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Abstract

Human conversation is a complex mechanism with subtle

nuances. It is hence an ambitious goal to develop artificial

intelligence agents that can participate fluently in a conver-

sation. While we are still far from achieving this goal, re-

cent progress in visual question answering, image caption-

ing, and visual question generation shows that dialog sys-

tems may be realizable in the not too distant future. To this

end, a novel dataset was introduced recently and encour-

aging results were demonstrated, particularly for question

answering. In this paper, we demonstrate a simple sym-

metric discriminative baseline, that can be applied to both

predicting an answer as well as predicting a question. We

show that this method performs on par with the state of the

art, even memory net based methods. In addition, for the

first time on the visual dialog dataset, we assess the perfor-

mance of a system asking questions, and demonstrate how

visual dialog can be generated from discriminative question

generation and question answering.

1. Introduction

Human conversation is a complex mechanism with the

intent to exchange information between at least two people.

It is often very subtle and nuances are particularly impor-

tant. It is hence an ambitious goal to develop artificial in-

telligence based agents for human-computer conversation

about visual observations, that goes far beyond develop-

ment of a simple question-answer mechanism.

Nonetheless, to obtain a basic understanding about how

to construct artificial intelligence powered agents for con-

versation about visual observations, it is important to de-

velop early prototypes using dialogues containing questions

and answers. In a recent effort to facilitate this task, Das et

al. [6] collected, curated and provided to the general pub-

lic an impressive dataset which allows to design virtual as-

sistants that can converse. Different from image captioning

datasets, such as MSCOCO [21], or visual question answer-

ing datasets, such as VQA [2], the visual dialog dataset [6]

contains short dialogues about a scene between two peo-

ple. To direct the dialogue, the dataset was constructed by

showing a caption to the first person (‘questioner’) to in-

quire more about the hidden image. The second person

(‘answerer’) could see both the image and it’s caption to

Figure 1: Visual dialog as a combination of two comple-

mentary tasks: (1) predicting a contextual answer to a given

question (VisDial [6]); (2) predicting a contextual follow-up

question to a given question-answer pair (VisDial-Q).

provide answers to these questions.

Beyond providing the Visual Dialog dataset (VisDial), to

facilitate a fair comparison, Das et al. [6] suggest a concrete

task that can be evaluated precisely. It requires the AI sys-

tem to predict the next answer given the image, the question,

and a history of question-answer pairs. A variety of discrim-

inative and generative techniques were proposed, ranging

from those based on Long-Short-Term-Memory (LSTM)

units [12] to reasonably complex ones, which make use of

memory nets [4] and hierarchical LSTM architectures.

In this paper we develop a deep net architecture that pre-

dicts an answer given a question, a caption, an image, and
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a question-answer history. The proposed approach outper-

forms existing baselines [6, 23] on the aforementioned an-

swer prediction task. We present a careful assessment of its

performance over five metrics. We also argue that the re-

verse setup, i.e., prediction of the next question given the

image, caption, and a history of question-answer pairs is

equally important. We therefore re-purpose the visual dia-

log dataset and demonstrate that our developed architecture

is applicable to this new question prediction setup without

significant changes. In Fig. 1 we illustrate a combination

of our models producing a visual dialog. To obtain this re-

sult, our discriminative questioning and answering modules

communicate with each other.

2. Related Work

A conversation about an image or more generally an ob-

servation is hard to analyze, often very personal and even

harder to predict. Despite or rather because of these difficul-

ties, artificial intelligence based systems that master conver-

sational capabilities are of great use, e.g., for aiding visually

impaired or for improving human-computer interaction.

Related to artificial intelligence agents that master con-

versation are several areas that have received a considerable

amount of attention: (i) image captioning, i.e., the task to

describe the main content of an observed scene; (ii) visual

question answering, i.e., the task to answer a question about

the content of a provided image; and (iii) visual question

generation, i.e., the task to generate a question about an ob-

served scene. We briefly review each of those tasks in the

following before discussing the visual dialog setup.

