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Abstract

Arguably, no single face detector fits all real-life scenar-

ios. It is often desirable to have some built-in schemes for

a face detector to automatically adapt, e.g., to a particu-

lar user’s photo album (the target domain). We propose a

novel face detector adaptation approach that works as long

as there are representative images of the target domain no

matter they are labeled or not and, more importantly, with-

out the need of accessing the training data of the source

domain. Our approach explicitly accounts for the notori-

ous negative transfer caveat in domain adaptation thanks

to a residual loss by design. Moreover, it does not incur

catastrophic interference with the knowledge learned from

the source domain and, therefore, the adapted face detec-

tors maintain about the same performance as the old detec-

tors in the original source domain. As such, our adaption

approach to face detectors is analogous to the popular in-

terpolation techniques for language models; it may opens a

new direction for progressively training the face detectors

domain by domain. We report extensive experimental re-

sults to verify our approach on two massively benchmarked

face detectors.

1. Introduction

Face detection is often the very first step in analyzing

faces. Recent literatures [3, 4, 5, 6] demonstrate the effec-

tiveness of deep learning for face detection. However, as a

massively data-driven method, the deep learning based face

detectors are inevitably biased accordingly to the training

data distribution. Collecting a comprehensive dataset for

training can be highly expensive, if not impossible. Besides,

considering the limited computational budget in real-world

applications, arguably, there is no single face detector that

fits all scenarios.

To address the discrepancy between the data distribution

in training and the deployment of the face detector, it is

highly desirable to have some adaptation mechanism built

for the face detectors. When there are labeled or unlabeled

images available from a particular target domain, one can

adapt the detectors to achieve better performance in the tar-

get domain than the original ones do.

In this paper, we propose a novel face detector adaptation

approach that is applicable whenever the target domain sup-

plies many representative images, no matter they are labeled

or not. It entails some very interesting properties which we

contend are missing or not explicitly discussed in the previ-

ous works of adapting face detectors [7, 8, 9].

First of all, our approach is designed to avoid negative

transfer, i.e., the adapted detector is supposed to perform

better than or at least on par with the original one in the

target domain. It is worth noting that the negative transfer

frequently occurs in domain adaptation [10, 11, 12], being a

notoriously hard problem to solve. Moreover, this problem

is likely more severe in the face detector adaptation since

the room to improve the state-of-the-art face detectors is

actually very small — for the same reason, we argue that it

is vital for a face detector adaptation algorithm to explicitly

take account of the negative transfer caveat.

Besides, we do not rely on the source data to conduct the

adaptation, in a sharp contrast to most domain adaptation

methods for generic visual recognition [13, 14, 15]. Indeed,

the face detector adaptation is supposed to be done without

accessing the source data because the source datasets are

often extremely large and contain sensitive identity infor-

mation. We note that some existing works on face detector

adaptation [9] actually follow this protocol.

At last but not the least, we strive to prevent our ap-

proach from catastrophic forgetting or the so called interfer-

ence [16, 17, 18] with the source domain. In this sense, our

method is analogous to the well-known language model in-

terpolation [19] where one extends the old language model

by interpolating it with the one trained for a new domain

such that, in expectation, the resulting model performs well

on all old domains as well the new domain. As such, our

approach may also open an alternative direction for training
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Figure 1. From left to right are face detection results on the FDDB dataset with a state-of-the-art face detector (1) [1, 2], the same detector

but adapted by our method to the target domain (FDDB) with no data annotation (2), and with some data annotations (3).

the face detectors, namely, one can progressively improve

the face detectors by growing the number of new domains

without the need of keeping the images of the old domains.

Overview of our approach. We adapt a deep learning

based face detector by fine-tuning [20, 21] it using both la-

beled and unlabeled images of the target domain. In order

to avoid the negative transfer, we devise a loss function to

approximate the expected performance improvement from

the old detector to the new one. Since the hypothesis space

— the set of networks specified by the weights — is the

same for the two detectors, to minimize the loss does not

change the old detector unless it finds another network that

is expected to perform better than the old one in the tar-

get domain. While the expected performance gain of a net-

work is mainly estimated by labeled data, we also augment

it by deriving a closed form of the network’s worst possi-

ble performance degradation that can be estimated by the

unlabeled images of the target domain.

Our approach shares some spirits with AdaBoost [22]

and residual learning [23] in the sense that the cost function

of interest is a residual with respect to the source detector.

