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Abstract

The ability to capture temporal information has been

critical to the development of video understanding models.

While there have been numerous attempts at modeling mo-

tion in videos, an explicit analysis of the effect of tempo-

ral information for video understanding is still missing. In

this work, we aim to bridge this gap and ask the follow-

ing question: How important is the motion in the video for

recognizing the action? To this end, we propose two novel

frameworks: (i) class-agnostic temporal generator and (ii)

motion-invariant frame selector to reduce/remove motion

for an ablation analysis without introducing other artifacts.

This isolates the analysis of motion from other aspects of the

video. The proposed frameworks provide a much tighter es-

timate of the effect of motion (from 25% to 6% on UCF101

and 15% to 5% on Kinetics) compared to baselines in our

analysis. Our analysis provides critical insights about ex-

isting models like C3D, and how it could be made to achieve

comparable results with a sparser set of frames.

1. Introduction

Video understanding has progressed significantly in re-

cent years with the introduction of better models [31, 36,

43] and larger datasets [14, 19, 20]. A common theme

among most approaches is the emphasis on temporal mod-

eling, which is seen as the main difference between videos

and images. This includes works on low-level motion [31,

36, 41, 42], long/short term dependencies [5, 39, 47, 50],

temporal structure [3, 8, 9, 10], and modeling the action as

a sequence of events/states [33, 34, 45].

More specifically, a broad array of deep learning archi-

tectures [4, 36, 39] which attempt to capture low-level mo-

tion through temporal convolutions achieve state-of-the-art

results [4, 37]. Hand-crafted features like iDT [41] have

also advocated using motion for action recognition. How-

ever, the actual impact of modeling low-level motion re-

mains unclear. As seen in Fig. 1, one could argue that the

(a) Original Video

(b) Video generated by matching deep features of (a)

Figure 1. (a) The original video. (b) Video generated by network

visualization [6] from the C3D pool5 features of the video in (a).

The network loses visually perceptible motion as early as pool5.

scene and objects in a frame are almost sufficient to deduce

the action. Recreating the motion in a video by matching

deep features from a C3D [36] model partly validates this

conjecture. We observe that the visible motion in the video

is lost at pool-5 layer in the network, while still preserv-

ing the full spatial information. Motivated by such obser-

vations, we conduct an in-depth quantitative and qualitative

analysis of the effect of motion in video action recognition.

In particular, we try to analyze if an existing model

trained on videos utilizes motion information while clas-

sifying a new video. We could achieve this by drastically

subsampling videos during testing, to the extent of retaining

just a single frame. However, testing a model trained with

full length videos on a single frame is non-trivial. A naive

way of replicating the frame multiple times results in almost

25% performance drop on UCF-101. It is difficult to con-

clude that this is just due to the lack of motion. We observe

that in addition to removing motion, subsampling results in

two undesired artifacts: (i) significantly alter the temporal

distribution, and (ii) potentially remove critical frames in

the video that are important for recognizing the action.

We propose the following two frameworks to ablate the

motion in a video for analysis while mitigating these un-

desired effects : (i) class-agnostic temporal generator that

adds a temporal variance to the subsampled frames to bridge
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the gap between training and testing (ii) motion-invariant

frame selector that allows the model to choose good frames

from the video by looking at each frame independently.

We exemplify our analysis on the widely used 3D convo-

lution model [36, 39] on two video datasets: UCF101 [32]

and Kinetics [20]. UCF101 has been the standard bench-

mark for comparing and analyzing video models [43] and

Kinetics is the most recent large-scale dataset designed for

classification. We choose 3D convolution because it has

become a standard approach for video understanding, but

the proposed frameworks (generator and frame selector) are

general and can be used to analyze any video model.

