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Abstract

M-estimator using iteratively reweighted least squares

(IRLS) is one of the best-known methods for robust esti-

mation. However, IRLS is ineffective for robust unit-norm

constrained linear fitting (UCLF) problems, such as funda-

mental matrix estimation because of a poor initial solution.

We overcome this problem by developing a novel objective

function and its optimization, named iteratively reweighted

eigenvalues minimization (IREM). IREM is guaranteed to

decrease the objective function and achieves fast conver-

gence and high robustness. In robust fundamental ma-

trix estimation, IREM performs approximately 5-500 times

faster than random sampling consensus (RANSAC) while

preserving comparable or superior robustness.

1. Introduction

The robust estimation of unit-norm constrained linear fit-

ting (UCLF) problem can be formulated as

min
x

n
∑

i

p(ri) s.t. ri = a⊤i x, ‖x‖
2
2 = 1, (1)

where p(r) is a robust loss function. This formulation is

often used in cases such as conic estimation [24] and fun-

damental matrix estimation [11].

M-estimation using the iteratively reweighted least

squares (IRLS) algorithm [12] is one of the most popular

techniques in robust linear regression. Although we can use

this technique for the robust UCLF problem, it is ineffective

because of a poor least squares (LS) solution, which is used

as the initial solution for IRLS.

We will demonstrate why the initial LS solution is such

a poor solution to the UCLF problem. Consider the robust

plane fitting problem, which can be formulated as Eq. (1)1.

The plane fitting results by LS are shown in Fig. 1. The

LS solution in Fig. 1(d) is too distant from the solution of

1Let ai = [xi, yi, zi, 1]
⊤ be the x-, y-, and z-coordinate values of

data points and let x = [a, b, c, d]⊤ be the plane parameters, with the data

points on the plane satisfying a⊤

i
x = axi+byi+czi+d = 0. Therefore,

robust plane fitting can be formulated as Eq. (1)

(a) A point-set of λ1 ≪ λ2

Inlier

Outlier

Smallest eigenvector

Second-smmalest eigenvector

(b) A point-set of λ1 ∼ λ2

(c) Add a single outlier for Fig. 1(a). (d) Add a single outlier for Fig. 1(b).

Fig 1: LS plane fitting for different point-sets with differ-

ent λ, where λj is the jth eigenvalue of the point-set matrix

A in ascending order. Circles and stars denote inliers and

outliers, respectively. The blue planes denote the smallest

eigenvector of the matrix A, which minimize the quadratic

loss of the distances. The red planes are given by the

second-smallest eigenvector, which minimize the quadratic

loss under the orthogonality to the smallest eigenvector. The

LS solution is good for an initial solution of IRLS in the

case of Fig. 1(c); however, this does not apply to the case

shown in Fig. 1(d). Instead, the red plane is an appropriate

initial solution for robust estimation.

robust estimation. In addition, UCLF is a nonconvex opti-

mization problem that has multiple local minima; therefore,

existing iterative methods starting from a poor initial solu-

tion frequently become trapped in a poor local minimum.

In this study, we propose a novel approximate objective

function of the M-estimator to overcome the poor initial so-

lution problem by utilizing a hidden good initial solution,

as in the red plane of Fig. 1(d). Our approximate objective

function can be minimized by a convergence-guaranteed

algorithm, named iteratively reweighted eigenvalues mini-

mization (IREM). IREM is not guaranteed to find the global

optimal solution because of the nonconvexity of the opti-
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Table 1: Representative loss functions p(r) and their corresponding functions ψ(r) in Eq. (3) and f(w) in Eq. (4).

Least Absolute Huber Cauchy Talwar

p(r) 2|r|
r2 (|r| ≤ c)

2c|r| − c2 (|r| > c)
c2 log

(

1 +
(

r
c

)2
)

r2 (r2 ≤ c)
c (r2 > c)

ψ(r) 1
r

1 (|r| ≤ c)
1
r (|r| > c)

1
1+(r/c)2

1 (r2 ≤ c)
0 (r2 > c)

f(w)
1/w

(0 ≤ w)
c2(1/w − 1)
(0 ≤ w ≤ 1)

c2(w − logw − 1)
(0 ≤ w)

c(1− w)
(w ∈ {0, 1})

mization problem. However, the results of experimental

evaluations demonstrated that IREM finds a good solution

even for a high outlier rate of 40–70%. IREM requires only

O(n) computation during each iteration, where n is the total

number of observation data points, and requires about 5–20

iterations to reach convergence.

Our contribution is as follows:

1. We present why IRLS does not work well in the UCLF

problem. It is because of a poor initial solution from

small eigenvalues of the observation matrix.

