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Figure 1: Result of branch structure estimation from simulated and real leafy plant images. From multi-view plant images,

our method infers the branch structure in a probabilistic framework. An explicit graph structure (red lines) can be derived

from the probabilistic plant model.

Abstract

This paper describes a method for inferring three-

dimensional (3D) plant branch structures that are hidden

under leaves from multi-view observations. Unlike previ-

ous geometric approaches that heavily rely on the visibility

of the branches or use parametric branching models, our

method makes statistical inferences of branch structures in

a probabilistic framework. By inferring the probability of

branch existence using a Bayesian extension of image-to-

image translation applied to each of multi-view images, our

method generates a probabilistic plant 3D model, which

represents the 3D branching pattern that cannot be directly

observed. Experiments demonstrate the usefulness of the

proposed approach in generating convincing branch struc-

tures in comparison to prior approaches.

1. Introduction

We propose an approach to estimate branch (skele-

ton) structures of plants from multi-view images that are

severely occluded by leaves. Unveiling hidden skeleton

structures is one of the most challenging tasks in computer

vision, because it naturally involves inference of the unob-

served structures. Skeleton estimation is actively studied for

human pose estimation [6]. A recent trend in image-based

human skeleton estimation relies on the prior knowledge of
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the relationship among joints for extracting and interpret-

ing joints from images. Unlike human bodies, the branch

structures of plants are less organized, namely, the number

of joints and their connections are generally unknown. In

addition, heavy occlusions due to leaves makes the problem

harder. These aspects pose a unique challenge in plant’s

structure estimation. Although difficult, branch structure

estimation has a number of applications, such as synthetic

plant generation in computer graphics and computational

agriculture.

Toward this goal, this paper presents a multi-view image-

to-image translation approach to 3D branch structure es-

timation. To estimate the branching paths hidden under

leaves, we cast the estimation problem to an image-to-image

translation problem [12], which converts an image from one

domain to another domain. In our context, we convert an

input image of a leafy plant to a map that represents the

branch structure, i.e., each pixel containing the prediction

of “branch” or “not-branch”. To deal with the uncertainty of

the prediction, we develop a Bayesian extension of image-

to-image translation applied to each of the multi-view im-

ages. It yields the prediction together with its reliability,

resulting in probabilistic estimates in a similar manner to a

Bayesian semantic segmentation approach [13].

The probabilistic representation is advantageous in a few

important aspects; not only that we have access to the cred-

ibility of the estimates, but also that it allows us to con-

solidate the view-dependent inferences in a 3D space in a

well-defined probabilistic framework. Thus, in our method,
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instead of directly predicting 3D branch structures, it makes

inference in individual views of the multi-view input and

subsequently aggregate them in a 3D voxel space to obtain a

probabilistic 3D plant model. We also develop a method for

generating explicit branch structures from the probabilistic

model based on particle flows so that the probabilistic rep-

resentation can be converted to a form that could be used

in intended applications. A few examples of the output are

shown in Fig. 1.

The primary contributions of this study are twofold.

First, we propose a method of recovering 3D structures of a

plant based on Bayesian image-to-image (leafy- to branch-

image) translation applied in a multi-view manner. By rep-

resenting the branchness in a probabilistic framework, we

show that both faithful estimates and comprehensive aggre-

gation over multi-view predictions can be achieved. Sec-

ond, we show that the branch structure estimation is made

possible by the proposed approach, together with a method

for extracting explicit branch structures from the probabilis-

tic representation. Experimental results show that the pro-

posed method can generate convincing branch structures

even with severe occlusions by leaves and other branches.

In comparison to a traditional tree reconstruction approach,

we found notable improvement in the resultant 3D branch-

ing structure.

2. Related Works

Our goal is to reconstruct a 3D branch structure of a plant

from multi-view images that exhibit severe occlusions due

to plant leaves. At the heart of the proposed method, we de-

velop a Bayesian extension of image-to-image translation

for making statistical predictions of branch existence even

for the parts that are not observed at all. In what follows,

we discuss the prior arts for 3D reconstruction of plants and

trees, image-to-image translation and Bayesian neural net-

works that are related to our work.