Image Captioning: Classical methods formulate image

captioning as a retrieval problem. The best fitting descrip-

tion from a pool of possible captions is found by evaluating

the fitness between available textual descriptions and im-

ages. This metric is learned from a set of available image

descriptions. While this permits end-to-end training, match-

ing image descriptors to a sufficiently large pool of captions

is computationally expensive. In addition, constructing a

database of captions that is sufficient for describing a rea-

sonably large fraction of images seems prohibitive.

To address this issue, recurrent neural nets (RNNs) de-

compose the space of a caption into a product space of

individual words. They have found widespread use for

image captioning because they have been shown to pro-

duce remarkable results. For instance, [28] train an image

CNN and a language RNN that shares a joint embedding

layer. [41] jointly trains a CNN with a language RNN to

generate sentences, [42] extends [41] with additional atten-

tion parameters and learns to identify salient objects for cap-

tion generation. [18] uses a bi-directional RNN along with a

structured loss function in a shared vision-language space.

Diversity was considered, e.g., by Wang et al. [38].

Visual Question Answering: Beyond describing an im-

age, a significant amount of research has been devoted

to approaches which answer a question about a provided

image. This task is often also used as a testbed for

reasoning capabilities of deep nets. Using a variety of

datasets [26, 33, 2, 9, 46, 17], models based on multi-modal

representation and attention [24, 43, 1, 5, 8, 35, 40, 34],

deep net architecture developments [3, 27, 25] and dynamic

memory nets [39] have been discussed. Despite these ef-

forts, it is hard to assess the reasoning capabilities of present

day deep nets and differentiate them from memorization of

training set statistics.

Visual Question Generation: In spirit similar to question

answering but often involving a slightly more complex lan-

guage part is the task of visual question generation. It

has been proposed very recently and is still very much an

open-ended topic. For instance, Ren et al. [33] discuss a

rule-based algorithm which converts a given sentence into

a corresponding question that has a single word answer.

Mostafazadeh et al. [29] were the first to learn a question

generation model using human-authored questions instead

of machine-generated captions. They focus on creating a

‘natural and engaging’ question. Recently, Vijayakumar et

al. [37] have shown preliminary results for this task as well.

In contrast to the two aforementioned techniques, Jain et

al. [15] argued for more diverse predictions and employed

a variational auto-encoder approach. Work by Li et al. [20],

introduce VQA and VQG as dual tasks and suggest a joint

training for the two tasks. They leverage the state-of-the art

VQA model by Ben-younes et al. [3] and achieve improve-

ments for both VQA and VQG.

Visual Dialog: A combination of the three aforementioned

tasks is visual dialog. Strictly speaking it involves both gen-

eration of questions and corresponding answers. However,

in its original form [6], visual dialog required to predict the

answer for a given question, a given image and a provided

history of question-answer pairs. While this largely resem-

bles the visual question answering task, a variety of differ-

ent approaches have been proposed recently.

For instance, in [6], three models are formulated based

on - late fusion, attention based hierarchical LSTM, and

memory networks. A baseline for simple models is set

using the ‘late fusion’ architecture. While late fusion has

a simple architecture, the other two complex models ob-

tain better performance. Following up, [23] proposed a

generator-discriminator architecture where the outputs of

the generator are improved using a perceptual loss from a

pre-trained discriminator. The generator consists of an en-

coder (with two LSTM nets and attention mechanism) and

a Gumbel-softmax [16] based LSTM decoder. The discrim-

inator employs a similar encoder and a deep metric learn-

ing based loss. Unlike the methods of [6] which train in

4-8 epochs, [23] report pretraining of the generator and dis-

criminator networks for 20 and 30 epochs respectively. Af-

terwards the generator is finetuned for additional epochs to

obtain the final model.

Fig. 2 summarizes the difference between our approach
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Figure 2: Overview of the proposed approach: Joint similar-

ity scoring of answer option and fusion of all input features.

and the existing methods for Visual Dialog. A study of sim-

ilar type was done by Jabri et al. [14] for VQA. All afore-

mentioned methods [6, 23] first encode the question, im-

age, caption and history into a fused representation. Later

this encoded representation is used to obtain similarity with

the 100 answer options. In contrast, our model uses the an-

swer option under evaluation as an early input. We perform

both fusion and similarity scoring together using a multi-

layer perceptron network. This joint optimization improves

performance significantly compared to even memory net-

works [6]. We obtain quantitative results slightly better than

the methods in [23]. Also, training of all our models con-

verges within 5 epochs, which is significantly faster than the

techniques proposed in [23].

