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Abstract

As demand for advanced photographic applications on

hand-held devices grows, these electronics require the cap-

ture of high quality depth. However, under low-light condi-

tions, most devices still suffer from low imaging quality and

inaccurate depth acquisition. To address the problem, we

present a robust depth estimation method from a short burst

shot with varied intensity (i.e., Auto Bracketing) or strong

noise (i.e., High ISO). We introduce a geometric transfor-

mation between flow and depth tailored for burst images,

enabling our learning-based multi-view stereo matching to

be performed effectively. We then describe our depth es-

timation pipeline that incorporates the geometric transfor-

mation into our residual-flow network. It allows our frame-

work to produce an accurate depth map even with a brack-

eted image sequence. We demonstrate that our method out-

performs state-of-the-art methods for various datasets cap-

tured by a smartphone and a DSLR camera. Moreover, we

show that the estimated depth is applicable for image qual-

ity enhancement and photographic editing.

1. Introduction

Many photographers want to capture high-quality im-

ages of indoor or night scenes that are insufficiently exposed

to light. To do so, they increase exposure time or ISO, but

these adjustments can cause other imaging problems, such

as motion blur or noise amplification. In an effort to miti-

gate the physical limitation of camera hardware, several im-

age processing methods have been widely employed, such

as single image denoising [6, 4] or edge preserving filter-

ing [29, 13]. However, those approaches often degrade the

sharpness of the image or produce cartoonish and surreal

results.

The function to take several successive shots with dif-

ferent camera settings called Auto-bracketing (e.g., Expo-

sure, ISO or Flash) or in a very short time called Burst

shot has become ubiquitous in most hand-held imaging de-

vices. These photographic techniques for gathering more

light have recently attracted interest from the field of com-

(a) Input: Exposure bracketed images

(b) Camera pose & 3D points (c) Depth map result

(d) Exposure fusion (e) Synthetic refocusing

Figure 1: Given exposure bracketed images (a), we estimate

camera pose (b) and depth map (c). Our results are appli-

cable to image quality enhancement (d) and depth-aware

application (e). We compare exposure fusion results from

input images (L) and aligned images using our depth (R).

putational photography [19, 12]. Assuming that the images

are all well-aligned, they are commonly utilized for vari-

ous image restorations (e.g., Denoising or HDR). However,

multiple image alignment is an important issue, since mo-

tion inevitably occurs when users press the camera shutter.

In this work, we determined that the inevitable mo-

tion, considered as a nuisance in previous burst photogra-

phy [19, 12], can be used as an important clue to estimate

the depth. The estimated depth can be utilized for precise

image alignment, which rely highly on discretized homog-

raphy or optical flow in the conventional methods. More-

over, we show that our depth is useful for various depth-

aware applications such as photographic editing or aug-
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mented/virtual reality.

Previous studies [32, 15, 8] on the so-called depth from

small motion (DfSM), have introduced a depth estimation

approach based on multiple images with narrow baselines.

However, conventional DfSM works have serious limita-

tions, such as (1) noise-sensitive characteristics and (2) high

computational complexity, so the estimated depth is not

reasonably applicable to hand-held devices as a means of

improving image quality. Instead, we propose a learning-

based multi-view stereo method combined with the geomet-

ric inference.

Deep neural network (DNN) has recently been shown

to perform well for various computer vision tasks, such

as image classification, detection and optical flow estima-

tion. In particular, learning-based optical flow estimation

methods [7, 3, 14] outperform conventional optimization-

based approaches in accuracy and speed [22]. How-

ever, modern geometric interpretations [10] have great ad-

vantages in terms of generality and accuracy over the

learning-based approaches, e.g., pose estimation [30], and

re-localization [16]. To accomplish a robust and fast ap-

proach, we complement DNN and modern geometric un-

derstandings, and take full advantage of each study.

We first compute a scene geometry including sparse 3D

points and camera poses Sec. 2.1, from an input image se-

quence captured in a burst mode or bracketing mode as

shown in Fig. 1a. An output of the scene geometry is then

used to obtain a dense depth map by integrating with DNN

in Sec. 2.2. Moreover, we show that the estimated depth

map can be utilized for precise image alignment in Sec. 2.3.