2. We propose a novel objective function and its opti-

mization algorithm. Our algorithm requires O(n) dur-

ing each iteration and about 5-20 iterations for conver-

gence even at high outlier rate.

3. In robust fundamental matrix estimation, our algo-

rithm achieves 5–500 times faster estimation than tra-

ditional RANSAC with comparable robustness.

Notation: Bold uppercase letters (X), bold lowercase

letters (x), and plain lowercase letters (x) denote matrices,

column vectors, and scalars, respectively.

2. Related works

2.1. Robust Estimation

2.1.1 M-estimator

M-estimators use a robust loss function p(r) to reduce the

influence of large errors. The optimization problem is for-

mulated as minx
∑

i p(ri(x)), where ri(x) is ith residual

and x is the model parameter vector. The popular robust

loss functions are summarized in Table 1.

The robust optimization problem can be solved by the

IRLS algorithm [12] which iterates the following two steps:

x(t+1) = arg min
x

n
∑

i

w
(t)
i (ri(x))

2
, (2)

w
(t+1)
i = ψ

(

ri

(

x(t+1)
))

, (3)

where ψ (r) is the weight function derived from p(r) as in

Table 1. IRLS iterates Eq. (2) and Eq. (3) until convergence.

Note that IRLS is a kind of majorize-minimization [13].

We can construct a majorizer of p(r) by weighted least

squares [2, 23, 27]:
n
∑

i

p(ri) = min
w

n
∑

i

(

wir
2
i + f(wi)

)

, (4)

where wi is the weight of the ith datum and f(w) is a

function derived from p(r) as in Table 1. Note that IRLS

is equivalent to an alternating optimization strategy for

Eq. (4). For the Talwar loss example, the optimization prob-

lem based on Eq. (4) is

min
x,w

n
∑

i

(

wiri (x)
2
+ c(1− wi)

)

s.t. wi ∈ {0, 1}. (5)

We can solve Eq. (5) for wi as

wi =

{

1 (r2i ≤ c)
0 (r2i > c)

(6)

From Eq. (6), we can find that Eq. (5) is equivalent to the

Talwar loss minimization problem, and alternating mini-

mization for Eq. (5) is equivalent to IRLS, as in Eq. (3).

2.1.2 RANSAC

RANSAC [10] is one of the most popular robust estima-

tion methods based on a stochastic optimization. RANSAC

has two steps: a hypothesis of the model parameter is con-

structed by a minimal sample subset, which is randomly se-

lected from the observed dataset. Then the score of the hy-

pothesis is computed from all observed dataset. RANSAC

iterates this process until a model parameter with sufficient

score is found.

The computational cost of RANSAC is increased by out-

lier rate and the parameter dimension. Let w be the propor-

tion of inliers and d is the dimension of the parameter. We

can select a sample set of all inliers with the probability of

wd. Therefore we can select an all-inliers set at least once

in trials nwith the probability p = 1−(1−wd)n and obtain

the following formula:

n =
log(1− p)

log(1− wd)
. (7)

Eq. (7) indicates that RANSAC requires about n itera-

tions for correct estimation at a confidence p. Therefore

RANSAC requires significant computation cost in high out-

lier rate and the large parameter dimensions.

There are various extensions to RANSAC, for example,

various score function [17, 22] and making use of similarity

scores [7]. Raguram et al. presented USAC [16], which is

one of the sophisticated methods, such as the SPRT test [8]

and local optimization [9].
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2.2. Fundamental matrix estimation

Although our method can be applied to any robust UCLF

problem, in this paper we especially focus on robust fun-

damental matrix estimation, which is an important task in

computer vision applications, such as stereo problems and

3D reconstruction. Fundamental matrix estimation gener-

ally has three steps: (i) obtaining corresponding points (in-

cluding outliers) by extracting and matching feature points;

(ii) removing outliers by robust estimation techniques; (iii)

estimating the fundamental matrix from correct correspond-

ing points. Although the third step, such as imposing epipo-

lar constraint and rank-2 constraint to the fundamental ma-

trix estimation [20, 25, 4, 26], is an important research area,

our research focuses on the second step: outlier rejection.

The fundamental matrix is estimated from correspond-

ing points, which are extracted by local feature matching.

Given correct corresponding points p = [px, py, 1]
⊤ and

p′ = [p′x, p
′
y, 1]

⊤ between two images, the fundamental ma-

trix F satisfies the epipolar constraint:

p⊤Fp′ = a⊤x = 0, (8)

a = [pxp
′
x, pyp

′
x, p

′
x, pxp

′
y, pyp

′
y, p

′
y, px, py, 1]

⊤,

x = [F11, F12, F13, F21, F22, F23, F31, F32, F33]
⊤.