Despite strong dialog information, the suggested evalu-

ation of the VisDial dataset is strongly one-sided as men-

tioned before. To tackle this issue, Das et al. [7] introduced

an image guessing game as a proxy to build visual ques-

tion and answer bots. They adopt reinforcement learning

based methods which they found to outperform maximum

likelihood based supervised learning on respective metrics.

Despite training both questioning and answering agents on

the VisDial dataset, only answer metrics are reported. This

is because at present there isn’t an objective question gener-

ation protocol for the VisDial dataset. To bridge this gap,

we provide a reconfiguration of the VisDial dataset, i.e.,

‘VisDial-Q.’ We introduce VisDial-Q to facilitate an evalu-

ation of visual question generation agents. We also provide

our baselines for VisDial-Q. We believe this reconfiguration

to be useful for researchers that aim at evaluating the visual

question generation side of the visual dialog task.

3. Approach

It is the purpose of this paper to maximally utilize the

informativeness of options, i.e., to use early option input.

Hence, we focus on discriminative visual dialog systems.

In contrast, generative methods model a complex output

space distribution. Since discriminative frameworks cannot

provide such free-form answers, they are restricted to envi-

ronments where a small number of answers or questions is

sufficient. Beyond focusing on the visual question answer-

ing part like [6], in this paper, we also provide results for

question generation. We argue that this part is at least as

important for a successful visual dialog system as answer-

ing a question.

To this end we develop a unified deep net architecture for

both visual question answering and question generation. We

will demonstrate in Sec. 4 that the proposed approach per-

forms well on both tasks. In the following we first provide

an overview of the proposed approach before we discuss the

developed architecture in greater detail and provide imple-

mentation details. We finally discuss how we repurpose the

visual dialog dataset to obtain a training set for the question

generation task.

3.1. Overview

An overview of our approach is provided in Fig. 2.

The visual dialog dataset contains tuples (I, C,Ht, Qt, At),
consisting of an image I , a caption C, a question Qt asked

at time t ∈ {1, . . . , T}, its corresponding answer At, and a

time dependent history Ht. T is the maximally considered

time horizon. The history itself is a set of past question-

answer pairs, i.e., H = {(Qk, Ak)} for k ∈ {1, . . . , t− 1}.

At a high level, any visual dialog system, just like ours,

operates on image embeddings, embeddings of the history

and caption, and an embedding of the question. Genera-

tive techniques use embeddings of those three elements, or

a combination thereof to model a probability distribution

over all possible answers. Note that generative techniques

typically don’t take a set of answer options or their embed-

dings into account. In contrast, discriminative techniques

operate on a set of answers, particularly their embeddings,

and assess the fitness of every set member w.r.t. the remain-

ing data, i.e., the image I , the history Ht, the caption C and

the question Qt. One member of the answer set constitutes

the groundtruth, while other possible answers are assembled

to obtain a reasonably challenging task.

3.2. Unified Deep Net Architecture

A detailed illustration of our architecture is provided in

Fig. 3. Using LSTM nets we compute embeddings for the

question at hand, the caption and the set of possible answer

options. Similarly, to obtain an embedding for a question-

answer pair, we use a question and an answer LSTM to en-

code all question-answer pairs in the history set H . Upon

encoding the question and the answer of a question-answer
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Figure 3: Architecture of our model for selecting the best answer option from a set of 100 candidates. LSTM nets transform

all sequential inputs to a fixed size representation. The combined representations of T −1 previous question-answer pairs are

concatenated to obtain the final history representation. Multi-class cross-entropy loss is computed by comparing a one-hot

ground truth vector (based on the correct option) to output probabilities of the answer options.

pair in the history via the corresponding LSTM nets, we

compute a single embedding by combining both represen-

tations via a fully connected layer. Concatenation of em-

beddings for all pairs in the history set H constitutes the

history embedding. We then concatenate the question em-

bedding, the image embedding, the caption embedding, the

history embedding, and the answer embedding for each of

the possible answer options and employ a similarity net-

work to predict a probability distribution over the possible

answers. Since we score each option independently, our ar-

chitecture works even if a different number of options are

being evaluated at test time. We provide more details for

each of the components in the following.