We have carefully evaluated our algorithm using a variety of

synthetic and real-world datasets. In the presence of mod-

erate or strong noise and varied intensity in input sequence,

our results show considerable improvement over state-of-

the-art DfSM methods.

Of course, there are simplified versions of exposure fu-

sion which utilize an image sequence with the same expo-

sure times as the input [12, 11]. Having the same expo-

sures significantly reduces the difficulty in aligning images

captured at different times. However, we observe that the

burst images can be suffered from many under- or over-

exposed pixels when the appropriate exposure time is not

determined. The bracketed images are necessary to truly

achieve HDR or exposure fusion. We show that our depth

can minimize these performance degradations by aligning

the images with varying exposures and it is useful for a va-

riety of applications.

2. Our Approach

This section describes an effective pipelines for depth

and pose estimation method from short burst shots, espe-

cially exposure bracketed sequences. First, we introduce

robust pose estimation method for intensity variation, which

is slightly modified from the Structure from Small Motion

(SfSM) method [15] in Sec. 2.1. Second, we propose a ro-

bust depth estimation method tailored for short burst shots

even with varied intensity or noise in Sec. 2.2. Lastly, we

briefly describe the image alignment method based on our

depth and pose information in Sec. 2.3.

2.1. Structure­from­Small­Motion (SfSM)

We first extract features from the reference image using

Harris corner detection [9], and track the features in a pair

of histogram-equalized images using the Kanade-Lucas-

Tomasi (KLT) tracker [28]. Before the feature extraction,

we perform histogram equalization on all images. Although

most commercial cameras have non-linear response func-

tions, this process alleviates the color inconsistency prob-

lem in the feature matching step. The equalized images are

only used in the feature extraction.

Given the pre-calibrated intrinsic parameters K, we es-

timated the relative camera poses and sparse 3D points by

solving the following equation:

argmin
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where r = [rx, ry, rz]⊺, t = [tx, ty, tz]⊺ and Xj are the

rotation, translation components and 3D world coordinates

of features. u = [u, v, 1]⊺ = Kx and x = [x, y, 1]⊺ are the

image coordinates and normalized image coordinates, re-

spectively. n and m are the number of images and features.

‖ · ‖2 is the L2 norm and 〈·〉 is the projection function, that

is
〈

[a, b, c]⊺
〉

= [a/c, b/c]⊺.

We initialize all camera components r, t to zero and the

3D points X by multiplying the normalized image coordi-

nates x by a random depth value. We use the Levenberg-

Marquardt (LM) optimization [24] to solve Equation (1).

2.2. Deep Multi­view Stereo Matching (DMVS)

In this subsection, we describe the detail of our residual-

flow network and the derivation of our geometrical trans-

formation that enables to effectively match multiple images.

Then, we present our DNN-based multi-view stereo method

that incorporates the network and transformation.

Transformation of optical flow to depth Rotation align-

ment reduces the complexity of the transformation between

optical flow and depth, which makes our problem more

tractable. To disregard the rotational motion, we start by

rotating the optical axis of all images to be parallel to that

of the reference image. Given the camera intrinsic K and
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(a) Reference images (b) Initial depths (c) Intermediate depths (d) Final depths (e) w/o fine-tuning

Figure 2: Depth maps according to the number of iterations and fine-tuning. (a) Reference images. (b) The very first initial

depths. (c) Intermediate depths from DNN. (d) Our final depths from DNN. (e) Depths from DNN without fine-tuning.

rotation R for all images, the synthesized images Ii can be

generated by warping the original images Îi:

Ii(u) = Îi
(〈

KRiK
−1

u
〉)

, i ∈ {1, ..., n}. (2)

We use a bicubic interpolation for this warping process. Oc-

clusion regions are ignored because the baseline of the input

images is extremely narrow. All of the images are warped

except for the reference image, and the rotationally aligned

images are used as the input of DNN. Using the images

with pure translation, we can derive the 2D projection of

3D points Xj (the multiplication of the normalized image

coordinates of the reference frame x1j and its depth zj) into

the image plane as:
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where ũ is the projected image coordinates and s is the scale

factor. Since the z-axis translation of the image is much

smaller than the minimum scene depth (tz ≪ zmin) [8],

we can assume that (zj + tz) is approximately equivalent

to zj (≈ zj + tz). The projection matrix in Eq. (3) can be

simplified as:

[

ũij

ṽij

]

=

[

1 0 T x
i /zj

0 1 T y
i /zj

]





u1j

v1j
1



 =

[

u1j

v1j

]

+ wj

[

T x
i

T y
i

]

,

T x
i = fxt

x
i + cxt

z
i , T y

i = fyt
y
i + cyt

z
i ,

(4)

where wj is the inverse depth 1/zj . Based on Eq. (4), the

transformation vector Ti can convert the inverse depth vec-
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Figure 3: Overview of DMVS. The solid line shows the op-

tical flow refinement process. The blue dashed line shows

the conversion of optical flow into inverse depth. The red

dashed line shows the inverse depth, which is converted

into an optical flow and used for the initial flow of the next

frame.

tor w into the flow field vi from the reference image to ith

target image as follows:

vi = Tiw, where Ti =

[

T x
i

T y
i

]

. (5)

Depth estimation using residual flow network The ba-

sic idea of our depth estimation scheme is to iteratively re-

fine the inverse depth w using the optical flow estimated

by the DNN as shown in Fig. 3. The network N computes

the residual flow ṽi with the 8-channel input: the reference

image I1, the warped image Iwi and the initial optical flow

v
′

i. The initial flow is obtained by propagating the sparse

3D points in Sec. 2.1 using the closed form solution [15],

which then is transformed into a flow field. We obtain the

warped image using the bilinear sampler S(Ii,v
′

i). After

the residual flow is estimated, the initial flow and the resid-

ual flow are added to obtain the refined flow vi. We convert
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(a) Averaged images (b) Our depths (c) Reference images (d) Denoising (e) Exposure fusion

Figure 4: Averaged image of input exposure bracketed images, our depths and example of photographic applications (denois-

ing, exposure fusion) using aligned images.

the refined flow to the flow of the next frame using the trans-

formation vectors by utilizing them as an initial flow:

v
′

i = TiT
+

i−1
vi−1, (6)

where T
+ is the pseudo inverse of the vector T. We esti-

mate the final depth z by transforming the optical flow of

the last image T
+
nvn into the inverse depth w and dividing

it by one.

Fig. 2 shows the effectiveness of the refinement process.

The initial depth maps in Fig. 2b show inaccurate depth

discontinuities, which is not suitable for the precise im-

age alignment and other depth-aware photographic appli-

cations. On the other hand, the intermediate and final depth

in Fig. 2c and Fig. 2d shows that our DNN produces more

detailed and artifact-free depth results.

Training and network architecture Our network con-

sists of two convolution and three deconvolution layers with

the fixed kernel size (7×7) and stride (1) as described in Ta-

ble 1. All layers with the exception of the last layer are fol-

lowed by a Rectified Linear Unit (ReLU). Taking a coarse-

to-fine strategy similar to the optical flow estimation, we

train the network to learn residual flow ṽ, instead of directly

estimating the depth or optical flow. We stack the reference

image, the warped pair image and the initial optical flow to

form an 8-channel input for our network. We set the tar-

get residual flows ṽ
gt
i as the difference between the target

flow v
gt
i and the optical flow v

′

i obtained from the trained

network at the 5th pyramid level [25]:

ṽ
gt
i = v

gt
i − v

′

i. (7)

In the training step, we minimize the average endpoint er-

ror (EPE), which is the standard error measure for optical

flow estimation. This is the Euclidean distance between the

residual flow ṽi and the target residual flows ṽ
gt
i .

The optimization is carried out using ADAM [17] with

the recommended parameters β1 = 0.9 and β2 = 0.999.

Table 1: Specification of our architecture

Name Kernel Str. Ch I/O Input

conv1 7×7 1 8/32 Images/Flow

conv2 7×7 1 32/64 conv1

deconv2 7×7 1 64/32 conv2

deconv1 7×7 1 32/16 deconv2

deconv0 7×7 1 16/2 deconv1

The initial learning rate is λ = 1e−4, then decreased to

1e−5 after 60 epochs. We use the Flying Chairs dataset [7]

with a resolution of 384×512 at training time. The training

is performed with a customized version of Torch7 [5] on a

Nvidia 1080 GPU, which usually takes 24 hours.