Our analysis shows that, without using any motion from

the video, and without changing the video model that we are

analyzing, we are able to close the gap from 25% to 6% on

UCF101 and 15% to 5% on Kinetics. This provides a much

tighter upper bound for the effect of motion in the video

compared to other analysis baselines. Our per class accu-

racy breakdown shows that over 40% of the UCF101 and

35% of the Kinetics classes do not require motion in the

video to match the average class accuracy. In addition, re-

taining just 1/4 of the frames in a clip, we are able to achieve

results comparable to that obtained by using all frames.

2. Related Work

Temporal modeling for action recognition: The empha-

sis on modeling the temporal information in a video has

been the key difference between video and image models.

This includes low-level motion [7, 36, 31, 41, 42, 16, 17],

long/short term dependencies [39, 50, 5, 47, 26], temporal

structure [9, 8, 3, 23], modeling the action as sequence of

events/states [34, 45, 33, 29] and temporal pooling strate-

gies [44, 52, 48, 10]. These methods are often evaluated

based on overall performance, making it difficult to deter-

mine whether the models are really capturing motion infor-

mation, and if motion is really critical for recognizing action

in existing video datasets [1, 13, 14, 19, 20, 22, 32]

Model analysis: The most related to our work is the re-

cent analysis of action categories by Sigurdsson et al. [30],

where the recognition performance is analyzed by breaking

down action categories based on different levels of object

complexity, verb complexity, and motion. They attempt to

answer questions regarding the choice of good action cate-

gories to learn effective models. In contrast, our work pro-

vides a data-driven approach to explicitly measure the effect

of motion in temporal action recognition models like C3D.

Similar ideas have been used in the past to analyze models

for object detection [15, 28]. Another related line of work

is the visualization of representations from deep neural net-

works [2, 46, 51, 53], and bias in datasets [21, 35].

Generator: In order to properly analyze motion, we use

a temporal generator to offset the differences in training

and testing video temporal distribution. The generator is

related to works in video prediction [24, 38, 40], and our

architecture is inspired by recent image transformation ap-

proaches [18, 54]. It is worth noting that generators have

been used as a way to analyze the shortcoming of deep net-

works in an adversarial setting [11, 25].

Frame selection: Frame selection to narrow down the tem-

poral extent of an action before recognition has proven to

be an effective approach for improving the performance of

video models [27, 49, 55]. We leverage this idea to analyze

the effect of choosing the right frame while subsampling

videos to reduce motion.

3. Approach

Our goal is to analyze the impact of motion on the per-

formance of an existing model trained on videos (e.g. C3D

trained on UCF101). The key challenge is that factoring

out the motion in an existing model using simple strategies

(e.g. replication) may lead to wrong or biased conclusions.

We propose two frameworks that address this issue and al-

low us to accurately analyze the contribution of motion to

recognition performance without modifying the model we

are analyzing. We show later in Section 4 that the combina-

tion of the two provides a much tighter upper bound on the

contribution of the motion information.

3.1. Class-Agnostic Temporal Generator

As discussed earlier in Section 1 and Figure 1, for many

examples a single or a sparse number of frames might have

sufficient information to recognize the action. However,

since the model is trained on the full video (of 16 frames),

the spatial and temporal dimensions are entangled in the

model. In this case, naively subsampling the frames at the

time of analysis/testing significantly alter the temporal dis-

tribution and affect the recognition performance.

We observe that spatial and temporal dimensions are

highly correlated: It should be possible to hallucinate the

motion from the subsampled images to compensate the dif-

ference in the temporal distribution. We propose a class-

agnostic temporal generator (Figure 2(a)) that takes as in-

put a subset of frames of the video and synthesize the full

video, which serves as the input to the model. This makes

the train and test distribution similar, which in turn allows

us to analyze the effect of motion by doing frame sampling.

We do not provide any additional motion information about

the particular video that we aim to classify.

