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Abstract

To work at scale, a complete image indexing system com-

prises two components: An inverted file index to restrict

the actual search to only a subset that should contain most

of the items relevant to the query; An approximate dis-

tance computation mechanism to rapidly scan these lists.

While supervised deep learning has recently enabled im-

provements to the latter, the former continues to be based

on unsupervised clustering in the literature. In this work, we

propose a first system that learns both components within a

unifying neural framework of structured binary encoding.

1. Introduction

Decades of research have produced powerful means to

extract features from images, effectively casting the visual

comparison problem into one of distance computations in

abstract spaces. Whether engineered or trained using con-

volutional deep networks, such vector representations are at

the core of all content-based visual search engines. This ap-

plies particularly to example-based image retrieval systems

where a query image is used to scan a database for images

that are similar to the query in some way: in that they are

the same image but one has been edited (near duplicate de-

tection), or because they are images of the same object or

scene (instance retrieval), or because they depict objects or

scenes from the same semantic class (category retrieval).

Deploying such systems requires conducting nearest

neighbour search in a high-dimensional feature space. Both

the dimension of this space and the size of the database

can be very large, which imposes severe constraints on stor-

age (memory footprint of database items) and computation

(search complexity). Exhaustive exact search must be re-

placed by approximate, non-exhaustive search. To this end,

two main complementary methods have emerged, both re-

lying on variants of unsupervised vector quantization (VQ).

The first such method, introduced by Sivic and Zisserman

[25] is the inverted file system that relies on a partition of the

feature space into a set of mutually exclusive bins. Search-

ing thus amounts to first assigning the query image to one or

several such bins, and then ranking the resulting shortlist of

images associated to these bins using the Euclidean distance

(or some other similarity measure) in feature space.

The second method, introduced by Jegou et al. [15], con-

sists of using efficient approximate distance computations

as part of the ranking process. This is enabled by feature

encoders producing compact representations of the feature

vectors that further do not need to be decompressed when

computing the approximate distances. This type of ap-

proaches, which can be seen as employing block-structured

binary representations, superseded the (unstructured) binary

hashing schemes that dominated approximate search.

Despite its impressive impact on the design of image rep-

resentations [11, 1, 10, 23], supervised deep learning is still

limited in what concerns the approximate search system it-

self. Most recent efforts focus on supervised deep binary

hashing schemes, as discussed in the next section. As an

exception, the work of Jain et al. [13] employs a block-

structured approach inspired by the successful compact en-

coders referenced above. Yet the binning mechanisms that

enable the usage of inverted files, and hence large-scale

search, have so far been neglected.

In this work we introduce a novel supervised inverted

file system along with a supervised, block-structured en-

coder that together specify a complete, supervised, image

indexing pipeline. Our design is inspired by the two meth-

ods of successful indexing pipelines described above, while

borrowing ideas from [13] to implement this philosophy.

Our main contributions are as follows: (1) We propose

the first, to our knowledge, image indexing system to reap

the benefits of deep learning for both data partitioning and

feature encoding; (2) Our data partitioning scheme, in par-

ticular, is the first to replace unsupervised VQ by a super-

vised approach; (3) We take steps towards learning the fea-

ture encoder and inverted file binning mechanism simul-

taneously as part of the same learning objective; (4) We

establish a wide margin of improvement over the existing

baselines employing state-of-the art deep features, feature

encoders and binning mechanism.

14933



2. Background

Approximating distances through compact encoding

Two main approaches exist for approximate distance com-

putation. Hashing methods [26] employ Hamming dis-

tances between binary hash codes. Originally unsuper-

vised, these methods recently benefited from progress in

deep learning [27, 28, 30, 17, 18, 19, 7], leading to bet-

ter systems for category retrieval in particular. Structured

variants of VQ, on the other hand, produce fine-grain ap-

proximations of the features through very compact codes

[3, 8, 9, 12, 15, 16, 20, 29] that enable look-up table-based

efficient distance computations. Contrary to hashing meth-

ods, VQ-based ones have not benefited from supervision so

far. However, Jain et al. [13] recently proposed a super-

vised deep learning approach that leverages the advantages

of structured compact encoding and yields state-of-the-art

results on several retrieval tasks. Our work extends this

supervised approach towards a complete indexing pipeline,

that is, a system that also includes an inverted file index.