We chose to perform various types of data augmenta-

tion during training. We perform spatial (rotation, scaling)

and chromatic transformations (color, brightness, contrast,

Gaussian noise). We augment input patches with random

rotations within [−17◦, 17◦] and scaling within [1, 2]. The

noise level is uniformly sampled from N (0, 0.1). We also

apply color jitter with additive brightness, contrast and sat-

uration sampled from a Gaussian, N (0, 0.4). At the end,

we normalize the intensity of the images using a mean and

standard deviation computed from a large corpus of Ima-

geNet [26].

The trained network produces accurate residual flow on

images captured with constant camera settings, but it causes

some artifacts with a different setting (e.g., exposure, ISO)

as shown in Fig. 2e. To alleviate this problem, we fine-tune

the network using the different color jitter value N (0, 0.4)
in the reference I1 and the target images Ii. The fine-tuning

step generates a synthetic image pair with the different cam-

era settings (e.g., exposure, ISO). We also apply the other

data augmentation and intensity normalization in this fine-

tuning step using the learning rate λ = 1e−5. Fig. 2d shows

the performance improvement in the network fine-tuning.
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(a) Reference images (b) Im et al. [15] (c) Ha et al. [8] (d) Our depths (e) Ground truth

Figure 5: Depth map results using SUN3D datasets [31]. (a) Reference images. (b) Depth maps from propagation [15]. (c)

Depth maps from plane sweeping [8]. (d) Our depth maps. (e) Kinect depth maps. mit w85k1, mit lab koch, mit lab 16 and

mit w85h (top-to-bottom).

2.3. Image alignment

Using the camera geometry K, [R|t] and scene geome-

try z estimated in Sec. 2.2, we can simply align all images.

The aligned images Ĩi where the original image Îi appears

to have been taken at the reference view point are formu-

lated as:

Ĩi(u) = Îi
(〈

K[Ri|ti]

[

x1z

1

]

〉)

, i ∈ {1, ..., n}. (8)

We use a bicubic interpolation in this warping process. The

aligned images can be used for image quality enhancement

applications such as noise reduction and exposure fusion

as shown in Fig. 4. Using the estimated depth in Fig. 4b,

we warp all non-reference images in Fig. 4a into the refer-

ence view point. After aligning the images, we use simple

weighted averaging method [19] for denoising in Fig. 4d

and exposure fusion algorithm [23] in Fig. 4e. The results

show that our estimated depth and pose can precisely align

the input images, which is applicable for image quality en-

hancement.

3. Experimental Results

In this section, we demonstrate the effectiveness and ro-

bustness of the proposed method using various experiments.

First of all, we compared our depth map results to those

obtained from the state-of-the-art DfSM methods [15, 8].

In quantitative evaluation, we generated synthetic noisy im-

ages from the public RGB-D datasets [31] and utilized them

as the input. We then demonstrate that our method produces

accurate depth with varying exposure image sequences cap-

tured by the bracketing mode. Finally, we investigated the

applicability of the depth results for depth-aware photo-

graphic application, as well as image quality enhancement.

All steps were implemented in MATLABTM, except for

the DNN part, which was implemented by Lua. We set the

random depth value to 100, with the constants c1, c2 and

σc as 1, 10 and 0.2, respectively. On average, for an im-

age sequence of 28 frames with 640×480 resolution, our

method took 4s in total for pose and depth estimation on

an Intel i7 3.40GHz CPU and 16GB RAM. The SfSM (in-

cluding feature extraction and bundle adjustment) and the

DMVS (including depth propagation and geometric trans-

formation) required 2.5s and 1.5s, respectively.
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3.1. Synthetic datasets

Quantitative evaluation of our DMVS We quantita-

tively compared our developed approach with the state-

of-the-art DfSM methods [15, 8], using public RGB-D

datasets [31]. For the datasets, Microsoft Kinect was used to

capture the sequential images and the corresponding depth

maps. We used 28 consecutive frames for the comparison

(previous works requires about 30 frames as input). Since

the datasets are taken moving slowly at 30fps, the baseline

of the input sequence is narrow enough for quantitative eval-

uation of DfSM. To simulate realistic camera noise, we ap-

plied a signal-dependent Gaussian noise [27] with a stan-

dard deviation σ of 0.02. The noise level was determined

by averaging the computed noise levels [18] in low-light

conditions using a Nexus6.