From epipolar constraint, we can estimate the fundamen-

tal matrix by solving the following LS problem:

min
x

‖Ax‖22 s.t. ‖x‖22 = 1. (9)

where A = [a1, . . . ,an]
⊤ ∈ R

n×9 is a matrix of n correct

correspondences. This is well known as the eight-point al-

gorithm [14, 11]. Eq. (9) can be solved by the smallest

eigenvector of A, which is obtained by singular value de-

composition (SVD). Note that Eq. (9) is a nonconvex opti-

mization problem because the solution set is restricted to a

sphere, which is a nonconvex set.

Robust fundamental matrix estimation is formulated as

Eq. (1), which uses a robust loss function instead of the

quadratic function in Eq. (9). In the IRLS algorithm for M-

estimator, the LS solution is used as an initial guess. How-

ever, IRLS often fails to estimate the parameters accurately

because of the poor initial solution and the nonconvexity of

the optimization problem. It is reported that the IRLS from

the initial LS solution converges to a poor local minimum

for 10% to 15% of outliers [19, 21].

The poor initial solution problem can be avoided by

probabilistic approaches such as RANSAC [10], which

does not require an initial solution. These methods are prac-

tical in terms of their speed and robustness, but they are

significantly problematic because of their hugely increased

computational cost with a high frequency of outliers, as de-

scribed in Section 2.1.2.

Recently, Cheng et al. [5] introduced a new robust opti-

mization method that considers the rank-2 constraint. Al-

though their method obtained robust estimates, it requires a

considerable amount of processing time because of the re-

quirement to solve semidefinite programming problems2.

3. Preliminary: Robust UCLF Problem

Before describing our method, we introduce the small-

est eigenvalue minimization problem, which is equivalent

to the robust UCLF problem of Eq. (1). We then present the

cause of the poor initial LS solution problem as in Fig. 1.

3.1. The smallest eigenvalue minimization problem

In this section, we show that the robust UCLF problem

can be transformed into a smallest eigenvalue minimization

problem. Using the residual ri = a⊤i x and Eq. (4), the

robust UCLF problem of Eq. (1) can be transformed into

min
x,w

n
∑

i=1

(

wi(a
⊤
i x)

2 + f(wi)
)

s.t. ‖x‖22 = 1

=min
x,w

x⊤A⊤WAx+

n
∑

i=1

f(wi) s.t. ‖x‖22 = 1, (10)

where W = diag(w) is a diagonal matrix.

Just like solving Eq. (9), the optimization problem

Eq. (10) can be solved for x by x = u1, where ui is the

ith eigenvector of A⊤WA sorted in ascending order. From

u⊤
1 A

⊤WAu1 = λ1, where λi is the ith eigenvalue of the

matrix A⊤WA, Eq. (10) we can be transformed into the

following equivalent optimization problem:

min
w

λ1(w) +

n
∑

i=1

f(wi), (11)

Therefore, a robust UCLF problem Eq. (10) is equivalent to

a smallest eigenvalue minimization problem on w.

3.2. Poor initial solution in robust UCLF

In this section, we explain why an LS solution tends to be

a poor initial solution in robust UCLF problems, as shown

in Fig 1(d). Let A = [a1, ...,an]
⊤ have no outlier and inlier

noise, i.e. λ1 = 0, and λj and uj be the jth eigenvalue and

eigenvector of A⊤A, respectively. Note that a⊤i u1 = 0 for

all i, and u1 is the LS solution of A.

We consider an LS solution for the matrix Â =
[A⊤, â]⊤, where â is an outlier i.e. â

⊤
u1 > 0. A solution x

can be written as a linear combination of uj : x =
∑

j cjuj ,

where ‖c‖22 = 1. From λj = ‖Auj‖
2
2, we obtain

‖Âx‖22 =
∑

j

c2jλj +





∑

j

cj(â
⊤
uj)





2

. (12)

We can minimize Eq. (12) on c with the constraint of

‖c‖22 = 1:

cj =
rj

∑

l rl
2(λj + z)

, (13)

2They reported about 10 seconds for each iteration with 100 points
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where rj = â
⊤
uj and z is the normalization term to satisfy

‖c‖22 = 1. If λj ≫ λ1 for all j = 2, 3, ..., d, c1 ∼ 1 i.e. u1

is the near LS solution for the matrix Â. However, if there

exists j such that rj/(λj + z) > r1/(λ1+ z), uj is the near

LS solution for the matrix Â, as shown in Fig 1(d).