Arguably, the residual loss is best captured by a residual

detection score. Hence, we construct the target detector by

an offset to the source one. Jointly, the residual loss and

the offset detection score alleviate the urge of updating the

weights of the old detector, effectively reducing the effect

of catastrophic forgetting about the source domain.

The main contributions of this paper include both the

novel adaptation approach and the three key properties of

our method (cf. above) which we contend are missing from

the previous works and yet are supposed to be possessed

by a good face detector adaptation algorithm. We describe

the approach in Section 3 for supervised, semi-supervised,

and unsupervised settings after a review of the related works

(Section 2). We present extensive experimental studies in

Section 4 on two massively benchmarked face detectors.

2. Related work

Face detector adaptation. Jain and Learned-Miller use a

Gaussian process to update the low detection scores by as-

suming smoothness of the detections and that the detected

regions of high scores are more likely correct than the oth-

ers [7]. Wang et al. [8] and Li et al. [9] make similar as-

sumptions and yet use the regions of high detection scores

to re-train a new detector for the target domain using vo-

cabulary trees and probabilistic elastic part models, respec-

tively. When the target domain comprises video sequences,

the motion and tracking cues are usually very effective for

adapting the detectors [24, 25, 26, 27, 28].

Domain adaptation. There has been a rich line of works on

domain adaptation for generic visual recognition [13, 29],

such as object recognition [14], action recognition [30],

Webly-supervised learning [31, 32, 33], attribute detec-

tion [34], etc. They minimize the discrepancy between the

source and target by exploring the data from both domains.

However, the modern face detectors are often trained from

an extreme-scale training set, making it hard to carry the

source data to the adaptation stage. Domain adaptation in

the absence of the source data [35, 36] is the most rele-

vant to ours. Such methods use the source models either

for regularization [36] or to augment the features of the tar-

get data [35], while we consider a different problem, deep
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face detectors, and refer to the source model in both the cost

function and the classifier of the target face detector.

Negative transfer is a notorious caveat in domain adap-

tation [37, 38, 39, 40]. Whereas existing works attempt to

solve this problem by defining intuitive statistical measures,

we directly tackle it with a novel cost function motivated by

the safe semi-supervised learning [41, 42, 43]. Nonetheless,

we devise the cost function in such a way of seamlessly in-

tegrating it with the deep models. Besides, we derive an

analytic form for the unsupervised adaptation, getting rid of

the cumbersome EM style optimization.

Catastrophic forgetting or interference [17, 44, 45, 18]

refers to that a pre-trained network cannot perform well

on the old tasks after it is fine-tuned for a new task. Re-

cent years witness an upsurge of interest in this problem,

including the exploitation of a local winner-takes-all activa-

tion function [46], dropout [16, 47], a knowledge distilla-

tion loss [48, 49, 50], pathway connections [51], and pro-

gressive networks [52]. We argue that it is probably easier

to deal with the catastrophic forgetting problem for domain

adaptation which can be seen as a special case of sequential

multi-task learning, due to that the source and target do-

mains share the same semantic labels. We leverage exactly

this idiosyncrasy to re-parameterize the target classifier as

the source classifier plus an offset.

3. Approach

A face detector usually consists of two components:

proposing candidate face regions from an image and clas-

sifying or scoring the regions. In this work, we adapt

deep convolutional neural networks based face detectors

to a given target domain by calibrating the second compo-

nent, i.e., the classifiers. For simplicity, we express a deep

face detector (e.g., [2]) as σ(wTF (x; ✓)), where σ(z) =
(1 + exp(−z))−1 is the sigmoid function indicating how

likely the region proposal x out of an image is a face. The

feature representations F (x; ✓) of this region is extracted

by a convolutional neural network, where ✓ collects all the

network parameters except the classifier weights w. Given

such a detector pre-trained in the source domain, our goal

is to adapt it to the target domain without using any source

data and that the adapted face detector σ(ewTF (x; e✓)) is not

hurt by negative transfer or catastrophic forgetting.

In order to facilitate the adaptation to the target domain,

we need the access to some representative images of that

domain. We envision that a real use case of the face de-

tector adaptation entails many unlabeled target images and

yet only a small number or even none of labeled ones. Our

approach takes account of both scenarios.

3.1. Unsupervised face detector adaptation

We first consider the unsupervised face detector adaption

in which we have access to the proposed regions {xt}
T
t=1

of the target domain but not their labels — the labels {yt 2
{0, 1}} are unknown. The objective is to obtain a high-

quality face detector σ(ewTF (x; e✓)) for the target domain

using the pre-trained face detector σ(wTF (x; ✓)) and the

unlabeled images of the target domain.

