

negative input to 0. In practice, to avoid local minima, an

approximated version of the Heaviside Function is used,

Hε(z) =
1

2
(1 +

2

π
arctan(

z

ε
)), δε =

∂Hε(z)

∂z
=

1

π
·

ε

ε2 + z2

(2)

3.1.2 Applying Active Contour on Optical Flow

To our best knowledge, this is the first attempt to apply ac-

tive contour model on optical flow for moving object seg-

mentation. Given a frame t, we begin by estimating optical

flow between frame pairs of (t, t+ 1) with the state-of-the-

art approach FlowNet2 [27], which runs efficiently and is

sensitive to objects as well as motion boundaries (Fig. 1(b)).

Since the original 2-dimensional optical flow has a relative-

ly narrow range of values, we convert the optical flow into

a color image 1 and apply the active contour model on it.

1Expressing the orientation and the magnitude of the vector by varying

hue and saturation.
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Given an image and an initial contour on it, at first an

initial level set function is defined by computing the signed

distance between pixels and the initial contour, then the lev-

el set function is iteratively updated to minimizing an en-

ergy defined on the image. Traditionally, the energy func-

tion is composed of two parts [5, 6]. One is the geometry

constraints that control the shape of the contour according

Gestalt Principle of Simplicity. The other is a data term that

forces the divided subregions to be smooth and homoge-

nous. In our method, we empirically found that the geom-

etry constraints don’t contribute to the final performance.

Therefore, we only use the data term for simplicity. Given

a color image u0 converted from optical flow and an ini-

tial level set function φ, we iteratively update the level set

function φ to minimize

Evos =λ1
∑

i∈{r,g,b}

∫

Ω

|u0,i(·)− c1,i|
2 ·Hε(φ(·))

+ λ2
∑

i∈{r,g,b}

∫

Ω

|u0,i(·)− c2,i|
2 · [1−Hε(φ(·))]

(3)

where φ(·) is initialized by the segmentation result of last

frame. λ1 and λ2 are two parameters. Hε is the Approx-

imated Heaviside Function as in Eq. 2 with ε = 1. u0,i
is the intensity of channel i in the optical flow image u0,

c1,i =
∫
Ω
u0,i(�)�Hε(φ(�))∫

Ω
Hε(φ(�))

is the average intensity of fore-

ground regions on u0,i and c2,i =
∫
Ω
u0,i(�)�(1� Hε(φ(�)))∫

Ω
(1� Hε(φ(�)))

is

the average intensity of background regions on u0,i.

In the energy function Eq. 3, the first term constrain-

s the homogeneity and smoothness of foreground regions.

The second term constrains the background regions to be

smooth and homogeneous. In each iteration, we minimize

the energy with respect to φ, yields the following Euler-

Lagrange equation for φ,

∂φ

∂t
= δε(φ) ·

[

− λ1
∑

i∈{r,g,b}

∫

Ω

|u0,i(·)− c1,i|
2

+ λ2
∑

i∈{r,g,b}

∫

Ω

|u0,i(·)− c2,i|
2

]

(4)

For a frame twe first initialize the active contour on opti-

cal flow using last frame’s final segmentation, since a proper

initialization may greatly decrease the time to convergence

and result in a good segmentation. Then we perform the it-

erative minimizationN steps, and treat the region within the

final curve as a coarse segmentation of target object. An ex-

ample is shown in Fig. 3. As can be seen from the example,

our model can deal with situations such as incoherent mo-

tion and moving background objects. It should be noted that

at this step,we can only generate a coarse segmentation. In

next subsection, we will show how to generate an accurate

segmentation based on the coarse one. In our implement,

we also segment the optical flow for frame pair (t,t−1) and

combine the two binary masks by OR operation for each

(a) Initial Curve                        (b) Optical Flow          (c) After Refinement

(d)  Iteration 1                          (e) Iteration 5                 (f) Iteration 10

IoU = 0.448 IoU=0.836

IoU= 0.571 IoU=0.709 IoU=0.712 

Figure 3. An example active contour on optical flow. (a) A curve

initialized with the final segmentation of the last frame. (b) The

optical flow used. (c) The final segmentation using the coarse seg-

mentation in (f) as guidance. (d)-(f) curve at different iteration.

pixel. Furthermore, we constrain the coarse segmentation

using a mask resulting from applying dilatation operation

on the last frame’s segmentation.

3.2. Cascaded Refinement with Guidance

In this section, we present the Cascaded Refinement Net-

work(CRN) which can effectively segment an object under

the guidance of the coarse segmentation from optical flow-

based active contour model. Since the guidance map pro-

vides coarse information about location and shape of tar-

get objects, the network doesn’t need to assiduously learn

how to define and locate a target object, but can focus only

on segmenting the dominant object in the given region and

with the given coarse shape. Furthermore, since the task for

CRN is to segment object instance from static image, it can

be effectively trained using datasets for instance segmenta-

tion like PASCAL VOC.

3.2.1 Cascaded Refinement Network (CRN)

As shown in Fig. 4 (a), our CRN utilizes ResNet101 [22] for

feature encoding (i.e., Conv1, Conv2 x, Conv3 x, Conv4 x,

Conv5 x) and takes a coarse-to-fine scheme. The work-

flow is formed by five stages of Refining Modules (i.e.

RM5,RM4,RM3,RM2,RM1), which are structurally i-

dentical. The resolution is 16*16 for the beginning mod-

ule RM5, and doubled between two consecutive modules.

Given an 512*512 input, we first down-sample the coarse

segmentation by active contour model to 16*16 as a guid-

ance map. Then, we feed the input image into the network

and feed the guidance map intoRM5. FromRM5 toRM1,

the five Refining Modules sequentially operate at their cor-

responding resolutions, and finally the network outputs a

refined segmentation map of full resolution. We rescale the

guidance map to such a small size because spatial down-

sampling suppresses the inaccuracy of the guidance map

1403