Question and Answer Embedding: The VisDial dataset

questions are truncated to contain a maximum of NQ words.

A Stop token is introduced to mark the end of the ques-

tion. Each word’s V -dimensional one-hot encoding is trans-

formed into a real valued word representation using a matrix

WQ ∈ R
EQ×V . These EQ-dimensional word embeddings

are used as input for an LSTM which transforms them to

LQ-dimensional hidden state representations. The hidden

state output corresponding to the last Stop token is used as

the sentence embedding of the question.

The methodology to obtain the representation for the an-

swer options is identical. Each answer option is truncated to

contain a maximum of NO words. V -dimensional one-hot

representations of the words of an answer are transformed

using a word embedding matrix WO ∈ R
EO×V . These

EO-dimensional word embeddings when transformed using

an LSTM network give rise to an LO-dimensional sentence

embedding of the particular answer option at the last LSTM

unit. If the question has 100 answer options, we extract a

sentence embedding for each of the 100 options.

Caption Embedding: Similar to question and answer em-

beddings, captions are truncated to contain a maximum of

NC words. Then a Stop token is concatenated and these

one-hot vectors are first transformed using an embedding

matrix WC ∈ R
EC×V before transformation into an LC-

dimensional caption embedding using an LSTM net fC(·).

Image Representation: To obtain an image representation

we make use of pretrained CNN features to represent im-

ages. For a fair comparison with baseline architectures pro-

posed in [6], we use the activations of the second to last

layer of the VGG-16 [36] deep net. We normalize these

LI -dimensional activations by dividing via their ℓ2 norm,

as also performed in [6].

History Embedding: All question-answer pairs (Qk,Ak)

before the query time t, i.e., k ∈ {1, . . . , t − 1}, serve

as history. An embedding matrix Wqh ∈ R
Eqh×V maps

one-hot word vectors to real valued embeddings. These are

transformed by a question-history LSTM fqh(·) to an Lqh-

dimensional sentence embedding. Similarly, the answer-

history is encoded via Wqh ∈ R
Eqh×V and fah(·) to obtain

an Lah-dimensional sentence embedding. Both the ques-

tion and answer embedding are combined using a fully con-

nected layer to obtain an LH -dimensional representation of

a pair {(Qk, Ak)}. The number of question-answer pairs

before the current query is variable (t−1 ∈ [0, T −1]). Ex-

isting models tackle this issue of variable length history in

different ways. For instance, Das et al.’s [6] ‘Late Fusion’

(LF) concatenates words of all previous questions and an-

swers and transforms it using another LSTM network. They

also implement a hierarchical LSTM to address this chal-

lenge. Their model performing best in terms of accuracy

is based on a memory network which maintains every pre-

vious question and answer as a ‘fact entry.’ Lu et al. [23]

use an attention based mechanism to combine all previous

rounds of history to get a single representation. On the con-
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Figure 4: Comparison of our method to state-of-the-art

discriminative models–memory networks (MN) [6] and

HCIAE [23]. We use the authors’ implementations.

HCIAE-D-NP-ATT is the best performing discriminative

model proposed by [23], which we abbreviate as HCIAE.

trary, we found a very simple method to be effective. We in-

troduce an Empty token to our vocabulary of words (which

already includes the stop token Stop). For all the miss-

ing question-answer rounds, we pass the [Empty, Stop] se-

quence to the fqh(·) and fah(·) LSTM nets. Using this we

always have T − 1 embeddings of question-answer pairs.

A concatenation results in the (T − 1) · LH -dimensional

history representation.