4. Proposed method

In this section, we propose an eigenvalues minimization

problem, which is an approximation of Eq. (11), and an al-

gorithm to minimize our objective function.

4.1. Preliminary observation

As described in Section 3.2, an LS solution, the small-

est eigenvector, may be not suitable for an initial solution

in robust UCLF problems. We find that the other eivenvec-

tors seem to be helpful for robust estimation in such cases.

Figs. 2 (b)–(j) show the residuals computed by each eigen-

vector in fundamental matrix estimation. Although we can-

not judge the second correspondence as an outlier from the

smallest eigenvector, we can judge from the third smallest

eigenvector. From this observation, we develop a method

using multiple eigenvectors to avoid a poor initial solution.

4.2. Problem formulation

We propose an approximation of Eq. (11) as follows:

min
w

1
∑k

j=1
1
λj

+

n
∑

i=1

f(wi). (14)

For simplicity of notation, λi(w) is written as λi.
We will explain the rationale of this approximation as

follows. Assume that inliers contain no noise and use a hard

threshold loss function (e.g. Talwar loss). If the ith obser-

vation is an inlier, ri = a⊤i x = 0. If the ith observation

is an outlier, wi = 0 when w is near the solution. Thus,
∑

i wir
2
i = λ1 = 0 holds. In addition, if Eq. (11) has a

unique solution for x, λj 6= 0 holds for j ≥ 2. Therefore,

λ1 ∼ 0 and λ1/λj ∼ 0 (j ≥ 2) are satisfied and the first

term of Eq. (14) can be approximated as

1
∑k

j=1
1
λj

= λ1 −
λ21

∑k
j=2

1
λj

1 + λ1
∑k

j=2
1
λj

∼ λ1. (15)

Therefore, our approximation Eq. (14) is close to the origi-

nal objective function Eq. (11) when w is near the optimal

solution.

This approximation has good properties: (i) Eq. (14) is

a k eigenvalues minimization problem and it is expected

to exploit not only the smallest eigenvector but also other

eigenvectors, such as the second smallest eigenvector in

Fig. 1(d); and (ii) it has a fast convergence algorithm.

4.3. Optimization

We describe our optimization method for Eq. (14). Our

optimization is based on majorize-minimization, which is

guaranteed to decrease (or unchange) the original objective

function. First, use Jensen’s inequality to construct the ma-

jorizer function as

1
∑k

j=1
1
λj

=
1

∑k
j=1 zj

1
zjλj

≤
k

∑

j=1

zj
1
1

zjλi

=

k
∑

j=1

z2jλj , (16)

where z1, . . . , zk are positive numbers that sum to 1. The

equality holds if and only if

zj =
1

λj

(

∑k
j=1

1
λj

) . (17)

The right-hand side of Eq. (16) is the majorizer function of

the first term of Eq. (14). Therefore, we can use majorize-

minimization [13] and obtain the update rules of w and α:

w(t) = min
w

k
∑

j=1

α
(t)
j λj +

n
∑

i=1

f(wi) (18)

α
(t)
j =

1
(

λ
(t+1)
j

)2
(

∑k
j=1

1

λ
(t+1)
j

)2 . (19)

Eq. (18) cannot be minimized directly; thus, we use

majorize-minimization again. The Courant-Fisher min-max

theorem provides majorizer functions of eigenvalues as

λi = min
S

max
x∈S

x⊤A⊤WAx s.t. ‖x‖22 = 1, dim(S) = i,

(20)

where Sj is a linear subspace of x. From Eq. (20), Eq. (18)

can be rewritten into the following optimization problem:

min
w,Sj

∀j=1,...,k

max
xj∈Sj

∀j=1,...,k

k
∑

j=1

α
(t)
j

(

x⊤
j A

⊤WAxj

)

+

n
∑

i=1

f(wi)

s.t. dim(Sj) = j, ‖xj‖
2
2 = 1 ∀j = 1, . . . , k. (21)

Then, we employ an alternating optimization approach to

solve Eq. (21).

Update Sj and xj for all j = 1, . . . , k: Our optimization

problem is separable for each {Sj ,xj}. Therefore, we

can minimize these variables independently. The up-

date rule of {Sj ,xj} can be obtained by the Courant–

Fisher min–max theorem:

S
(t+1)
j = span(u1, . . . ,uj), (22)

x
(t+1)
j = uj , (23)

where uj is jth eigenvector of the matrix A⊤W(t)A.