The challenge becomes, what should be the properties

of the synthesized video? Do we have to accurately syn-

thesize the last three frames from the first frame in Figure

1(a) for our analysis? Our answer is: No. As shown by

network visualization work in [6], the convolutional neural

network has strong invariance in higher layers in the hierar-

chy. For the purpose of analysis, as long as we can generate

motion prior that recovers the desired feature activation in
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Figure 2. We propose two frameworks for analyzing the video model. The goal is to ablate the effect of other information so as to

make a meaningful conclusion on the impact of the motion information. The first is class-agnostic temporal generator, which offsets the

difference in temporal distribution between video and sub-sampled frames. The second is motion-invariant frame selector, which introduce

no additional motion information, but allows the video model to look at all the frames in the video.

the model, it can be used to provide a tighter upper bound

in our analysis. Figure 1(b) shows our network visualiza-

tion result of matching the pool5 feature of C3D trained on

UCF101. We observe that the visible motion in the video is

lost at the pool5 layer in the network.

Based on this observation, we use the perceptual

loss [18] to match the features at different layers of the

video model. In other words, our generator aims to gen-

erate motion from the given sub-sampled frames to recon-

struct the features in each layer to compensate the differ-

ence in temporal distribution. The outline of our temporal

generator is shown in Figure 2(a). We extend the generator

of CycleGAN [54] to generate a video clip (16 frames for

C3D) from a given amount of frames (1, 2, 4, or 8 frames

in our experiments). We use the normalized L2 distance be-

tween the feature maps of synthesized video and the original

video as the loss function. We will show that the perceptual

loss plays an important role in the success of our genera-

tor to provide a tighter upper bound in our analysis. Note

that we are doing an unsupervised training: class labels or

supervised loss are not used at all for training the genera-

tor. This potentially allows us to leverage the abundance of

unlabeled video data. In addition, our generator provides a

way of qualitatively analyzing the video model. By visual-

izing the motion we learn from each network, we are able

to understand what motion it sees in the video. Finally, note

that the framework is generic and not tightly coupled with

the video model we are trying to analyze. We simply need

to specify the layers to define the perceptual loss.

3.2. Motion-Invariant Frame Selector

In the previous section, we proposed an approach to an-

alyze motion given a subset of frames. We now try to an-

swer the question: To what extent can the quality of the

frames affect the performance? Taking it to an extreme, is

there a single key frame that is sufficient for good accuracy?

Naively sub-sampling the video frames can remove visual

content important to understand the video. Potentially, there

might exist a key frame that is crucial to recognize the ac-

tion of the video without any additional motion.

As we are focusing on analyzing the temporal informa-

tion, the frame selection process should not use extra mo-

tion information that is only available in the video we aim

to classify. In other words, it is important to make sure that

the frame selector is motion-invariant. Formally, given a

set of candidate frames {Xi} sampled from the video, the

selection process should not introduce any order/motion in-

formation that is beyond each of the candidate Xi. We now

briefly describe two simple, heuristics based frame selec-

tors: Max Response and Oracle.

Max Response: Given a set of candidates {Xi}, and a

predefined response function φ(·), pick the candidate with

the highest response i∗ = argmax
i
φ(Xi). Note that since

argmax is order-invariant, so is the selector. The quality

of the selector depends on the definition of the response

function φ(·). Ideally, it is possible to learn this response

function to maximize the recognition performance with-

out using extra motion information from the video of inter-

est. In our experiments, we define φ(Xi) as the maximum

classification score of all the class, Xi is assigned to, af-

ter applying the generator and the video model. Formally,

φ(Xi) = maxcfc(Xi), where fc(Xi) is the probability of

Xi being classified as action class c, i.e., the response of

softmax layer of the video model for class c. In other words,

choose a frame that is most confident about its prediction.

Oracle: The oracle selector looks at the ground truth class

label of the video to select the candidate frames that can

actually give the correct result (only misclassify when no

selection gives correct prediction). Note that unlike Max

Response, it is not a valid frame selector and involves a

“cheat”. However, it is still motion-invariant and provides

an upper bound for the performance of frame selectors that

do not use extra motion information.
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Figure 3. Analysis of UCF101 and Kinetics. Our full analysis pro-

vides a much tighter upper bound (6% for UCF101 and 5% for

Kinetics) on the effect of motion in the video. This is much more

meaningful conclusion than the naive approach, which provides

25% upper bound for UCF101 and 15% for Kinetics.