Our approach is originally motivated by the works on

safe semi-supervised learning [42, 41, 43], where the idea

is to trust the classifier pre-trained from the labeled data as

much as possible and to improve upon it only relatively. In

our context, the relative performance change for any data

point (xt, yt), yt 2 {0, 1}, of the target domain is

RESt(ew, e✓) := C
(
yt, σ(ewTF (xt; e✓))

)

− C
(
yt, σ(w

TF (xt; ✓))
)
, (1)

where C(y, ŷ) is a performance measure, which is imple-

mented as the multi-class classification accuracy in [41],

top-k precision, F-score, and area under the ROC curve

in [42], and log-likelihood in [43]. We instead use the cross-

entropy C(y, ŷ) = −y log ŷ− (1− y) log(1− ŷ) in this pa-

per. This choice seamlessly integrates it with the stochastic

training procedure for deep neural networks.

When there are no labels available in the target domain,

we find a robust target face detector that improves upon the

source one under the worst case scenario,

min
u, eθ

λ

2
kuk2

2
+ Et max

yt∈{0,1}
RESt(w + u, e✓), (2)

where Et denotes the mean average 1

T

PT

t=1
. We introduce

this notation to stress the fact that the expected performance

change from the old face detector to the adapted one can be

unbiasedly estimated by the mean average over the target

examples. We overload the notation yt a little and use the

fact that the groundtruth labels are binary. We also decom-

pose the classifier of the target detector by w+u, where w

are the parameters of the source detector’s classifier. This

decomposition is mainly for two reasons. First, we can in-

terpret Eq. (1) as the residual between the performances of

the two face detectors. Arguably, this quantity is accord-

ingly best captured by the residual detection score between

the two detectors. Hence, we re-parameterize the binary

classifier of the target face detector as ew = w + u. Sec-

ond, notice that the `2 regularization over the offset weights

u effectively constrains the classifier (ew) of the target face

detector around that (w) of the source detector. This pre-

vents the classifier from shifting around, taxing less than

otherwise over the network weights e✓ for the overall target

face detector to generate right predictions. Accordingly, the

resultant representations F (x; e✓) do not significantly devi-

ate from the original representations F (x; ✓) for the region

proposal x of either source or target domain. In other words,

the network does not catastrophically forget the knowledge

extracted from the source domain.
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To fit problem (2) to the existing deep learning tools

(e.g., Tensorflow), we first note that there is an analyti-

cal solution to the inner maximization. Denote by at =

σ((w + u)TF (xt; e✓)), āt = 1 − at, bt = σ(wTF (xt; ✓)),
b̄t = 1− bt. We have the following,

max
yt∈{0,1}

RESt(w + u, e✓), 8t (3)

, max
yt∈{0,1}

−yt log at − (1− yt) log āt

+yt log bt + (1− yt) log b̄t
(4)

) yt = 1 if log at + log b̄t − log āt − log bt < 0

and yt = 0 otherwise.
(5)

Next, we substitute the above back to Eq. (2) which then

reduces to the canonical minimization problem and can be

conveniently solved by programming the cost function us-

ing some off-shelf deep learning tools.

Remarks. Eq. (2) is interesting in a few ways. The resid-

ual term indicates the relative loss by the target face detec-

tor with respect to the source detector. If, for the ease of

discussion, we assume the adapted face detector performs

about the same on all the target examples, then the residual

is large only when the source face detector does a good job

and correctly classifies the data point (xt, yt) — incurring

small cross-entropy loss. The data points with small cross-

entropy loss values by the source detector would be penal-

ized more, because of their relative large residuals, than the

other data in the optimization process. As a result, the new

face detector is enforced to imitate the source detector: if

a data point is correctly classified by the source detector’s

classifier, so should it be by the target detector.

In our experiments, we initialize the weights of the tar-

get face detector (e✓,w,u) by the source detector (✓,w,0).

Hence, after solving Eq. (2), the new detector gives rise to

no higher loss than the source face detector; the residuals

are either negative or zero. As a result, there is no nega-

tive transfer to the target domain in expectation. Moreover,

since we seek to minimize the residual loss for the worst

possible label assignments (cf. maxyt
in Eq. (2)), the ob-

tained detector is not worse than the source one (i.e., no

negative transfer) for any label assignments to the region

proposals {xt}.

We note that the search space of the possible label as-

signments in Eq. (2) could be reduced by imposing similar

assumptions as in [7, 8, 9]. In particular, for the region pro-

posals whose prediction scores are high (low) by the source

face detector, we may assign 1’s (0’s) to them. The worst

case label assignment would then be applied only to the re-

gions of which the source detector is unsure. We leave this

to the future work.