Similarity Scoring + Fusion Network: The individual rep-

resentations of the question, image, caption, history as well

as an answer option are concatenated to form an ensemble.

This ensemble is represented by an LS = LQ+LI +LC +
(T−1)∗LH+LO dimensional vector. As mentioned before,

unlike previous methods, we perform similarity scoring and

feature fusion jointly. This is achieved using a multi-layer

perceptron (MLP). To reduce the number of parameters, the

MLP is structured to have a decreasing number of activa-

tions for the intermediate layers before arriving at a single

scalar score for each LS-dimensional representation. Dur-

ing inference we choose the answer option having the high-

est score. During learning the answer option scores are

transformed into probabilities using a softmax layer. We re-

port results of architectures with MLP having one and two

hidden layers. The single hidden layer MLP has ⌊Ls/2⌋
hidden nodes. The two hidden layered MLP has ⌊Ls/2⌋
and ⌊Ls/4⌋ nodes in its intermediate representation layers.

To simplify training, we employ Batch Normaliza-

tion [13] layers after every linear layer which we found to be

more robust. We normalize before the ReLU non-linearity,

as suggested in [13].

3.3. Network Training

To describe training more formally, let Fw(Oi) denote

the score for answer option i obtained from the ‘similarity

scoring + fusion network,’ and let w denote all the param-

eters of the architecture illustrated in Fig. 3. For simplic-

ity we avoid to explicitly mention other inputs such as the

query, the image, etc. While inference chooses the highest

scoring answer i∗ = argmaxi Fw(Oi) given learned pa-

rameters w, training optimizes for the parameters w via the

multi-class cross-entropy loss:

min
w

∑

D



ln

100
∑

î=1

expFw(Oî)− Fw(Oi∗)



 ,

where D denotes the dataset containing ground truth infor-

mation i∗. All our models are trained using the Adam opti-

mizer [19] with a learning rate of 10−3.

We experimented with both normal initialization by

He et al. [11] and Xavier normal initialization [10] and

found the former to work better in our case for both MLP

and LSTM weights. We found that sharing the weights of

the language embedding matrices greatly helps in learning

better word representations. Two hidden layered MLP nets

assessing similarity and fusing the representations consis-

tently performed better than a one layered MLP. We use the

data splits suggested in [6] for VisDial v0.9: 80k images

for training, 3k image for validation and 40k for test. We

use the validation set to determine when training doesn’t

progress any further and report metrics on the test set. All

our models converge in under 5 epochs of training on this

dataset, which is illustrated in Fig. 4

3.4. Implementation Details

The VisDial dataset has ten rounds of question-answer

pairs, hence T = 10. NQ, NA and NC are set to 20, 20

and 40 respectively. Dimensions of all embeddings, i.e.,

EQ, EO, EC , Eqh and Eah are set to 128. LSTM hidden

state dimension of query and options, i.e., LQ and LO,

are set to 512. LSTM hidden state dimension of caption,

question-history and answer-history, i.e., LC , Lqh and Lah,

are set to 128. All the LSTMs are single layered. In ac-

cordance to the baselines of [6], we use pretrained VGG-16

relu7 features for the image embedding, hence, LI = 4096.

Note that on the contrary, [23] utilize 25k dimensional

VGG-19 pool5 features. Also, [23] report their result after

making use of 82k training images which is more than the

80k images suggested in [6] for VisDial v0.9. Finally, [23]

utilize deep metric learning and a self-attention mechanism

to train a discriminator network which leverages the avail-

ability of answer options. We achieve this via a simple

LSTM-MLP approach. However, it must be noted that [23]

also investigate generative models for the VisDial dataset

which we don’t explore here.