3D reconstruction of plants and trees. (Semi-) auto-

matic 3D modeling of plants and trees is actively studied

in the graphics community [32] because of their impor-

tance as a rendering subject and that their manual model-

ing is notably time-consuming. Interactive 3D modeling

methods of trees using manually provided hints, e.g., lines,

are proposed in the early 00’s [4, 21]. Growth models of

trees, which include branching rules, are occasionally uti-

lized [10, 29, 22], some of them are augmented by realis-

tic textures [16]. These approaches generally heavily rely

on the branch models (or rules), and the resulting structure

cannot deviate much from the presumed models.

On the other hands, an approach based on observa-

tions of real-world trees that uses photographs [27] or 3D

scans [34, 17] is shown promising for automatic tree mod-

eling. Several tree modeling approaches using multi-view

images have been proposed [25, 31, 20]. These approaches

have been further extended to single-image based meth-

ods [30, 2] for better applicability. The major focus of the

most image-based modeling approaches has been to gen-

erate 3D tree models that well fit the silhouette or vol-

umes, not necessarily aiming at recovering branch struc-

tures. Using multi-view images of bare trees, previous

approaches achieve geometric reconstruction of a branch

structure [18, 28, 35]; however, leaves of plants or trees

make 3D reconstruction considerably difficult due to occlu-

sions. The scope of plant modeling now goes beyond com-

puter graphics and is becoming an important application of

computer vision, i.e., analysis of plant shapes and growth

for vision-assisted cultivation and plant phenotyping. Our

method aims to recover branch structures via a multi-view

approach with an emphasis on dealing with uncertainty due

to severe occlusions by leaves.

Apart from the plant and tree context but somehow re-

lated, recently human skeleton (structure) estimation shows

a great success [23, 6]. The task has a similarity to what we

study in this paper; however, the plant and tree branch struc-

ture estimation has its unique difficulty in that the number

of joints and their relationships are generally unknown and

complex.

Image-to-image translation. Image-to-image translation

aims at transferring contextual or physical variation be-

tween the source and target images. The early works on

image-to-image translation include image analogies [11]

and texture transfer [8]. Commonly, these approaches di-

vide the image into small patches and transfer the change

based on patch-wise correspondences [14, 3, 7]. More re-

cent image-to-image translation largely benefits from deep

learning, such as convolutional neural networks (CNNs)

with encoder-decoder architectures or using Generative Ad-

versarial Networks (GANs). Pix2Pix [12], which uses con-

ditional GAN, shows impressive performance on a wide

variety of translation tasks. Along this context, Cycle

GAN [37] has shown the possibility of image-to-image

translation without paired training images.

Bayesian neural networks To obtain reliability of infer-

ence, a Bayesian framework has been used together with

neural networks in Bayesian neural networks (BNNs) [19].

Recent BNNs use dropout connections in forward passes

in the prediction stage [9], which yields variations in infer-

ence. The estimate is thus given in the form of distribution

rather than a point, effectively modeling the uncertainty of

the prediction. This approach can be regarded as an approx-

imation of Monte Carlo integration in traditional Bayesian

approaches [15]. An impressive result has been shown in

Bayesian SegNet [13] that achieves semantic segmentation

augmented by the prediction reliability. Our method also

uses the Bayesian approach in image-to-image translation

task in order for obtaining the probabilistic representation

of the branch structures.

2907



2) Probabilistic 3D branch 
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Figure 2: Overview of our plant’s branch structure modeling. The proposed method first estimates the 2D branch existence

probability on multi-view images using a Bayesian extension of image-to-image translation. The 2D probabilities are then

consolidated in a 3D voxel space to form a volume of 3D branch probability. An explicit 3D branch structure is generated by

particle flow simulation based on the 3D probability map.

3. Probabilistic Branch Structure Modeling

Our method takes as input multi-view images of a plant

and generates a probabilistic 3D branch structure in a 3D

voxel space. Our method begins with estimating a 2D

probabilistic branch existence map in each of the multi-

view images based on an altered image-to-image trans-

lation method. Once the probabilistic branch existence

map is computed for each view, they are merged in a 3D

voxel space using the estimated camera poses based on a

structure-from-motion method [33] to yield a probabilistic

3D branch structure. Finally, an explicit 3D branch struc-

ture is generated by a particle flow simulation, which is in-

spired by a traditional tree modeling approach [20], using

the probabilistic 3D branch structure. Figure 2 illustrates

the whole pipeline of the proposed method. In what follows,

we explain the individual steps of the proposed method.