Scanning shorter lists with inverted indexes For further

efficiency, approximate search is further restricted to a well

chosen fraction of the database. This pruning is carried out

by means of an Inverted File (IVF), which relies on a parti-

tioning of the feature space into Voronoi cells defined using

K-means clustering [14, 2]. Two things should be noted:

The method to build the inverted index is unsupervised and

it is independent from the way subsequent distance approx-

imations are conducted (e.g., while VQ is used to build

the index, short lists can be scanned using binary embed-

dings [14]). In this work, we propose a unifying supervised

framework. Both the inverted index and the encoding of

features are designed and trained together for improved per-

formance. In the next section, we expose in more detail the

existing tools to design IVF/approximate search pipelines,

before moving to our proposal in Section 4.

3. Review of image indexing

Image indexing systems are based on two main compo-

nents: (i) an inverted file and (ii) a feature encoder. We

describe here how they are used, thus laying out the moti-

vation for the method we introduce in Section 4.

IVF partitions by means of VQ the database into bins, a

subset of which is searched at query time [25, 15, 2]. Given

a vector x ∈ R
d and a codebook D = [dk ∈ R

d]Nk=1, the

VQ representation of x in D is obtained by solving1

n = argmink ‖x− dk‖
2
2, (1)

1Notation: We denote [v1, . . . ,vK ] = [vk ∈ R
d]M

k=1
the matrix in

R
d×M having columns vk ∈ R

d, or simply [vk]k . For scalars ak , [ak]k
denotes a column-vector with entries ak . The column vector obtained by

stacking vertically vectors vk is noted COL (v1, . . . ,vK). We further let

v[k] denote the k-th entry of vector v.

where n is the codeword index for x and dn its reconstruc-

tion. Given a database {xi}i of image features, and letting

ni represent the codeword index of xi, the database is par-

titioned into N index bins Bn. These bins, stored along

with metadata that may include the features xi or a com-

pact representation thereof, is known as an inverted file. At

query time, the bins are ranked by decreasing pertinence

n1, . . . , nN relative to the query feature x∗ so that

‖x∗ − dn1
‖ ≤ . . . ≤ ‖x∗ − dnN

‖, (2)

i.e., by increasing order of reconstruction error. Using this

sorting, one can specify a target number of images T to

retrieve from the database and search only the first B bins

so that
∑B−1

k=1 |Bnk
| ≤ T ≤

∑B

k=1 |Bnk
|.

It is important to note that all existing state-of-the-art in-

dexing methods employ a variant of the above described

mechanism that relies on K-means-learned codebooks D.

To the best of our knowledge, ours is the first method to

reap the benefits of deep learning to build an inverted file.

Feature encoder The inverted file outputs a shortlist of

images with indices in
⋃B

k=1 Bnk
, which needs to be effi-

ciently ranked in terms of distance to the query This is en-

abled by compact feature encoders that allow rapid distance

computations without decompressing features. It is impor-

tant to note that the storage bitrate of the encoding affects –

besides storage cost – search speed, as higher bitrates means

that bins need to be stored in secondary storage, where look-

up speeds are a significant burden.

State-of-the art image indexing systems use feature en-

coders that employ a residual approach: A residual is com-

puted from each database feature x and its reconstruction

dn obtained as part of the inverted file bin selection in (1):

rn = x− dn. (3)

This residual is then encoded using a very high resolution

quantizer. Several schemes exist [6, 15] that exploit struc-

tured quantizers to enable low-complexity, high-resolution

quantization, and herein we describe product quantizers and

related variants [15, 20, 8]. Such vector quantizers employ

a codebook C ∈ R
d×KM

with codewords that are them-

selves additions of codewords from M smaller constituent

codebooks Cm = [cm,k]k ∈ R
d×K ,m = 1, . . . ,M , that

are orthogonal (∀m 6= l,CT
mCl = 0):

C =
[

∑M

m=1
cm,km

]

(k1,...,kM )∈(1,...,K)M
. (4)

Accordingly, an encoding of r in this structured codebook is

specified by the indices (k1, . . . , kM ) which uniquely define

the codeword c from C, i.e., the reconstruction of r in C.

Note that the bitrate of this encoding is M log2(K).