4. Analysis

So far we have discussed the use of class-agnostic tem-

poral generator and motion-invariant frame selector for the

ablation study of motion in video by reducing motion in the

test video while being careful not to introduce other arti-

facts. By bridging the difference in temporal distribution

between the train and test setups with our temporal gener-

ator and selecting the right frames without using additional

motion information, we provide a tight upper bound on the

effect of motion for action recognition. First, we discuss our

main analysis on two standard video datasets: UCF101 and

Kinetics. Next, we analyze the effect of temporal generator

in Section 4.2 and frame selection in Section 4.3.

Video Model and Datasets. We demonstrate our analysis

for the 3D convolution architecture by Tran et al. [36]. Note

that our framework is not specific to the video model and

can be easily extended to other architectures. We use two

datasets for our analysis. The first is UCF101 [32] which

consists of 101 action categories and 13,320 videos. We an-

alyze the split 1 of the dataset following recent works [37]

due to the computation cost. The second dataset is Kinet-

ics [20], which consists of 306,245 videos from 400 action

classes. We report analysis on the validation set.

Experimental Setup. We use the C3D model [36] pre-

trained on Sports1M [19] for our analysis. For UCF101,

we train the original video model using the hyperparameters

from the official C3D implementation and obtain compara-

ble numbers. For Kinetics, we increase the learning rate to

0.001 and retain the same hyperparameters. For the tem-

poral generator, we use the architecture by Zhu et al. [54],

starting with C64 layers. We trained the model on the same

training set as the video model. It is important to note that

the generator is class-agnostic and trained without any su-

pervised label and can be trained on abundant large-scale

video dataset readily available. Empirically, we did not find

a significant impact on performance when we used a dif-

ferent dataset (e.g. generator trained on Kinetics while ana-

lyzing UCF101) for training the generator. For the motion-

invariant frame selector, we use the max response selector

on the confidence score as discussed in Section 4.3. As

the exact enumeration of all possible combination of frame

selections is computationally too expensive (1820 ways of

choosing 4 frames from 16), we restrict ourselves to 48 uni-

formly sampled frame selections for all reported numbers.

We use clip-level action recognition accuracy for 16 frames

clips as the metric for our analysis, to factor out the effect

of video-level pooling and focus on the low-level motion.

We verify that our video model has the same video-level

accuracy reported in the original papers [20, 36].

4.1. Analyzing Motion Information

The clip accuracy obtained by varying the number of

frames, and thus varying the amount of motion for the

videos in UCF101 and Kinetics datasets are shown in Fig-

ure 3. “Uniform” is the baseline of naively sub-sampling

the frames. “+ Temporal Gen Only” further incorporates

our temporal generator. “Our Full Analysis” includes both

the generator and the max response frame selector. The per-

formance of the “Original Video” model is shown as refer-

ence. We also show the upper bound performance of an

oracle frame selector with our temporal generator in “Tem-

poral Gen + Oracle”. We can observe from the results that:

Our framework provides a tighter upper bound. It can

be seen from Figure 3 that naively removing all the tem-

poral information by sampling a single frame out of the 16

frames leads to a drastic drop in performance (54% com-

pared to 79% for UCF101, and 31% compared to 47%

for Kinetics). With our proposed class-agnostic tempo-

ral generator and motion-invariant frame selector, we are

able to close the gap (from 25% to 6% for UCF101, and

15% to 5% for Kinetics) without using additional motion

information from the video, and more importantly with-

out modifying/finetuning the video model. This provides

a much tighter upper bound on the effect of motion in the

given model trained on UCF101 or Kinetics. In summary,

C3D trained on Kinetics relies more on the motion in the

video (5% out of 47% accuracy) and benefits more from the

frame selection process. On the other hand, C3D trained on

UCF101 uses less motion information from the video (6%
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Figure 4. Qualitative results of classes needing the most/least motion from the video. Temp. Gen. rows are motion of our generated video.