3.1. Bayesian image­to­image translation

From a leafy plant image, we first estimate a pixel-wise

2D branch existence probability. The major challenge is to

infer branch structure hidden under leaves, which cannot be

directly observed by a camera, possibly not from any of the

viewpoints. It is here that we adopt a Pix2Pix approach [12]

to image-to-image translation as a mean to derive a statis-

tically valid prediction of the existence of branches in the

multi-view images. For our context, we train a Pix2Pix net-

work using pairs of a leafy plant and its corresponding label

map describing the branch region.

To obtain a meaningful probabilistic branch existence as

output, we use the original image-to-image translation ap-

proach in a Bayesian deep learning framework [9, 19] by

Monte Carlo sampling via dropout at the inference stage.

By adopting this fluctuation and repeating the prediction

multiple times, we obtain a probability of the branch exis-

tence for each pixel. This strategy is implemented by insert-

ing dropout layers before the middle four convolution lay-

(a) Two samples generated by 
Bayesian image-to-image translation

(b) Variance in 100 samples

superposition variance

Figure 3: Effect of Bayesian image-to-image translation in

branch generation. Two generated samples contain differ-

ences in small branches (a). The variance in a larger num-

ber of samples (b) shows the uncertainty in the prediction,

which cannot be obtained from a single inference.

ers in the encoder-decoder network of Pix2Pix. To further

increase variations of inference, dropout is additionally ap-

plied to skip connections [26] of Pix2Pix. Figure 3 shows an

example of output variations by this Bayesian branch gen-

eration. Multiple inferences yield the degree of uncertainty,

which cannot be obtained by a single inference.

As such, we obtain the mean of variational inferences

from the image-to-image translation network. By treating

the variational inferences as stochastic samples, each pixel

in the mean inference can be regarded as the probability of

branch existence spanned in [0, 1]. For the i-th image Ii, the

branch probability B2Di
: R2 → [0, 1] at a pixel x2D ∈ R

2

is written as:











B2Di
(x2D) =

1

nv

∑

v

B̂2Di,v
(x2D),

B̂2Di,v
= πv(Ii),

(1)

where πv denotes the Pix2Pix translation from an image Ii
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(a) (c) (d)(b)

Figure 4: Visualizations of branch probability: a) an input image, b) the ground truth branch, c) 2D branch probability

generated by Bayesian image-to-image translation, d) a 2D projection of 3D branch probability via 3D aggregation. Although

image-to-image translation (c) infers a few branches as low probability due to heavy occlusions (e.g., in the circle), they are

recovered by 3D probability generation (d) due to votes from other views.

to the corresponding branch existence B̂2Di,v
with the v-th

variation of random dropout patterns. The probability map

B2Di
for each viewpoint i is then obtained by marginalizing

the individual samples B̂2Di,v
over random trials v.

3.2. Probabilistic 3D branch structure generation

Once the view-wise probability maps {B2Di
} are ob-

tained, our method estimates a 3D probability map B3D of

the branch structure defined in the 3D voxel coordinates.

From the multi-view input images, we estimate the camera

poses and intrinsic parameters by a structure-from-motion

method [33]. It yields a set of projection functions {θ} that

map from the 3D voxel to image coordinates, θ : R3 → R
2.

Using the projections {θ}, the probability of the branch ex-

istence B3D at voxel x3D ∈ R
3 can be computed as a joint

distribution of {B2Di
} by assuming their independence as

B3D(x3D) =
∏

i

B2Di
(θi(x3D)), (2)

in which θi represents a projection from the voxel to the

i-th image coordinates. This aggregation process can be

regarded as a back projection, which is used in traditional

computed tomography [5]. While any of the views may not

convey complete information of the branch structure due to

heavy occlusions, the aggregation effectively recovers the

branch structure in a probabilistic framework as depicted in

Fig. 4 (d). To avoid numerical instability, Eq. (2) is com-

puted in the log domain.