Asymmetric distance computation Armed with such a

representation for all database vectors, one can very effi-

ciently compute an approximate distance between a query
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x∗ and all database features x ∈ {xi, i ∈ ∪B
k=1Bnk

} in

top-ranked bins. The residual of x∗ for bin Bn is

r∗n = x∗ − dn (5)

and the approach is asymmetrical in that this uncom-

pressed residual is compared to the compressed, recon-

structed residual representation c of the database vectors x

in bin Bn using the distance

‖r∗n − c‖22 =

M
∑

m=1

‖r∗n − cm,km
‖22. (6)

We define the look-up tables (LUT)

zn,m ,
[

‖r∗n − cm,k‖
2
2

]

k
∈ R

K (7)

containing the distances between r∗n and all codewords of

Cm. Building these LUTs enables us to compute (6) us-

ing
∑M

m=1 zm[km], an operation that requires only M table

look-ups and additions, establishing the functional benefit

of the encoding (k1, . . . , kM ).

To gain some insight into the above encoding, consider

the one-hot representation bm of the indices km given by

bm =
[

Jl = kmK
]

l
∈ KK , (8)

where J·K denotes the Iverson brackets and

KK , {a ∈ {0, 1}K , ‖a‖1 = 1}. (9)

Using stacked column vectors

b = COL (b1, . . . , bM ) ∈ KM
K and (10)

zn = COL (zn,1, . . . , zn,M ) ∈ R
MK
+ , (11)

distance (6) can be expressed as follows:

‖r∗n − c‖22 = zT
nb. (12)

Namely, computing approximate distances between a query

x∗ and the database features x ∈ {xi, i ∈ Bn} amounts to

computing an inner-product between a bin-dependent map-

ping zn ∈ R
MK of the query feature x∗ and a block-

structured binary code b ∈ KK
M derived from x. A search

then consists of computing all such approximate distances

for the B most pertinent bins and then sorting the corre-

sponding images in increasing order of these distances.

It is worth noting that most of the recent supervised bi-

nary encoding methods [27, 28, 30, 17, 18, 19, 7] do not

use structured binary codes of the form b in (12). The main

exception being SUBIC [13], which further uses a sorting

score that is an inner product of the same form as (12).
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KM
+

b̃ ∈ ∆M

K

b ∈ K
M

K

I x

Figure 1. The SUBIC encoder operates on the feature vector x pro-

duced by a CNN to enable learning of (relaxed) block-structured

codes (b̃) b. Blue, yellow, and green blocks are active, respec-

tively, only at training time, only at testing time and at train-

ing/testing times.

Figure 2. The discrete set K3

of one-hot encoded vectors, its

convex-hull ∆3, and the distri-

bution of relaxed blocks b̃m en-

forced by the SUBIC entropy

losses. Omitting the negative

batch entropy loss (19) would re-

sult in situations where p(b̃m) is

concentrated near only k < 3 of

the elements in K3.

4. A complete indexing pipeline

The previous section established how state-of-the-art

large-scale image search systems rely on two main compo-

nents: an inverted file and a functional residual encoder that

produces block-structured binary codes. While compact bi-

nary encoders based on deep learning have been explored

in the literature, inverted file systems continue to rely on

unsupervised K-means codebooks.

In this section we first revisit the SUBIC encoder [13],

and then show how it can be used to implement a complete

image indexing system that employs deep learning method-

ology both at the IVF stage and compact encoder stage.

4.1. Block­structured codes

The SUBIC encoder in Fig. 1 was the first to leverage

supervised deep learning to produce a block-structured code

of the form b ∈ KM
K in (10). At learning time, the method

relaxes the block-structured constraint. Letting

∆K =
{

a ∈ R
K
+ s.t.

∑

k
a[k] = 1

}

(13)

denote the convex hull of KK , said relaxation

b̃ ∈ ∆M
K (14)

is enforced by means of a fully-connected layer of output

size KM and ReLU activation with output z that is fed

to a block softmax non-linearity that operates as follows:

Let zm denote the m-th block of z ∈ R
KM such that

z = COL (z1, . . . , zM ). Likewise, let b̃m ∈ ∆K denote the

m-th block of the relaxed code b̃ ∈ ∆M
K . The block soft-

max non-linearity operates by applying a standard softmax
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Figure 3. Proposed indexing architecture. The proposed indexing architecture consists of a bin selection component, a residual computa-

tion component, and a feature encoder. We use blocks with square corners (labeled with a weights matrix) to denote fully-connected linear

operations, potentially followed by a ReLU or softmax (SM) nonlinearity. Blue, yellow, and green blocks are active, respectively, only at

training time, only at testing (i.e. database indexing / querying) time and at training/testing times. The residual block can be disabled to

define a new architecture, as illustrated by the switch at the bottom of the diagram.