3.5. VisDial­Q Dataset and Evaluation

Das et al. [6] highlight the challenge of evaluating dialog

systems and they propose to evaluate individual responses at

each round of the dialog. To this end they create a multiple

choice retrieval setup as a ‘VisDial evaluation protocol.’ As

explained earlier, the system is required to choose one out

of 100 answer options for a given question. The image, cap-

tion and previous question-answer pairs can be leveraged by

the system to help make this choice. However, no surrogate

task for assessment of question generation is provided.
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Model MRR R@1 R@5 R@10 Mean

Query only

LF-Q [6] 0.5508 41.24 70.45 79.83 7.08

SF-Q-1 0.5619 42.11 72.12 81.39 6.55

SF-Q-se-1 0.5651 42.32 72.54 81.83 6.39

SF-Q-se-2 0.5664 42.45 72.75 81.98 6.32

Query + Image only

LF-QI [6] 0.5759 43.33 74.27 83.68 5.87

SF-QI-1 0.5940 45.49 75.95 85.19 5.40

SF-QI-se-1 0.5964 45.72 76.25 85.64 5.29

SF-QI-se-2 0.6010 46.19 76.73 85.95 5.18

Query + Image + Caption + History

LF-QIH [6] 0.5807 43.82 74.68 84.07 5.78

HRE-QIH [6] 0.5868 44.82 74.81 84.36 5.66

MN-QIH [6] 0.5965 45.55 76.22 85.37 5.46

HCIAE [23] 0.6222 48.48 78.75 87.59 4.81

SF-QIH-1 0.6101 47.04 77.69 86.78 5.00

SF-QIH-se-1 0.6207 48.19 78.66 87.53 4.79

SF-QIH-se-2 0.6242 48.55 78.96 87.75 4.70

Table 1: VisDial evaluation metrics. ‘-1’ and ‘-2’ denote

one and two hidden MLP layers respectively. ‘-se’ denotes

shared embedding matrices for all LSTMs.

To test the questioner side of visual dialog, we therefore

create a similar ‘VisDial-Q evaluation protocol.’ A visual

question generation system is required to choose one out of

100 next question candidates for a given question-answer

pair. To do this it may utilize the image, caption and pre-

vious question-answer pairs. What is left to answer is how

these 100 candidates for the next question are selected.

We closely follow the methodology adopted by Das et

al. [6] to select 100 answer candidates from the visual di-

alog dataset of the human question-answer rounds. We se-

lect 100 candidate follow-up questions to a given question-

answer (QA) pair as the union of the following four sets:

Correct: The next question asked by the human is the

ground truth question.

Plausible: Plausible questions are follow-up questions to

the 50 most similar QA pairs in the dataset. Similar QA

pairs are found by comparing concatenated GloVe embed-

dings [30] of the QA pair being considered with the repre-

sentation of other QA pairs. Question GloVe embeddings

are obtained following [6], i.e., (1) concatenate the GloVe

embedding of the first three words of the question; (2) av-

erage the GloVe embeddings of the remaining words; and

(3) concatenate both vectors. Answer GloVe embeddings

are obtained by averaging the GloVe embeddings of all its

words. ℓ2 distance computed on the concatenated question

and answer GloVe embeddings is used to find nearest neigh-

bor QA pairs. We make sure that a nearest neighbor QA

pair is not from the same image (same as [6]). Additionally,

for the VisDial-Q evaluation, we also ensure that the nearest

neighbor QA pair isn’t the last (10th) QA round of a dialog,

as no human follow-up question is available.

Popular: Question possibilities also contain the 30 most

popular questions of the original dataset.
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Figure 5: VisDial evaluation: Mean rank values for our

models and best models from [6, 23]
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Figure 6: VisDial evaluation: Recall@5 values for our mod-

els and best models from [6, 23] (same legend as Fig. 5)

Random: The remaining question options which are left

to complete a set of 100 unique candidates are filled with

random questions from the dataset.

Our intention for creating a set of question options using

this methodology is analogous to [6]. These candidates en-

courage an algorithm to distinguish between correct, plau-

sible, and popular candidates.

At this point it is important to address a strong difference

in the nature of evaluating a module for generating an an-

swer from a technique producing a question. While answer-

ing a given question based on options (and some additional

information) has fairly little randomness, the questioning

analog is significantly more challenging. That is, for a given

QA pair, there could be more than one ‘correct’ follow-up

question in the options. Despite this inherent ambiguity,

objective evaluation of the question generation procedure is

equally important. It depicts the questioning system’s abil-

ity to rank a human generated question. The system should

be encourage to rank the human generated question in its

top ranks, if not at the highest one. Therefore, the ensemble

of metrics proposed in [6] and described in Sec. 4.2 is even

more important than a single Recall@1 based evaluation.