Update w: Given Sj and xj for all j = 1, . . . , k, our op-

timization problem is simplified as:

arg min
w

n
∑

i=1

(

wi

(

r
(t+1)
i

)2

+ f(wi)

)

, (24)
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(t) IREM with k = 9.

Fig 2: An experiment of robust fundamental matrix estimation. (a) Corresponding points (45 inliers and 5 outliers). (b)–(j)

The value of |Auj | for j = 1, . . . , 9. (k) Residuals obtained by the correct parameter. (l)–(t) The first-iteration residuals of

IREM calculated by Eq. (25), which is the weighted sum of |Auj | for j = 1, . . . , k. IREM with k = 1 (equivalent to IRLS)

regards the second correspondence as an inlier; however, IREM with k ≥ 3 correctly regards it as an outlier.

Alg. 1 Iteratively reweighted eigenvalues minimization

Input: Observation matrix A ∈ R
n×m

Initialize: All 1 for w(0), t = 0
1: while not converged do

2: [U,L,V] = svd(A⊤W(t)A) and update x
(t+1)
j =

uj , λ
(t+1)
j = Ljj ∀j = 1, . . . , k

3: Update α
(t+1)
j by Eq. (19).

4: Update w(t+1) by w
(t+1)
i = ψ(r

(t+1)
i ).

5: t = t+ 1.

6: end while

Output: x1

where r
(t)
i is given by

r
(t)
i =

√

√

√

√

k
∑

j=1

αj

(

r
(t)
ij

)2

, (25)

r
(t)
ij = a⊤i x

(t)
j . (26)

Eq. (24) is the same formulation as Eq. (4); therefore,

we can update w by the weight function ψ(r):

w
(t+1)
i = ψ

(

r
(t+1)
i

)

. (27)

The proposed algorithm, named iteratively reweighted

eigenvalues minimization (IREM), is summarized in Algo-

rithm 1. IREM has a complexity of O(m3) time for SVD,

O(m2n) for the computation of A⊤WA, and O(kmn) for

the computation of r(t+1) during each iteration.

In Fig. 2(l)–2(t) we show the residual r
(1)
i obtained dur-

ing the first iterative cycle from IREM for each k. Based on

Eq. (25) and Eq. (26), the IREM residual r
(1)
i is calculated

by the weighted sum of the Auj for j = 1, . . . , k which

are shown in Fig. 2(b)–2(j). IREM provides more optimal

residuals when k ≥ 3 because of the third eigenvalue resid-

ual, which indicates that the residual is large for the sec-

ond observations, as in Fig. 2(d). The results of IREM with

k ≥ 3 are almost identical. This is because the weight of

Auj is smaller for a larger eigenvalue, as in Eq. (25) and

Eq. (19).

4.4. Loss function and other details

Although any robust loss function can be employed for

our method, the Talwar loss function is selected because of

its robustness. We explain some techniques for optimizing

the Talwar loss function.

4.4.1 Avoiding poor local minima from the Talwar loss

IREM handles the local minima problem caused by UCLF

problem, however, the Talwar loss function also provides

the local minima problem owing to its high nonconvexity.

To address this problem, we use the graduated nonconvex-
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ity [3] approach, which first solves the convex optimization

and then gradually transforms the convex problem into the

original nonconvex problem. In this study, we initially use

a large-cost parameter c(1) to find a stable solution, before

using smaller values for c(t) in each iteration.

4.4.2 Fast computation of A⊤WA

Given A = [a1, . . . ,an]
⊤ ∈ R

n×m, the computation of

B(t) = A⊤W(t)A generally has a complexity of O(m2n).
This computational complexity can be reduced by the bi-

nary nature of W as

B(t+1) = B(t) +

n
∑

i=1

(

w
(t+1)
i − w

(t)
i

)

aia
⊤
i . (28)

The summation of aia
⊤
i need not be calculated if w

(t+1)
i =

w
(t)
i . Using this technique, the computational complexity

of IREM of O(m2n+m3) is reduced to O(lm2 + kmn+
m3) during each iteration, where l is the number of changed

elements between w(t+1) and w(t).

4.4.3 Parameter c

The Talwar loss function has a parameter c which deter-

mines the boundary between inliers and outliers. In this

paper we use c as a pre-defined parameter. For automatic

selection, we can use existing methods such as median ab-

solute deviation (MAD) [18].

5. Experiments

We evaluated the performance of our approach in sev-

eral robust UCLF problems. All experiments were run

on an Intel Core i7-6500U CPU (2.50 GHz) with 8 GB

RAM, and were implemented in MATLAB except for

USAC [16], for which the publicly available code im-

plemented in C++ was used. For both the IRLS and

IREM algorithms, we utilized graduated nonconvexity by

c(t+1) = max(min(0.5c(t), µ(t)), cmin), where µ(t) is the

mean-squared error of inliers at the tth iteration.