3.3. Explicit branch generation using particle flows

The probabilistic 3D branch structure can be converted

to an explicit representation of 3D branch models that can

be used for applications in computer graphics and branch

structure analysis. Inspired by a conventional tree model-

ing approach [20], we develop a branch structure generation

method using particle flows. Instead of relying on the at-

tractor graph that is computed directly from images in [20],

Input Ground truth Generated branches

Figure 5: Different branch structures (shown in red and

blue) generated from the same branch probability map, by

changing position and the number of initial particles.

our method uses the 3D probability map to regulate the par-

ticle movement for generating branch path candidates. Fi-

nally, the candidates are consolidated via structure refine-

ment that includes smoothing and simplification. The re-

sulting 3D model is represented by a graph that consists of

nodes and edges that correspond to joints and branches. Us-

ing the particle-flow-based method, our method can yield

different plant structures from a single probability map, by

changing position and numbers of initial particles as shown

in Fig. 5. This is one of the merits of our probabilistic plant

modeling for graphics applications.

We first generate particles proportionally to the log prob-

ability map logB3D for avoiding the peaky distribution in

the canonical domain. Also, the root position r ∈ R
3 of the

plant is set to the bottommost point that has a high probabil-

ity of being a part of branches. Under these settings, starting

from random distribution of particles, the particle positions

are iteratively updated in a manner of flow simulation. At

each step t, the (t+1)-th particle position pt+1 is computed

by the following update rules:
{

pt+1 ← pt + F(pt),

F(pt) = λcFc(pt) + λdFd(pt) + λrFr(pt).
(3)

As illustrated in Fig. 6, Fc(pt) and Fd(pt) represent nor-

2909



unify

Particle

Particle flow

Root 

Figure 6: Particle flow simulation. At each step, particles

move according to the force computed from the 3D branch

probability. The traces of particles are stored as branch path

candidates.

(a) (b)

Figure 7: Branch structure refinement: a) Branch structure

candidates by flow simulation, and b) the final output after

refinement and simplification.

malized vectors toward and parallel to the stream of branch

probability. Fr(pt) represents the unit direction from pt to

the root point r of the plant. These directions are linearly

combined with weight factors λc, λd, and λr that are deter-

mined empirically. The traces of the particles are recorded

in a tree graph as vertices and edges, and a unification of

particles is treated as a joint.

While the flow simulation generates a lot of branch can-

didates as shown in Fig. 7(a), they are simplified and refined

to yield the final structure. The refinement process involves

(1) Smoothing: Apply low-pass filter along branch paths.

We simply update the position of each vertex to the mass

center of neighboring vertices, (2) Refinement: Move each

vertex toward the direction of local probability maximum

perpendicular to current branch direction, and (3) Simplifi-

cation: Unify vertices located close to each other, and delete

subtrees that locate in areas with small probability. We it-

erate the steps (1)–(3) several times and acquire the final

branches as a tree graph structure as shown in Fig. 7(b).

3.4. Implementation Details

Here we describe some implementation details on the

Bayesian image-to-image translation and 3D branch gen-

eration.

Generator training. For generating the view-wise proba-

bility maps {B2Di
}, we train the Pix2Pix network using im-

ages rendered using 10 synthetic plants. The plant models

are created by changing the parameters of a self-organizing

tree model [22], which is implemented in L-studio [24], an

L-system-based plant modeler. For each plant, we render

images viewed from 72 viewpoints, and each image is addi-

tionally flipped for data augmentation. As a result, the total

number of images is 10× 72× 2 = 1440. Because Pix2Pix

employs PatchGAN [12] that divides an image into patches

for training, we find that this number of images is sufficient

for training the generator πi of Eq. (1).

The 2D branch probability estimation is implemented

by modifying a TensorFlow implementation of Pix2Pix [1].