Fig. 5 shows the depth maps from [15], [8], our method

and Microsoft Kinect using the synthetic noisy sequence.

As shown in Fig. 5b, [15] fails to show promising results

due to inaccurate initial matching cost and the dense depth

reconstruction. Work in [8] shows relatively accurate depth

discontinuity, but also yields inaccurate depths as shown

in Fig. 5c. This is because the plane sweeping algorithm us-

ing color similarity as a matching cost is not suitable for im-

ages with varying exposures, which produces an unreliable

depth map. On the other hand, our DNN-based approach

in Fig. 5d has the ability to handle the intensity changes,

and to infer an accurate dense depth map, unlike [15, 8].

For a more detailed analysis, we measure a bad pixel rate

and Root-mean-square-error (RMSE) with varying noise

levels (σ = 0, 0.02, 0.05). Bad pixel rate denotes the per-

centage of pixels that have a distance error of less than 10%

of the maximum depth value in the scene. We excluded the

unmeasured depth regions due to the hardware limitations

of Microsoft Kinect (dark areas in the Kinect depth maps

in Fig. 5e) in the error measurement. The results of test

across datasets in Fig. 6 shows our method has less RMSE

and bad pixel rate than both the state-of-the-art methods for

all noise levels. We can see that the conventional methods

give acceptable results when noise is not issue, but as noise

increases, these measures degrade rapidly. Compared to the

competing methods, our method achieved the best results

regardless of noise levels, with the least degradation of per-

formance.

3.2. Real­world datasets

Qualitative evaluation of our DMVS We designed a

real-world experiment to verify that the proposed method

could be applied to actual exposure bracketed images.

First of all, we performed a qualitative comparison of Df-

SMs [15, 8] using exposure bracketing sequences. We took

28 frames with 7 exposure levels for one second in a com-

mercial DSLR camera (Canon 1D Mark III). Since the state-

of-the-art methods have not considered intensity changes,

Figure 6: Quantitative evaluation results with state-of-the-

art DfSM methods.

we equalized the histogram of all images to adjust image

intensity and used them as an input of the methods. Raw

images were used for our input.

Fig. 7 shows the results of real-world datasets captured

at night. All the comparative methods produce reason-

able results; however, we found that our method achieves

more reliable results. The propagation method [15] results

in over-smoothing effect in Fig. 7b, and the plane sweep

method [8] exhibits the speckle artifacts and quantization

errors in Fig. 7c. Although brightness-adjusted images were

used for the competing methods, over or under-saturation

regions might exist, which causes severe artifacts. Despite

intensity changes on images, our results in Fig. 7d show an

immunity towards the changes, similar to the result of the

synthetic datasets in Sec. 3.1.

We also found that our accurate depth can be addi-

tionally useful for exposure fusion and depth-aware photo-

graphic editing applications, such as digital refocusing and

image stylization in Fig. 8. Exposure fusion assembles the

multi-exposure sequence into a high quality image using a

weighted blending of the input images [23]. To obtain a de-

sirable result, the set of images should be well-aligned. The

final results in Fig. 8b demonstrated that our depth can ac-

curately align the set of images. Digital refocusing, which

shifts the in-focus region after taking a photo [1, 2], is one

of the most popular depth-aware applications. For a real-

istic refocused image, accurate depth information is neces-

sary. We added synthetic blurs to the images and produced

a shallow depth of field image using our depth in Fig. 8c

(top). Another interesting application is image stylization,

which photographically changes an image at a certain depth

range in Fig. 8c (bottom). These results demonstrate that

our depth is enough to be utilized on real-world images for

various photographic applications.
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(a) Reference images (b) Im et al. [15] (c) Ha et al. [8] (d) Our depths

Figure 7: Comparison of depth estimation results with state-of-the-art methods captured by Canon 1D Mark III. (a) Reference

images. (b) Depth maps from propagation [15]. (c) Depth maps from plane sweeping [8]. (d) Our final depth maps.