Our deep net architecture developed for the answering

task in Sec. 3.2 can be deployed for the VisDial-Q task,

with almost no adjustments. Since there exists no follow-

up question to the last QA pair in a dialog of the VisDial

dataset, the maximally considered time horizon T is 9 for

the VisDial-Q dataset. The ‘query’ for the original visual
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Model MRR R@1 R@5 R@10 Mean

Query only

SF-Q-1 0.1909 9.18 26.18 38.87 23.03

SF-Q-se-1 0.1936 9.57 26.20 38.66 22.99

SF-Q-se-2 0.1950 9.70 26.44 38.67 22.92

Query + Image only

SF-QI-1 0.2953 16.82 41.58 56.27 14.57

SF-QI-se-1 0.2970 17.06 41.60 56.05 14.48

SF-QI-se-2 0.3021 17.38 42.32 57.16 14.03

Query + Image + Caption + History

SF-QIH-1 0.3877 25.03 53.03 68.33 10.09

SF-QIH-se-1 0.4028 26.51 54.74 69.95 9.54

SF-QIH-se-2 0.4060 26.76 55.17 70.39 9.32

Table 2: VisDial-Q evaluation metrics. ‘-1’ and ‘-2’ denote

one and two hidden layers in MLP respectively. ‘-se’ de-

notes shared embedding matrices for all LSTMs.

dialog task is a question whose answer we wish to choose.

On the other hand, ‘query’ for the questioning side of vi-

sual dialog (VisDial-Q) is a QA pair for which we wish to

choose the most relevant follow-up question. For VisDial-

Q evaluation, words of the QA pair (concatenation of ques-

tion and answer words) serve as input to the ‘query’ LSTM

in Fig. 3. The options O1, . . . , O100 are now candidate

follow-up questions, instead of candidate response answers.

All other parameters are identical to the ones mentioned

in Sec. 3.3 and Sec. 3.4.

4. Experiments

In the following we evaluate our proposed architecture

on prediction of both answers and questions. To this end,

we first provide details about the datasets and evaluation

metrics used. We then discuss our quantitative assessment

before providing qualitative results.

4.1. Datasets

We train our models on the VisDial v0.9 dataset [6]

which currently contains over 123k image-caption-dialog

tuples. Each dialog has 10 question-answer pairs. The im-

ages are unique and are obtained from the MSCOCO [21]

train and validation split. The dataset was collected by

recording a conversation between two people on Amazon

Mechanical Turk. The first person is only provided the cap-

tion to start the conversation, and is tasked to ask questions

about the hidden image to better understand the scene. The

second person has access to both image and caption and

is asked to answer the first person’s questions. Both are

encouraged to talk in a natural manner, which is markedly

different from [2]. Due to this setup, the obtained question-

answer pairs have inherent temporal continuity and are also

visually grounded. The VisDial v0.9 train, validation and

test sets consists of 80k, 3k and 40k images.

4.2. Evaluation Metrics

Many popular metrics like BLEU, ROUGE and ME-

TEOR are empirically shown to have low correlation with
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Figure 7: VisDial-Q evaluation: Mean rank values for our

models.
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Figure 8: VisDial-Q evaluation: Recall@5 values for our

models. (same legend as Fig. 7)

human judgement of dialog systems [22]. For an objective

evaluation of visual dialog systems, [6] suggests metrics for

predicted rank of the correct answer option. These are Re-

call@1, Recall@5, Recall@10, Mean Reciprocal Rank, and

Mean Rank of the ground truth answer. Recall@k is the

percentage of questions for which the correct answer option

is ranked in the top k predictions of a model. Mean Rank

is the empirical average of the rank allotted by a model to

the ground truth answer option. Mean Reciprocal Rank is

the empirical average of 1/rank allotted by a model to the

ground truth answer option. Lower values for Mean Rank

and higher values for all the other metrics are desirable.