To realize Bayesian image-to-image translation described

in Sec. 3.1, we modify the original implementation by

adding dropout layers to each of four central layers of the

encoder and decoder blocks. Since we intend to model the

uncertainty of contextual information in deeper layers (i.e.,

branch patterns), we set a larger dropout rate in central lay-

ers (0.8 for the innermost layer, 0.7 and 0.6 for the next two,

and 0.5 for the outermost layer). Although [13] uses a fixed

dropout rate (0.5), they also report that applying dropout

only for central layers yields better performance for seg-

mentation tasks. We additionally use dropout for all the skip

connections with a fixed dropout rate 0.3. The inference is

repeated 100 times by randomly changing the dropout pat-

terns. A previous work reports tens of iterations are suffi-

cient to obtain the probability distributions [13].

Explicit branch generation. For particle flow simulation

described in Sec. 3.3, we generate approximately 10, 000
particles in the 3D space. Let logB3D(Sr(pt)) as the sub-

set of the log-probability map around the particle location

pt within radius r, we computed Fc(pt) and Fd(pt) as the

mass center and a major axis of logB3D(Sr(pt)). We set

λr as a constant (0.1 in our experiment) but change λc and

λd according to the distance dc between pt and mass center

of B3D(Sr(pt)) as

λc =
dc

r
(1− λr), λd = 1− λr − λc. (4)

In this manner, λc becomes smaller when the mass center

gets closer to pt. The implementation of the weight control

is based on the previous approach [20].

Resolution and processing time. We used 128×128 [px]

images for Pix2Pix, and they were upsampled to 1024 ×
1024 [px] for the 3D aggregation process. With our unop-

timized implementation, it took approximately 10 [sec] for

the Pix2Pix with variational inference (100 inferences) per

a viewpoint using an NVIDIA GeForce GTX 1080 GPU.

Also, it took 1 [min] for 3D aggregation, and 30 [sec] for

particle simulation on a CPU (3.70GHz, 6 cores).
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Geometric error Structure error

(Euclidean distance) (difference in joint numbers)

Number of cameras 72 36 12 6 72 36 12 6

2D

branch map

{B2Di
}

Visible branch region 4.20 3.98 3.59 18.05 0.6 0.6 1.0 40.4

Whole plant region [20] 12.37 18.12 24.75 17.44 305.4 117.6 65.4 35.0

Image-to-image translation 1.76 2.26 2.40 14.95 0.8 8.2 13.6 88.2

Bayesian image-to-image translation (proposed) 1.69 1.74 2.14 14.53 0.4 1.4 7.4 60.2

Table 1: The accuracy of 3D branch structure generated using different settings and number of views (averaged over five

simulated plants). The geometric error is defined on a relative scale.

A semi-circle (side-view, 12 images)

A quarter circle (side-view, 6 images)

Whole hemisphere 
(72 images)

Visualization 
in Figure 10 

Semi-circles (three heights, 36 images)

Figure 8: Camera setting employed in the experiments.

4. Experiments

We conduct experiments using simulated and real-world

plant images and assess the quality of the reconstruction

both quantitatively and qualitatively.

4.1. Simulated plants

Quantitative evaluation. We first describe the experi-

mental result using simulated plant models, which have the

ground truth branches for quantitative evaluation. The accu-

racy of generated plants by the proposed method is assessed

using two metrics; geometric and structure errors.

The geometric error evaluates the Euclidean distances

between 3D points in the generated 3D branch structure

and points in the ground truth branches. We use a graph

representation of the generated 3D branch structure and the

ground truth. By sampling 3D points on the graph edges of

both generated and the ground truth branches, we assess the

geometric error. Let g ∈ G and t ∈ T be generated and

true 3D branch points, respectively. The geometric error is

defined as a bidirectional Euclidean distance d [36] between

the two point sets written as

d(G, T ) =
1

2

(
∑

G
||g −NT (g)||

|G|
+

∑

T
||t−NG(t)||

|T |

)

,

where NG(x) and NT (x) are functions to acquire the near-

est neighbor point to x from point sets G and T , respec-

tively, and |G| and |T | denote the numbers of points in G
and T . The geometric error is defined only up to scale be-

cause our branch recovery method is also up to scale like

most multi-view 3D reconstruction methods.