non-linearity to each block zm of z to produce the corre-

sponding block b̃m of b̃:

b̃m =

[

exp (zm[k])
∑

l exp (zm[l])

]

k

. (15)

At test time, the block-softmax non-linearity is replaced by

a block one-hot encoder that projects b̃ unto ∆M
K . In prac-

tice, this can be accomplished by means of one-hot encod-

ing of the index of the maximum entry of zm:

bm =
[

Jk = argmax(zm)K
]

k
. (16)

The approach of [13] introduced two losses based on en-

tropy that enforce the proximity of b̃ to KM
K . The entropy

of a vector p ∈ ∆K , defined as

E(p) =
∑K

k=1
p[k] log2 (p[k]) , (17)

has a minimum equal to zero for deterministic distributions

p ∈ KK , motivating the use of the entropy loss

ℓE(b̃) ,
∑M

m=1
E(b̃m) (18)

to enforce the proximity of the relaxed blocks b̃m to

KK .This loss on its own, however, could lead to situations

where only some elements of KK are favored (c.f . Fig. 2),

meaning that only a subset of the support of the bm is used.

Yet entropy likewise has a maximum of log2(K) for uni-

form distributions p = 1
K
1. This property can be used to

encourage uniformity in the selection of elements of KK by

means of the negative batch entropy loss, computed for a

batch A = {b̃(i)}i of size |A| using

ℓB (A) , −
∑M

m=1
E
( 1

|A|

∑

i

b̃(i)m

)

. (19)

For convenience, we define the SUBIC loss computed on

a batch A as the weighted combination of the two entropy

losses, parametrized by the hyper-parameters γ, µ ∈ R+:

ℓ
γ,µ
S

(

A
)

,
γ

|A|

∑

b̃∈A
ℓE(b̃) + µℓB (A) . (20)

It is important to point out that, unlike the residual en-

coder described in §3, the SUBIC approach operates on the

feature vector x directly. Indeed, the SUBIC method is only

a feature encoder, and does not implement an entire index-

ing framework.

4.2. A novel indexing pipeline

We now introduce our architecture that uses the method

of [13] described above to build an entire image indexing

system. The system we design implements the main ideas

of the state-of-the-art pipeline described in Section 3.

Our proposed network architecture is illustrated in Fig.

3. The input to the network is the feature vector x consisting

of activation coefficients obtained by running a given image

I through a CNN feature extractor. We refer to this feature

extractor as the base CNN of our system.

Similarly to the design philosophy described in §3, our

indexing system employs an IVF and a residual feature en-

coder. Accordingly, the architecture in Fig. 3 consists of

two main blocks, Bin selection and Encoder, along with a

Residual block that links these two main components.

Bin selection The first block, labeled Bin selection in Fig.

1 can be seen as a SUBIC encoder employing a single block

(i.e. M = 1) of size N , with the block one-hot encoder sub-

stituted by an argmax operation. The block consists of a sin-

gle fully-connected layer with weight matrix W1 and ReLU

activation followed by a second activation using softmax.

When indexing a database image I , this block is responsi-

ble for choosing the bin Bn that I is assigned to, using the

argmax of the coefficients z′.
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Given a query image I∗, the same binning block is re-

sponsible for sorting the bins in decreasing order of perti-

nence Bn1
· · · BnN

using the coefficients z′∗ ∈ R
N
+ so that

z′∗[n1] ≥ . . . ≥ z′∗[nN ], (21)

in a manner analogous to (2).

(Residual) feature encoding Inspired by the residual en-

coding approach described in §3, we consider a block anal-

ogous to the residual computation of (3) and (5). The ap-

proach consists of building a vector (denoting ReLU as σ)

R2σ(R1b̃
′), (22)

analogous to the reconstruction dn of x obtained from the

encoding n following the IVF stage (cf. (1) and discussion

thereof), and subtracts it from a linear mapping of x:

r = Qx−R2σ(R1b̃
′). (23)

Besides the analogy to indexing pipelines, one other mo-

tivation for the above approach is to provide information

to the subsequent feature encoding b̃′ from the IVF bin se-

lection stage as well as the original feature x. For com-

pleteness, we also consider architectures that override this

residual encoding block, setting r = x directly (see Fig. 3).