4.3. Quantitative Assessment

In the following we provide a quantitative assessment of

our approach. We first discuss results for the question an-

swering task before focusing on question generation.

Visual Question Answering: The performance of the pro-

posed architecture for predicting a contextual answer to a

given question (VisDial evaluation) is presented in Tab. 1.

We gradually increase context from only question (Q),

to question and image (QI), and finally all given context

(QIH). Our ‘similarity scoring + fusion’ (SF) performs best

in all three scenarios. Adding image and history cues im-

proves results. We provide the metrics for baselines from
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Figure 9: Joint unrolling of questioning and answering modules on test images. The VQG module chooses the most relevant

next question based on previous QA pairs and context.

existing work evaluating on the VisDial dataset. This in-

cludes models proposed in [6], based on late fusion (LF), hi-

erarchical LSTM net (HRE), and memory networks (MN).

Another important baseline is the best performing discrimi-

native model (HCIAE-D-NP-ATT) [23]. We use the abbre-

viation HCIAE for this model. Fig. 5 and Fig. 6 compare the

mean rank and recall@5 of different models. Our SF-QIH

model achieves 78.96% recall@5 and 4.70 mean rank.

Visual Question Generation: A similar evaluation of the

proposed architecture for the task of predicting the next

question based on a given QA pair and context (VisDial-

Q evaluation) is presented in Tab. 2. By closely investi-

gating our results, we obtain some intuitive insights. First,

without any context, predicting the next question is a much

more difficult task than answering a question without con-

text. This can be observed from the average mean rank for

VisDial-Q (∼ 20) in comparison to the average mean rank

for VisDial (∼ 7). Second, large improvements when com-

paring Q vs QI and QI vs QIH suggest that image and his-

tory cues are much more important for the question predic-

tion task than for answer prediction. Figs. 7, 8 compare the

mean rank and recall@5 of different models. Our SF-QIH

model achieves a 55.17% recall@5 and 9.32 mean rank.

4.4. Qualitative Evaluation

In this section we discuss qualitative results. Instead of

presenting two separate qualitative evaluations of our archi-

tecture on the answering and questioning side of visual di-

alog, we provide a joint analysis. After completing the an-

swering task of choosing the best option for a given ques-

tion, we provide this QA pair to our pretrained question

generation module. The newly generated question is then

again put up for discriminative answering by the answering

module. Hence we ‘generate’ dialog using our discrimi-

native models. Fig. 9 summarizes a few of those unrolled

examples. A few arrangements are necessary to jointly un-

roll our discriminative questioning and answering modules,

since answer options and next question options are available

for only dataset dialogs, while we are ‘generating’ (i.e., se-

lecting) new sequences. Hence we need to create options

on the fly, by choosing from a set of questions and answers

of nearest neighbor images. We uniformly sample one of

the top 10 ranking questions chosen by the question module

to add some more diversity. We again emphasize that these

dialogs are ‘generated’ by choosing from a set of options,

which differs from truly generative approaches.

Based on the observed empirical results we conclude that

our models capture cues from all three contexts, image, cap-

tion and history. There are questions pertaining to partially

visible objects, which can be attributed to the caption cue.

The same is true for objects visible in the images which

aren’t mentioned in the history/caption text. We experi-

mented with different number of rounds of initial history - 1,

2, 3 and 5. In all cases, our models choose relevant follow-

up questions and fairly correct answers. Since there are no

groundtruth options for these predicted dialog sequences,

we can’t report quantitative metrics for this dynamic setup

where our models communicate with each other.

5. Conclusion

We developed a discriminative method for the visual di-

alog task, i.e., predicting an answer given question and con-

text. Our approach outperforms existing baselines which

often use complex architectures. More importantly, our ap-

proach can be applied with almost no change to prediction

of a question given context, which we think is equally im-

portant. We introduce the VisDial-Q evaluation protocol

to quantitatively assess this task and also illustrate how to

combine both discriminative methods to obtain a system for

visual dialog. Going forward we plan to combine visual di-

alog and textual grounding [31, 32, 45, 44].
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