We define the structure error as the difference in joint

numbers between the generated and the ground truth struc-

tures. From a tree graph generated by the explicit branch

generation, we count the number of graph vertices, where

the number of connected edges is three (i.e., one incoming

and two outgoing) or more, for assessing the accuracy of

structure recovery.

Using these error metrics, we assess the method using

four different settings described below:

• Visible branch region: As the easiest test case, we

use the ground truth branch regions in multi-view im-

ages that are not occluded by leaves. It naturally skips

the image-to-image translation process because the 2D

branch structure map {B2Di
} is directly given.

• Whole plant region: In this test case, to compare with

the image-to-image translation strategy in our prob-

lem, a whole plant (i.e., branches and leaves) region

is directly used without image-to-image translation for

defining the probability map {B2Di
}. This setting is

akin to the previous tree modeling method [20], which

generates branches that fit the entire volume of a tree

by a particle flow simulation.

• Image-to-image translation: In this case, the 2D

probability map {B2Di
} are generated by the original

image-to-image translation [12], where the Bayesian

extension is not employed.

• Bayesian image-to-image translation (Proposed): In

this setting, we use the proposed method, with which

branch probability maps {B2Di
} are generated by the

Bayesian image-to-image translation.

For the evaluation, we use five plant 3D models, where

the branching parameters are different from the training

dataset described in Sec. 3.4. To assess the effect of the

varying number of cameras, we generate branch structures

from multi-view images (a) covering a whole hemisphere

(72 cameras), (b) camera paths on semi-circles at three

heights (36 cameras), (c) a semi-circle (12 cameras), and

(d) a quarter circle (6 cameras), as illustrated in Fig. 8.

Results. Table 1 summarizes the accuracy evaluation of

the four settings with varying number of views, and Fig. 9
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(b) Visible branch region (c) Whole plant region (d) Image-to-image

         translation

(e) Bayesian image-to-image

         translation (Proposed)

(a1)

(a2) 

3D branch probability

Estimated branches

Figure 9: Results using a simulated plant. The leftmost column shows (a1) an input image and (a2) the ground truth branch

structure. The other columns show the 3D branch probability and the resultant branch structures using different settings. In

comparison to other settings, the proposed approach (e) generates accurate and stable branch structure.

(a) Full hemisphere
(72 images)

(b) Semicircle, three heights
(36 images)

(c) Semicircle, side view
(12 images)

Figure 10: Results when reducing the cameras. The ground

truth branch is shown in bottom left corner.

shows some of the results when using 72 images. The pro-

posed approach generates accurate branch structures across

all the view settings in geometric error, while the accuracy

degrades in the smaller number of views. For the case of

“visible branch regions,” although we extracted the ground

truth branch labels seen from each camera, branches are

occluded by leaves and there are parts that are unobserved

from most of the viewpoints, resulting in greater geometric

errors. The case of “image-to-image translation,” the output

includes branch paths that are not supported by the reliabil-

ity of inference, instead generated from one sample, which

results in small sub-branches (see Fig. 9(d)). Since the pro-

(a) Ground truth (c) All regions (d) Image-to-image 
translation

(e) Proposed(b) Visible
branches

Figure 11: Results using a plant of a different species than

the ones used for training.

posed approach averages multiple inferences, the estimated

branches become more stable and precise compared to the

non-Bayesian approach, thus shows better agreement be-

tween the estimated probability map and the branch paths.

Figure 10 compares the results of the proposed method

together with the Bayesian image-to-image translation

along the varying number of views. It can be seen that the

more views make the estimation more faithful, while the

method is still able to recover the overall branch structures.

Different species. To study the generalization ability, we

apply the proposed method to plant models where their

species (i.e., texture and shape of leaves) are different from

the simulated plants used for training. Figure 11 shows that

the proposed method still generates accurate branch struc-

tures compared to the other approaches even for different

leaf textures.
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48 images

15 images
(a) Camera position (b) Input image (c) 2D branch probability (d) 3D branch probability (e) Branch structure by

the proposed method
(f) Branch structure

using a whole plant region

Figure 12: Results using real plants. Using input images where the foreground plants are extracted (b), the proposed approach

generates convincing branch structures (e), in comparison to branch structures generated by a previous tree reconstruction

approach [20] (f).