The final stage consists of an M -block SUBIC encoder

operating on r and producing test-time encodings b ∈ KM
K ,

and training-time relaxed encoding b̃ ∈ ∆M
K . Note that,

unlike the residual approach described in §3, ours does not

incur the overhead required to compute LUTs using (7).

Searching Given a query image I∗, it is first fed to the

pipeline in Fig. 3 to obtain (i) the activation coefficients

z′∗ at the output of the W1 layer and (ii) the activation

coefficients z∗ at the output of the W2 layer. The IVF

bins are then ranked as per (21) and all database images
{

Ii, i ∈
⋃B

k=1 Bnk

}

in the B most pertinent bins are

sorted, based on their encoding bi, according to their score

z′∗Tb′i + z∗Tbi. (24)

Training We assume we are given a training set

{(I(i), y(i))}i organized into C classes, where label y(i) ∈
(1, . . . , C) specifies the class of the i-th image. Various

works on learning for retrieval have explored the benefit of

using ranking losses like the triplet loss and the pair-wise

loss as opposed to the cross-entropy loss succesfully used in

classification tasks [11, 27, 28, 30, 17, 18, 19, 7, 5]. Having

empirically found that the cross-entropy loss yields good

results in the retrieval task, we adopt it in this work.

Given an image belonging to class c and a vector p ∈
∆C that is an estimate of class membership probabilities,

the cross-entropy loss is given by (the scaling is for conve-

nience of hyper-parameter cross-validation)

ℓ (p, c) = −
1

log2 C
log2 p[c]. (25)

Accordingly, we train our network by enforcing that the

relaxed block-structured codes b̃′ and b̃ are good feature

vectors that can be used to predict class membership. We do

so by feeding each vector to a soft-max classification layer

(layers C1 and C2 in Fig. 3, respectively), thus producing

estimates of class membership s′ and s in ∆C (c.f . Fig.

3) from which we derive two possible task-related losses.

Letting T denote a batch specified as a set of training-pair

indices, these two losses are

L1,α =
1

|T |

∑

i∈T

[

αℓ
(

s′(i), y(i)
)

+ ℓ
(

s(i), y(i)
)

]

(26)

and L2 =
1

|T |

∑

i∈T

ℓ
(

s′(i) + s(i), y(i)
)

, (27)

where the scalar α ∈ {0, 1} is a selector variable. In order

to enforce the proximity of the b̃′ and b̃ to KN and KM
K ,

respectively, we further employ the loss

ΩH = ℓ
γ1,µ1

S

(

{b̃′(i)}i∈T

)

+ ℓ
γ2,µ2

S

(

{b̃(i)}i∈T

)

, (28)

which depends on hyper-parameters H = {γ1, µ1, γ2, µ2}
(see heuristics for their selection in §5). Accordingly, the

general learning objective for our system is

F∗ = L∗ +ΩH, (29)

and we consider three variants thereof:

(SUBIC-I) a non-residual variant with objective F1,1 cor-

responding to independently training the bin selection

block and the feature encoder;

(SUBIC-R) a residual variant with objective F1,0 where

the bin selection block is pre-trained and held fixed

during learning; and

(SUBIC-J) a non-residual variant with objective F2.

5. Experiments

Datasets For large-scale image retrieval, we use three

publicly available datasets to evaluate our approach: Ox-

ford5K [21]2, Paris6K [22]3 and Holidays [14]4. For large-

scale experiments, we add 100K and 1M images from Flickr

(Flickr100K and Flickr100K1M respectively) as a noise set.

For Oxford5K, bounding box information is not used. For

Holidays, images are used without correcting orientation.

For training, we use the Landmarks-full subset of the

Landmarks dataset [4]5, as in [11]. We could only get

2www.robots.ox.ac.uk/˜vgg/data/oxbuildings/
3www.robots.ox.ac.uk/˜vgg/data/parisbuildings/
4lear.inrialpes.fr/˜jegou/data.php
5sites.skoltech.ru/compvision/projects/

neuralcodes/
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Method Oxford5K Oxford5K* Paris6K Holidays Oxford105K Paris106K

DIR [11] 84.94 84.09 93.58 90.32 83.52 89.10

PQ [15] 46.57 39.45 57.57 48.23 38.73 42.23

SUBIC [13] 53.25 46.06 71.28 60.52 46.88 58.27

Table 1. Instance retrieval with encoded features. Performance (mAP) comparison using 64-bit codes, first row shows reference results

with original uncompressed features. When bounding box information is used for Oxford5K dataset, the performance degrades for both

PQ and SUBIC, shown in column Oxford5K*, as both are trained on full images.
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Figure 4. Large-scale image retrieval with complete pipelines. Plots of mAP vs. average shortlist size T . For all methods but IMI-PQ,

the n-th plotted point is obtained from all images in the first B = 2n bins. For IMI-PQ, the mAP is computed on the first T responses.