5.1. Robust conic fitting

In this section we consider robust conic fitting problem.

A conic satisfies the following equation:

ax2 + bxy + cy2 + dx+ ey + f = 0. (29)

Given n two-dimensional points {xi, yi} for i = 1, . . . , n,

a robust conic fitting problem can be formulated as Eq. (1)

by using

a = [x2i , xiyi, y
2
i , xi, yi, 1]

⊤, x = [a, b, c, d, e, f ]⊤. (30)

Therefore we can use IREM to solve robust conic fitting.

We generated inlier points B = [b1, · · · ,bn]
⊤ ∈

R
(n×2), where bi = [cos(r), sin(r)]⊤ + [nx, ny]

⊤, r is a

random value from [0, 2πrmax] and nx, ny are Gaussian

(a) rmax = 1.0. (b) rmax = 0.4

Fig 3: Examples of conic. The solid line represents the LS

solution on B. Blue and red points are inliers and outliers,

respectively, The broken lines show the parameter of u1 +
u2 and u1 − u2, where ui is the ith eigenvector of B.

Table 2: Robust conic fitting

with different rmax. Averaged

objective values are reported.

rmax λ2/λ1 IREM IRLS

1.0 43.6 0.0152 0.0152

0.9 41.0 0.0151 0.0155

0.8 38.1 0.0150 0.0164

0.7 26.8 0.0151 0.0174

0.6 13.8 0.0151 0.0183

0.5 6.24 0.0149 0.0179

0.4 2.62 0.0149 0.0169

0.3 1.26 0.0093 0.0132

GT

IREM

IRLS

LS

Fig 4: Robust conic fit-

ting on rmax = 0.4.

noise from N (0, 0.012). We also generated outlier points

C = [c1, · · · , cm]⊤ ∈ R
(m×2), where ci was sampled from

uniform distribution in [−2, 2]2. Fig. 3 show the examples

of conic with different rmax.

First, we consider the influence of eigenvalues of inlier

points matrix B. Let λj be the eigenvalues of B. Table 2

shows the ratio of λ2/λ1 for different rmax. λ2 is smaller

when rmax is smaller. Small λ2 causes near-nonuniqueness

of LS solution, as described in Section 3.2 and shown in

Fig. 3(b), and therefore LS solution is easily influenced by

outliers, as shown in Fig. 3.

Table 2 shows the results of robust conic fitting on A =
[B⊤,C⊤]⊤. We report averaged objective values of Eq. (1)

over 100 trials. IRLS achieves comparable performance in

rmax = 1.0. However, IRLS degrades the performance in

small rmax because of a bad initial solution, as shown in

Fig. 4. IREM outperforms IRLS, especially in small rmax.

5.2. Robust fundamental matrix estimation

We compared our proposed method with IRLS,

RANSAC [10], and USAC [16]. USAC is a combination of

many techniques such as PROSAC [7], SPRT test [8], and

local optimization (LO). We ensured a fair comparison by

not using the similarity scores of correspondences in USAC.

In our method, we used normalized data obtained by

Hartley’s normalization [11] and the parameter k = 9 and

cmin = 5 × 10−5 for the experiments with synthetic and
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Table 3: Results of comparison for different outlier rates (1,000 correspondences, ts = 1). The average mean Sampson errors

and recovery rates were reported. The best and second best results are highlighted in bold and italics, respectively.

Outlier

Rate

IREM

(Ours)
IRLS

RANSAC USAC

100 1,000 10,000 w/ LO w/o LO

0.1 0.688 / 98.3 4.06 / 84.4 1.08 / 93.6 0.829 / 96.8 0.724 / 97.8 1.31 / 94.4 1.20 / 94.1

0.2 0.693 / 98.2 11.2 / 73.7 2.30 / 87.8 1.02 / 95.2 0.853 / 97.2 1.79 / 93.6 1.97 / 92.7

0.3 0.753 / 97.9 25.2 / 66.2 5.22 / 82.8 1.71 / 92.7 1.13 / 96.0 2.10 / 94.5 3.29 / 92.0

0.4 0.848 / 97.5 62.8 / 61.5 20.5 / 71.1 4.37 / 88.2 1.74 / 94.9 3.00 / 94.4 4.91 / 91.0

0.5 0.909 / 97.1 80.3 / 57.9 34.0 / 60.0 11.2 / 80.1 3.63 / 91.8 3.34 / 93.8 5.31 / 91.9

0.6 1.06 / 96.6 694 / 36.3 148 / 40.4 37.6 / 68.6 9.87 / 86.0 5.30 / 93.0 6.42 / 91.9

0.7 1.80 / 95.0 2357 / 12.8 583 / 22.6 105 / 52.3 40.2 / 71.9 5.86 / 92.8 7.76 / 91.4

Table 4: Results of robust fundamental matrix estimation

under different ts (1,000 correspondences, 0.1 outlier rate).