0
1
2
3
4
5
6

Whole
plant

Image-to-image
translation

Proposed

N
at
ur
al
ne
ss

Real
Simulated

Figure 13: Subjective evaluation of the branch naturalness.

4.2. Real plants

Now we show the result of the proposed method using

the images of real-world plants. In this experiment, we

use the same trained model for the image-to-image trans-

lation that is used in the simulation experiment in Sec. 4.1.

To avoid the unmodelled factors in the experiment, we first

manually extract the plant regions from images, which can

be alternatively achieved by chroma keying. Figure 12

shows the results including the intermediate outputs in com-

parison to the method [20]. The proposed method qualita-

tively yields convincing branch structures, even though the

image-to-image translation network is trained using simu-

lated plants. Compared with a previous tree reconstruction

approach [20], our approach shows its effectiveness in gen-

erating the branch structure under leaves.

Since for this experiment we did not have access to the

ground truth, we conducted a small subjective evaluation by

10 participants to assess the perceptual naturalness of output

plant skeletons. The participants were asked to watch the

skeletons generated by each method overlaid on the plant

image and assessed naturalness of the skeletons in a 7-step

Likert scale. Figure 13 summarizes the result. The pro-

posed approach yields the best score among the compar-

isons, and the trend is consistent with the evaluation of sim-

ulated plants.

5. Discussion

We presented a plant modeling approach via image-to-

image translation to estimate branch structures of 3D plants

from multi-view images, even if the branches are occluded

under leaves. The combination of Bayesian image-to-image

(leafy- to branch-image) translation and 3D aggregation

generates the branch existence probability in a 3D voxel

space, resulting in a probabilistic model of a 3D plant struc-

ture. We have shown that explicit branch structures can be

generated from the probabilistic representation via particle

flow simulation.

The experimental results using simulated plants showed

that the proposed approach is able to generate the accurate

recovery of the branch structure of a plant compared with

a previous tree modeling approach [20]. It has also been

shown that a Bayesian extension of image-to-image transla-

tion is effective in obtaining a stable estimate of the branch

structure in the form of probability compared with a non-

Bayesian one. Qualitatively, the result also applies to the

real-world plants as demonstrated in the experiment.

One of the advantages of our probabilistic approach is

that it can generate a variety of plant branch structures from

a single branch probability map, by changing the parame-

ters of particle flow simulation, as shown in Fig. 5, which

may benefit computer graphics applications.
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and B. Benes. Inverse procedural modelling of trees. Com-

puter Graphics Forum, 33(6):118–131, 2014.

[29] L. Streit, P. Federl, and M. C. Sousa. Modelling plant varia-

tion through growth. Computer Graphics Forum, 24(3):497–

506, 2005.

[30] P. Tan, T. Fang, J. Xiao, P. Zhao, and L. Quan. Single image

tree modeling. ACM Trans. on Graphics, 27(5):108, 2008.

[31] P. Tan, G. Zeng, J. Wang, S. B. Kang, and L. Quan. Image-

based tree modeling. ACM Trans. on Graphics, 26(3):87,

2007.

[32] K. W. Waite. Modelling natural branching structures. Com-

puter Graphics Forum, 7(2):105–115, 1988.

[33] C. Wu. Towards linear-time incremental structure from mo-

tion. In Proc. Int’l Conf. on 3D Vision (3DV’13), pages 127–

134, 2013.

[34] H. Xu, N. Gossett, and B. Chen. Knowledge and heuristic-

based modeling of laser-scanned trees. ACM Trans. on

Graphics, 26(4):19, 2007.

[35] D. Zhang, N. Xie, S. Liang, and J. Jia. 3D tree skeletoniza-

tion from multiple images based on PyrLK optical flow. Pat-

tern Recognition Letters, 2015.

2914



[36] J. Zhu, S. Du, Z. Yuan, Y. Liu, and L. Ma. Robust affine

iterative closest point algorithm with bidirectional distance.

IET Computer Vision, 6(3):252–261, 2012.

[37] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-

to-image translation using cycle-consistent adversarial net-

works. In Proc. Int’l Conf. on Computer Vision (ICCV’17),

2017.

2915