Comparison to state-of-the-art burst photography Fi-

nally, we compared the proposed method to state-of-the-art

burst image photographic approaches; Burst Image Denois-

ing [19] and HDR+ [12]. Microsoft selfie app and Google

camera app pioneered the use of Burst Image Denoising

and HDR+ on iOS8 and Android, respectively. We took the

image sequences from each phone to use them as the input

of our algorithm, and compared them with Burst Image De-

noising and HDR+. We obtained independent results from

an iPhone5S and Nexus6, as shown in Fig. 9.

Burst Image Denoising [19] aligns the input image se-

quences using the local homography, then merges them

with the weighted average. The denoising results in Fig. 9a

shows that Burst Image Denoising outputs blurred results,

while our method preserves image boundaries and fine de-

tail in Fig. 9b. (Note that the blurred frame is not our selec-

tion, but is the result of image alignment [19].) The local

homography might sometimes fail to handle the user’s in-

evitable motion during burst mode.

The HDR+ [12] generates synthetic exposures by apply-

ing gain and gamma corrections to multiple images using

a constant exposure, then fuses the synthetic images as if

they had been captured using bracketing. Although HDR+

shows promising results in well exposed areas, the constant

exposure does not help to recover some badly exposed ar-

eas due to lack of light, as shown in Fig. 9c. On the other

hand, exposure fusion with real bracketing can cover all of

the areas of the input image, as shown in Fig. 9d. Our depth

estimation method enables the fusing of bracketed images

with exposures that are not aligned, and results in brighter

images than the original images.

4. Discussion

We have presented a robust narrow-baseline multi-view

stereo matching method for noise or intensity changes. We

determined an important clue that the baseline of the in-

evitable motion can be used for depth estimation, and the

depth enables accurate image alignment leading to image

quality enhancement. Both depth and image enhancement

results were compared against state-of-the-art methods with

a variety of datasets, and demonstrated considerable im-

provement over existing methods.

The main advantage of our method is its fast compu-

tational time and small size network, which are important

features for implementation in a mobile platform. Com-

pared to state-of-the-art DfSM methods [15, 8], which take

about a few minute, our method takes only a few sec-

ond. Our DNN plays a key role in reducing computa-

tional complexity in dense matching which is the most time-

consuming part of conventional DfSM. In addition, our net-

work is much lighter than the DNN-based fast depth or op-

tical flow estimation methods [33, 21, 20, 7] (Flownet: 32M

vs Ours: 240K). This significant reduction without per-

formance degradation is achieved by training the residual

flow, and iteratively updating optical flow. We expect that

the proposed framework will become popular as a mobile

phone application.

On the other hand, there are still rooms for improve-

ments: 1) when there is large camera rotation, inaccurate

camera poses might be obtained, which can cause an er-

ror in our DMVS; 2) our method requires the pre-calibrated

intrinsic parameters to estimate the camera poses; 3) the

performance of our method is not guaranteed for datasets

with fast moving objects, since the scene flow contains addi-

tional flow on the object; 4) various fields, such as AR/VR,

require metric scale depth, but the estimated depth is not

represented in the metric scale.

As future works, we have plan to address these issues.

In particular, an idea of the uncalibrated DfSM in [8] is ex-

pected to provide a solution to the calibration issue. The

scale problem can also be addressed if we directly measure

the camera motion during taking photos by introducing ad-

ditional hardware such as inertial sensors.
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(a) Reference images (b) Exposure fusion (c) Photographic editing (d) Our depths

Figure 8: Depth-aware photographic editing applications to Synthetic refocusing (top), Image stylization (bottom) and our

depths captured by Canon 1D Mark III

(a) Microsoft selfie (iPhone) (b) Ours (iPhone) (c) Google camera (Nexus) (d) Ours (Nexus)

Figure 9: Qualitative comparison with the state-of-the-art methods [19, 12]. (a) Burst images Denoising results from Mi-

crosoft selfie app [19]. (b) Our noise-free exposure fusion results. (c) HDR+ results from Google camera app [12]. (d) Our

noise-free exposure fusion results. (a), (b) are captured by an iPhone 5S and (c), (d) are captured by a Nexus 6.
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