For both datasets, we do not need the motion to recognize action that can be identified by the salient object (i.e. dog in WalkWithDog).

On the other hand, while our temporal generator can accurately hallucinate movement around the critical area to bridge the temporal

distribution, PushUps in UCF101 and JuggleBall in Kinetics still require further motion from the video to be recognized. Green box

indicates the selected frame by our max-response selector. The motion is generated by only looking at the single image selected.
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Figure 5. UCF101 and Kinetics class accuracy comparing origi-

nal video model with our analysis model. For around 40% of the

classes in UCF101 and 35% in Kinetics, we can achieve similar

performance (< 1% difference) without motion from the video.

out of 79% accuracy), and the drastic accuracy drop comes

mainly from the distribution shift, which is mostly bridged

by our temporal generator. We provide more detailed analy-

sis in Section 4.2 and Section 4.3 to identify the contribution

of each component of our framework for both the datasets.

Some classes do not use motion. Figure 5 breaks down

the 6% and 5% upper bound of motion for UCF101 and Ki-

netics into per class accuracy. For around 40% in UCF101

and 35% of the classes in Kinetics, we have already closed

the gap with the proposed frameworks without using motion

from the video and without modifying the model. This indi-

cates that C3D did not learn to use motion to classify these

classes. In particular, “Walking With Dog” from UCF101

and “Playing Paintball” from Kinetics are the classes where

the motion in the video of interest is least important for the

C3D model. As shown in Figure 4, our generated video is

similar to the static image in this case.

Some classes use motion. On the other hand, there are

classes that C3D learns to use motion from the video be-

yond our approach. In particular, “PushUps” in UCF101

and “JuggleBall” in Kinetics are the classes that use the

most motion from the video in our analysis. However, our

frameworks have already significantly improved the per-

formance on both of the classes (+25% for PushUps and

+17% for JuggleBall), it is just that the actions still require

more motion from the video. For example, the motion of the

ball in “JuggleBall” is subtle but plays an important role in

identifying the action. As shown in Figure 4, our temporal

generator accurately hallucinates movement in the critical

areas around the person of interest, to bridge the distribution

difference between the video and the sub-sampled frames.

We don’t need the entire clip. As shown in Figure 3, the

performance with 4 frames in our analysis is comparable to

the original video on both UCF101 and Kinetics. This indi-

cates the possibility of a 4-frame based model that focuses

on a smaller temporal support. This is in contrast to recent

observations of using longer temporal support for 3D con-

volution [39]. We conjecture that longer temporal support
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Figure 6. Qualitative results of the most effective/ineffective action classes for our class agnostic temporal generator. Temp. Gen. rows

depict motion predicted by our generator from the single frame highlighted in green. For classes like JuggleBall and CrowdSurfing, it

hallucinates movements around critical regions where we anticipate motion. On the other hand, for more static action like PlayFlute in

UCF101, the generated motion is very subtle. In the Yawning action, our generator produces movements that are not specific to the action.

is beneficial for selecting better frames (which could be an

internal side-effect of using C3D) but not necessarily cap-

turing fine-grained motion.

Frame selection is important. Continuing the discussion

that we do not need the full clip for recognizing the action,

we show that if we have an oracle for picking the frame

that can provide the correct action class, the resulting per-

formance outperforms the original video model when com-

bined with our temporal generator. The effect is especially

significant in the Kinetics dataset. The upper bound of or-

acle single frame selection is 11% higher than the original

model. This suggests that a good frame selection model

can go a long way in boosting the action recognition per-

formance. However, it can be challenging or even impossi-

ble to obtain good frame selection without using additional

motion information when the ground truth label is not avail-

able. Nevertheless, for the purpose of our analysis we note

that the oracle frame is still motion-invariant when ground

truth action label is available. A more in-depth discussion

will be provided in Section 4.3.