125,610 images for the full set due to broken URLs. In all

our experiments and for all approaches we use Landmarks-

full as the training set.

For completeness, we also carry out category retrieval

[13] test using the Pascal VOC6 and Caltech-1017 datasets.

For this test, our method is trained on ImageNet.

Base features The base features x are obtained from the

network proposed in [11], which extends the ResNet-101

architecture with region of interest pooling, fully connected

layers and ℓ2-normalizations. It enjoys state-of-the-art per-

6http://host.robots.ox.ac.uk/pascal/VOC/
7http://www.vision.caltech.edu/Image_Datasets/

Caltech101/

formance for instance retrieval, motivating its usage as base

CNN for this task.

Hyper-parameter selection For all variants of our ap-

proach (SUBIC-I, SUBIC-J, and SUBIC-R), we use N =
4096 bins and a SUBIC-(8, 256) encoder having M = 8
blocks of K = 256 block size, corresponding to 8 bytes

per encoded feature. These are commonly used values

for indexing systems. To select the four hyper-parameters

H = {γ1, µ1, γ2, µ2} (cf. (29)) we first cross-validate just

the bin selection block to choose γ1 = 5.0 and µ1 = 6.0.

With these values fixed, we then cross-validate the encoder

block to obtain γ2 = 0.6 and µ2 = 0.9. We use the same

values for all three variants of our system.
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Figure 5. IMI variant of our approach and comparison for fixed encoder Comparison of an IMI variant of our method to the baselines,

when using the same (non-residual) feature encoder. Note the substantial relative improvements of SUBIC-I-IMI.

Evaluation of feature encoder First of all, we evaluate

how SUBIC encoding performs on all the test datasets com-

pared to the PQ unsupervised vector quantizer. We use

M = 8 and K = 256 setups for both codes. SUBIC is

trained for 500K batches of 200 training images, with γ =
0.6 and µ = 0.9. The results reported in Table 1 show that,

as expected, SUBIC outperforms PQ, justifying its selection

as a feature encoder in our system. For reference, the first

row in the table gives the performance with uncompressed

features. While high, each base feature vector has a storage

footprint of 8 Kilo bytes (assuming 4-byte floating points).

SUBIC and PQ, on the other hand, require only 8 bytes of

storage per feature (1000× less).

Baseline indexing systems We compare all three variants

of our proposed indexing system against two existing base-

lines, as well as a straightforward attempt to use deep hash-

ing as an IVF system:

(IVF-PQ) This approach uses an inverted file with N =
4096 bins followed by a residual PQ encoder with

M = 8 blocks and constituent codebooks of size

K = 256 (cf. (4)), resulting in an 8-byte feature size.

The search employs asymmetric distance computation.

During retrieval, the top B = 2n, lists are retrieved,

and, for each n = 1, 2, . . . the average mAP and aver-

age aggregate bin size T are plotted.

(IMI-PQ) The Inverted Multi-Index (IMI) [2] extends the

standard IVF by substituting a product quantizer with

M = 2 and K = 4096 in place of the vector quan-

tizer. The resulting IVF has more than 16 million

bins, meaning that, for practical testing sets (contain-

ing close to 1 million images), most of the bins are

empty. Hence, when employing IMI, we select short-

list sizes T for which to compute average mAP to cre-

ate our plots. Note that, given the small size of the

IMI bins, the computation of the look-up tables zn (cf.

(7)) represents a higher cost per-image for IMI than

for IVF. Furthermore, the fragmented memory reads

required can have a large impact on speed relative to

the contiguous reads implicit in the larger IVF bins.

(DSH-SUBIC) In order to explore possible approaches to

include supervision in the IVF stage of an indexing
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system, we further considered using the DSH deep

hash code [19] as a bin selector, carefully selecting the

regularization parameter to be 0.03 by means of cross-

validation. We train this network to produce 12-bit im-

age representations corresponding to N = 4096 IVF

bins, where each bin has an associated hash code. Im-

ages are indexed using their DSH hash, and at query

time, the Hamming distance between the query’s 12-

bit code and each bin’s code is used to rank the lists.