Averaged objective values and recovery rates are reported.

ts λ2/λ1 IREM IRLS

1 19.6 0.0271 / 98.20 0.0302 / 84.82

2 66.5 0.0274 / 98.24 0.0293 / 90.26

3 140 0.0280 / 98.37 0.0294 / 92.26

4 234 0.0286 / 98.28 0.0290 / 96.26

5 339 0.0293 / 98.18 0.0294 / 97.80

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Outlier rate

10
-1

10
0

10
1

10
2

10
3

E
la

p
se

d
 T

im
e 

[m
s]

RANSAC 10,000

RANSAC 1,000

RANSAC 100

USAC (with LO)

USAC (w/o LO)

IREM

Fig 5: Elapsed time in milliseconds (1000 correspon-

dences). Note that USAC was implemented in C++; others

were implemented in MATLAB.

real data. For RANSAC and USAC, we used raw data and

the Sampson error measure:

ds(x,x
′,F)=

(

x′⊤F̂x
)2

(

F̂x
)2

1
+
(

F̂x
)2

2
+
(

F̂x′

)2

1
+
(

F̂x′

)2

2

, (31)

where (F̂x)j corresponds to the jth entry of F̂x. For

RANSAC and USAC, the normalized eight-point algorithm

was applied to refine the final results after removing the out-

liers. For USAC, we used the SPRT test and LO (optional),

and set the confidence parameter p = 0.9.

5.2.1 Experiments using synthetic data

We randomly generated 3D points within a box [−2, 2],
[−2, 2], [1, 2] and obtained the corresponding inlier points

by projecting the 3D points onto a 640 × 480 2D image

Table 5: Results of comparison for different total numbers

of correspondences (ts = 1, outlier rate = 0.5). The average

mean Sampson error was reported.

# of Points IREM
RANSAC

USAC w/ LO
100 1,000 10,000

100 8.78 38.5 13.0 4.27 6.91

300 1.50 48.2 11.8 3.69 3.53

1000 0.909 34.0 11.2 3.63 3.34

plane. In each experiment, we used a fixed-camera pro-

jection matrix defined by P1 = K[I3×3, [0, 0, 0]
⊤] and

P2 = K[R, t], where t = ts[−3,−2, 1]⊤ and R were

determined from the rotation angle π/36 and rotation axis

[1, 2, 3]⊤, and the camera intrinsic matrix was K such that

k11 = k22 = 700, k13 = 320, k23 = 240, and k33 = 1.

We added Gaussian noise from N (0, 12) to each of the 2D

correspondences and generated the outlier correspondences

by replacing points randomly in the range of 640 × 480.

For each condition, we performed the test 100 times and

reported the average value for each method.

The mean Sampson error of the inlier correspondences

was used as the evaluation criterion: 1
n

∑n
i=1 ds(xi,x

′
i, F̂),

where n is the total number of inliers. Inliers were defined

as points that satisfied ds(xi,x
′
i,Fgt) < τ (using τ = 3),

where Fgt was computed by P1 and P2. We also used the

recovery rate: the percentage of the correctly identified in-

liers.

We first compared IREM with IRLS under different

translation vector scales ts. Table 4 shows the values of

λ2/λ1, where λi is the ith eigenvalue of the observation ma-

trix from only inlier correspondences as with Section 5.1,

the average objective values of Eq. (1), and recovery rates.

We used 1,000 correspondences with 10% of outliers. As

in the case with robust conic fitting, IRLS does not perform

well in the cases of small λ2 despite 10% of outliers, while

IREM remains high performance.

We also compared IREM with RANSAC and USAC.

The error and computational time are shown in Table 3 and

Fig. 5, respectively. IRLS does not work well in 10% of

outliers; however, IREM achieved significant robustness.

IREM requires on average 14.6 iterations for convergence,
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Table 6: Experimental results for the Oxford multiview dataset. For RANSAC and USAC, 10 trials were performed, and the

average and the best results were reported. The results achieving above 99% and 95% recovery of inliers are highlighted in

bold and italics, respectively. Note that USAC was implemented in C++; others were implemented in MATLAB.