Importance of temporal generator. As can be seen from

the results, temporal generator significantly reduces the gap

between the original video and the sub-sampled frames for

both datasets. The difference is especially significant for

C3D trained on UCF101 (reduced to 9% from 25%). Fig-

ure 6 shows the generated temporal motion from a single

frame. As can be seen from the figure, our model is able to

hallucinate patterns around the person, although not entirely

reconstructing the exact video. This is consistent with our

observation from the network visualization in Figure 1. We

perform further analysis on the synthesized temporal infor-

mation in the next section (Section 4.2).

We have shown that the combination of our temporal

generator and frame selector can lead to a more meaningful

data-driven way of analyzing a video model without chang-

ing the model weights. Next, we provide more detailed dis-

cussion of the individual components.

4.2. Analyzing Class-Agnostic Temporal Generator

The goal of our class-agnostic temporal generator is to

bridge the distribution gap between the original video and

the sampled frames to provide a more accurate analysis on

the effect of motion. We have shown that our temporal gen-

erator leads to around 16% improvements in UCF101 and

6% in Kinetics. We further analyze the gains we achieved

with the temporal generator, and compare two different loss

functions for training the temporal generator.

Perceptual loss is important. One approach for bridging

the distribution difference is to train a generator which can

directly predict the pixel values of the other frames in the

video from sub-sampled frames. This is directly related to

the future frame synthesis problem [24, 38, 40], which has

shown to be a challenging task on its own. We argue that

we do not need to solve this challenging problem to im-
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Figure 7. Our temporal generator results for UCF101 and Ki-

netics. While the main contribution of our work is providing a

thorough analysis of motion in video models and datasets, it is our

contribution to propose this temporal generator to offset the differ-

ence in distribution to provide meaningful analysis of motion.

0 20 40 60 80 100
Action Classes

0.4
0.2
0.0
0.2
0.4
0.6
0.8

A
cc

u
ra

cy
 D

if
fe

re
n
ce UCF101 Class Acc Comparison (w/ Temporal Gen. - w/o Gen.)

0 50 100 150 200 250 300 350 400
Action Classes

0.3
0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5

A
cc

u
ra

cy
 D

if
fe

re
n
ce Kinetics Class Acc Comparison (w/ Temporal Gen. - w/o Gen.)

Figure 8. UCF101 and Kinetics class accuracy comparing mod-

els with/without our temporal generator. For over 75% and the

classes in both datasets, our temporal generator is able to improve

the performance and provides better analysis.

prove our analysis of video models. Our key observation

is that the network exhibits some level of invariance to the

pixel space as shown in the example in Figure 1. There-

fore, we propose to learn the temporal generator with the

perceptual loss [18], to directly optimize what is perceived

by the video model. We observe that this approach can suc-

cessfully recover the motion agnostic performance lost by

sub-sampling the frames. Figure 7 shows the comparison of

pixel reconstruction loss with the proposed temporal gener-

ator. It can be seen that our approach significantly improves

the upper bound estimation of the effect of motion.

Distribution shift is critical for most classes. We further

break down the improvements from our class-agnostic tem-

poral generator by action classes. The results are shown

in Figure 8. Our temporal generator successfully offsets

the temporal distribution difference on 77% of the UCF101

classes and 75% of the Kinetics classes. In particular, the

effect is most significant in “JugglingBalls” of UCF101 and

“SurfingCrowd” of Kinetics. As shown by their examples

in Figure 6, our temporal generator is able to anticipate

movements in critical areas around the person of interest.

Interestingly, “JugglingBalls” is also the class in Kinetics

that also needs further motion from the video. On the other

hand, our temporal generator is less helpful for more static

classes like “PlayingFlute” in UCF101. It is important to

note that our temporal generator is trained without the ac-

tion label and uses no additional motion information from

the video, so it can wrongly hallucinate motion that is not

helpful for discriminating classes. The “Yawning” action of

Kinetics in Figure 6 is an example.