For the encoder part, we used SUBIC with M = 8 and

K = 256, the same used in Tab. 1.

Large-scale indexing Fig 4 shows the mAP performance

versus average number of retrieved images T for all three

variants as well as the baselines described above. Note that

the number of retrieved images is a measure of complexity,

as for IVF, the time complexity of the system is dominated

by the approximate distance computations in (12). For IMI,

on the other hand, there is a non-negligible overhead on top

of the approximate distance computation related to the large

number of bins, as discussed above.

We present results for three datastets (Oxford5K,

Paris6K, Holidays), on three different database scales (the

original dataset, and when also including noise datasets

of 100K and 1M images). Note that on Oxford5K and

Paris6K, both SUBIC-I and SUBIC-J enjoy large advan-

tages relative to all three baselines – at T = 300, the

relative advantage of SUBIC-I over the IMI-PQ is 19%

at least. SUBIC-R likewise enjoys an advantage on the

Paris6K dataset, and performs comparably to the baselines

on Oxford5K.

On Holidays SUBIC-I outperforms IVF-PQ by a large

margin (18% relative), but not outperform IMI-PQ. As dis-

cussed above, this comparison does not reflect the overhead

implicit in an IMI index. To illustrate this overhead, we note

that, when 1M images are indexed, the average (non-empty)

bin size for IMI is 18.3, meaning that approximately 54.64

memory accesses and look-up table constructions need to be

carried out for each IMI query per 1K images. This com-

pares to an average bin size of 244.14 for IVF, and accord-

ingly 4.1 contiguous memory reads and look-up table con-

structions. Note, on the other hand, that SUBIC-I readily

outperforms IVF-PQ in all Holidays experiments.

Concerning the poor performance of SUBIC-R on Holi-

days, we believe this is due to poor generalization ability of

the system because of the three extra fully-connected layers.

IMI extension Given the high performance of IMI for

the Holidays experiments in Fig. 4, we further consider

an IMI variant of our SUBIC-I architecture. To imple-

ment this approach, we learn a SUBIC-(2, 4096) encoder

(with γ = 4 and µ = 5). Letting z′
m denote the m-th

block of z′, the (k, l) ∈ (1, . . . , 4096)2 bins of SUBIC-

IMI are sorted based on the score z′
1[k] + z′

2[l]. For fair-
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Figure 6. Category retrieval Comparing SUBIC-I and SUBIC-R

to IVF-PQ on the category retrieval task. joint-residual to non-

joint SUBIC and IVFPQ for category retrieval on Pascal and Cal-

tech101. All methods are trained on VGG-M-128 features of Ima-

geNet images.

ness of comparison, we use the same SUBIC−(8, 256) fea-

ture encoder for all methods including the baselines, which

are IVF and IMI with unsupervised codebooks (all methods

are non-residual). The results, plotted in Fig. 5, establish

that, for the same number of bins, our method can readily

outperform the baseline IMI (and IVF) methods. Further-

more, given that we use the best performing feature encoder

(SUBIC) for all methods, this experiment also establishes

that the SUBIC based binning system that we propose out-

performs the unsupervised IVF and IMI baselines.

Category retrieval For completeness, we also carry out

experiments in the category retrieval task which has been

the main focus of recent deep hashing methods [27, 28, 30,

17, 18, 19, 7]. In this task, a given query image is used

to rank all database images, with a correct match occur-

ing for database images of the same class as the query im-

age. For category retrieval experiments, we use VGG-M-

128 base features [24], which have established good perfor-

mance for classification tasks, and a SUBIC-(1, 8192) for

bin selection. We use the ImageNet training set (1M+ im-

ages) to train, and the test (training) subsets of Pascal VOC

and Caltech-101 as a query (respectively, database) set. We

present results for this task in Fig. 6. Note that, unlike the

Holidays experiments in Fig. 4, SUBIC-R performs best on

Caltech-101 and equally well to SUBIC-I on Pascal VOC,

a consequence of the greater size and diversity of the Ima-

geNet datasets relative to the Landmarks dataset.

6. Conclusion

We present a full image indexing pipeline that exploits

supervised deep learning methods to build an inverted file as

well as a compact feature encoder. Previous methods have

either employed unsupervised inverted file mechanisms, or

employed supervision only to derive feature encoders. We

establish experimentally that our method achieves state of

the art results in large scale image retrieval.
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