Pairs
# of

Points

# of

Inliers

mean Sampson error / recovery rate Elapsed Time [ms]

IREM

(Ours)
IRLS

RANSAC USAC IREM

(Ours)
IRLS RANSAC USAC

average best average best

#1 1313 1040 0.157 / 100 0.162 / 100 0.280 / 99.2 0.158 / 100 0.649 / 95.6 0.178 / 99.9 3.2 2.0 127 4.3

#2 727 525 0.163 / 100 0.164 / 100 0.654 / 95.8 0.170 / 100 0.174 / 100 0.171 / 100 1.6 1.6 100 3.8

#3 635 589 0.152 / 99.8 8.93 / 68.6 0.153 / 100 0.152 / 100 0.154 / 100 0.154 / 100 2.3 3.0 84.1 1.9

#4 233 198 0.156 / 100 16.9 / 71.7 0.159 / 99.7 0.133 / 100 0.200 / 99.1 0.135 / 99.5 1.4 1.2 65.0 2.5

#5 343 169 0.322 / 97.6 81.2 / 45.0 7.58 / 75.4 0.715 / 94.1 1.32 / 88.8 1.19 / 88.8 2.6 1.0 78.4 6.4

#6 136 79 1.23 / 92.4 31.3 / 50.6 0.579 / 97.9 0.386 / 98.7 0.500 / 98.7 0.424 / 98.7 1.2 0.9 60.0 1.8

and the computation times for one iteration of IREM and

RANSAC is almost the same. Compared with RANSAC,

IREM was about 500 times faster with smaller error than

the 10,000-iteration RANSAC method. Compared with

USAC, IREM is faster for a high outlier rate even though

our method was implemented in MATLAB, which is gener-

ally slower than C++. USAC generated 60.6 hypotheses for

the case of 30% outliers and 3.66× 104 hypotheses for the

case of 70% outliers.

We also compared under different total numbers of cor-

responding points, as in Table 5. The performance of IREM

is worse when using less total number of correspondences,

in contrast to RANSAC. An estimator generally performs

better on larger amount of data, and IREM works well on a

large number of points because it uses all data to estimate a

parameter. However, RANSAC does not benefit from large

data because it uses only a minimal subset to generate a

model parameter hypothesis.

5.2.2 Experiments using real data

In the experiments using real data, six image pairs were se-

lected from the Oxford multiview datasets3, which contain

ground-truth camera projection matrices, as shown in Fig. 6.

We extracted FAST corners and then matched them us-

ing SURF features [1] around the corners. The inliers

were obtained from the corresponding points that satisfied

ds(xi,x
′
i, F̂) < τ (using τ = 3). We then estimated the

fundamental matrix and evaluated the performance of each

method in the same manner as in Section 5.2.1.

We compared our method to IRLS, RANSAC, and

USAC. For RANSAC, the number of iterations was set to

1,000. For USAC, we used the SPRT test, LO and set the

confidence parameter p = 0.9. The comparison results are

shown in Table 6. Except for pairs #1 and #2, IRLS failed

to estimate the correct parameter because of small λ2; es-

pecially, pair #3 contains only less than 10% of outliers.

RANSAC and USAC either failed to find the correct pa-

rameter or required intensive computation for a high outlier

rate, such as for pair #5. IREM provided a good estimation

of the real dataset, as well as running much faster. For pair

3Available at http://www.robots.ox.ac.uk/˜vgg/data/data-mview.html

(a) #1 (λ2/λ1=256). (b) #2 (λ2/λ1=288).

(c) #3 (λ2/λ1=105). (d) #4 (λ2/λ1=24.7).

(e) #5 (λ2/λ1=105). (f) #6 (λ2/λ1=92.5).

Fig 6: Image pairs from the Oxford dataset. We show values

λ2/λ1, where λi is the ith eigenvalue of the observation

matrix from inlier correspondences.

#6, IREM failed to estimate the most correct parameter be-

cause of small amount of points. Overall, IREM works well

on real data with high robustness and fast computation.

6. Conclusions

In this study, we revealed why IRLS does not work well

in robust UCLF problem and proposed a novel algorithm,

which we named IREM. We demonstrated the very fast

convergence and high robustness of IREM based on ex-

perimental results. In terms of robust fundamental matrix

estimation, IREM operated about 5–500 times faster than

RANSAC while preserving robustness and achieved com-

parable or superior performance to the state-of-the-art ex-

tension of RANSAC.

In our future research, we plan to extend the IREM al-

gorithm to other robust subspace estimation problem, such

as multiple structures [6, 15]. In robust fundamental matrix

estimation, it would be challenging to take into account the

rank-2 constraint for our method.
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