4.3. Analyzing Frame Selection

The goal of our motion-invariant frame selector is to

enable the model to look at all the frames in the video

while obtaining no additional motion information. We have

shown that this is an effective approach for our analysis (4%

gain on both datasets). Now we further visualize and dis-

cuss the results of frame selection.

Max response selector can avoid noisy frames. While in

both datasets the max response selector is able to improve

the performance by 4%, this is more significant for the Ki-

netics as the original accuracy is lower. In Figure 9 we vi-

sualize classes where the max selector gives maximum im-

provement compared to using just the temporal generator.

It can be seen that the ones in the UCF101 have more static

appearance across the frames, while the frames in the Ki-

netics can be drastically different. In particular, the max

selector is able to avoid the empty scene in the middle of

the “IceSkating” clip and the “SledDogRacing” clip.

Oracle frame selector outperforms original video. One

interesting observation from Figure 3 is that the oracle se-

lector, when combined with our temporal generator, pro-

vides a model that outperforms the original video model.

However, it is possible that this cannot be easily achieved

without using the motion information in the video. We vi-

sualize in Figure 10, the classes that gain the most from the

oracle frame selection. Quite surprisingly, we do not find

salient visual features in the “oracle” frames that are distin-

guishable by the human eye. While this could be an effect

related to adversarial examples [12], we believe that there

should be a systematic way of leveraging this effect. In ad-

dition, we do see promising results from the max selector,

which shows the need for latching on to the correct frames

in videos with large appearance variations across frames.

5. Future Research Directions

In the previous section, we presented an in-depth anal-

ysis of the performance gain achieved by modeling motion
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Figure 10. Qualitative results of oracle selector. Interestingly, oracle selector with our temporal generator is able to outperform the original

model. However, when visualizing the selection, it is unclear visually what contributes to the difference. We believe this could be an

important direction for further investigation. (Green for correct selection, red for incorrect selection)

in video models. Our finding could be useful in informing

future research directions for building better video models

as well as dataset. We discuss a few briefly:

Motion specific datasets. Based on our analysis, the C3D

model trained on UCF101 and Kinetics does not learn to

utilize motion for recognizing a significant number of ac-

tion classes. An analysis framework like ours could be used

to identify and build video datasets where the model is re-

quired to learn to use motion for better performance. While

recent papers [30] have tried to analyze the effect of action

classes, we believe that a quantitative study like ours can

lead to systematic creation of video datasets, where the ef-

fect of motion is more dominant.

More efficient video model. Even for classes requir-

ing motion, we have shown that the trained C3D does not

need the full video for recognition. This has two implica-

tions. First, 3D convolutional models [36] need fewer than

16 frames and can be made computationally more efficient.

Second, while working on a restricted computational bud-

get, it might be worthwhile to investigate deeper architec-

tures while reducing computation on temporal modeling.

Key frame selection. We show that selecting the right

frames from the video can lead to huge gains over the origi-

nal model. It is possible that apart from modeling low-level

motion, existing models like C3D are inherently selecting

the key frames. While this area holds promise, there are

many open questions: How hard is this key-frame selection

problem? Is temporal information from the video required

to select these key frames? Is attention mechanism a good

choice for selecting key frames in an end-to-end fashion?

6. Conclusion

We propose two frameworks to analyze the effect of mo-

tion: (i) class-agnostic temporal generator, and (ii) motion-

invariant frame selector. This enables us to more accurately

bound the impact of motion in C3D trained with UCF101

to 6% out of the 79% accuracy, and 5% out of 47% ac-

curacy on Kinetics. Our analysis shows that the temporal

distribution shift constitutes a larger role (16% of the accu-

racy) in UCF101, while frame selection is important for Ki-

netics. Interestingly, the oracle frame selector can actually

outperform the original model. We have provided in-depth

quantitative and qualitative analysis of the video model with

general analysis frameworks that can be applied elsewhere.

We believe our analysis of motion is critical to design better

models and collect better datasets in the future.

Acknowledgement. We thank Du Tran for helpful discus-

sion and feedback on our analysis and implementation.
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