3.2. Supervised face detector adaptation

In the supervised face detector adaptation, we are given

a small set of labeled face images of the target domain

{(xt, yt)}
T
t=1

which is by itself insufficient for training a

high-quality face detector. Following Eq. (2), it is now nat-

ural to write out the objective function under the supervised

setting as below,

min
u, eθ

λ

2
kuk2

2
+ Et RESt(w + u, e✓). (6)

Note that the second cross-entropy term of Eq. (1) has no ac-

tual effect in the problem (6) — the minima of (u, e✓) remain

the same if we remove that term from Eq. (6). However, we

keep it there for the ease of presentation.

3.3. Semi-supervised face detector adaptation

Recall that we aim to adapt a pre-trained deep neural net-

work based face detector to the target domain that supplies

many unlabeled images and possibly some labeled ones. In-

deed, a real use case of the face detector adaptation likely

falls under this semi-supervised regime. In this case, we ini-

tialize the target detector by copying the weights from the

source detector, and then alternate between the supervised

and unsupervised adaptations in our training. In particular,

we update the target face detector twice in each iteration by

the gradients of eq. (6) and eq. (2), respectively.

4. Experiments

Our approach is model-agnostic, in the sense that it is

readily applicable to different types of face detectors. In

this section, we report extensive experimental results on two

massively benchmarked deep face detectors.

Face detectors and source domains. We experiment

with two deep learning based face detectors: Cas-

cadeCNN [53] and Faster-RCNN [1, 2]. The CascadeCNN

face detector is fast but extracts relatively weaker features

while the Faster-RCNN model runs slower due to its use of

a bigger network and more discriminative features.

In particular, CascadeCNN is trained by 25,000 faces

from the AFLW dataset [54]. The Faster-RCNN face de-

tector is trained using the training set of WIDER FACE

dataset [6], which provides 32,203 images and 393,703 la-

beled faces with a high degree of variability in scale, pose,

occlusion, etc. Per the comparison experiments in [2], the

open-sourced Faster-RCNN face detector model is superior

over 11 other top-performing detectors, all of which are

published after 2015. Finally, it is interesting to note that

both AFLW and WIDER FACE strive to cover a wide spec-

trum of face appearance variations, making them effective

sources to adapt from.
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The target domain. The FDDB [55] dataset is a popular

face detection benchmark. It contains 2,854 images and a

total of 5,171 labeled faces. The images are randomly par-

titioned into 10 folds, of which we use the first six as our

training set, the seventh for validation, and the remaining

three for testing. We also evaluate our method on Caltech

Occluded Faces in the Wild (COFW) dataset [56]. Due to

limited space, we report the results on COFW in the supple-

mentary materials.

We claim that this choice — WIDER FACE or AFLW

as the source domain and FDDB as the target domain —

well represents the real application scenarios of face de-

tector adaptation. On the one hand, there is a large train-

ing set in the source domain for us to learn a generic face

detector that performs very well on different testing sets.

WIDER FACE relies on diverse data sources since it em-

ploys Google and Bing to acquire the images and AFLW is

a large-scale dataset collected from Flicker. On the other

hand, the target domain of FDDB images are relatively ho-

mogeneous, all sampled from the Yahoo! news website.

They are mostly professional photos sharing some common

idiosyncrasies.

Evaluation metrics. Both WIDER FACE and FDDB

datasets have defined and released the code for standard

evaluation metrics. The Precision-Recall curve is used by

WIDER FACE. FDDB employs the ROC curves of discrete

and continuous scores computed from a bipartite graph. We

use their code to evaluate our results in order to have direct

comparison with existing methods.

Competing methods. We compare our approach to the

following competing baselines 1.

• Source refers to the detectors trained from the original

training data and is the starting point for our method to

fine-tune the neural network parameters.

• Fine-tuning [20] simply fine-tunes the models using

the labeled data of the target domain, if they are avail-

able, following the same way the detectors are trained

in their source domains yet with smaller learning rates.

• GP [7] is a Gaussian process based unsupervised face

detector adaptation method which uses the regions of

high detection confidence — far from p = 0.5 — to

update the detection scores of the other regions.

• LWF [57] is a recent learning without forgetting

(LWF) method that augments the conventional cross-

entropy loss with the knowledge distillation loss [50]

such that the adapted face detector preserves the re-

sponse characteristics learned from the source domain.

• GDSDA [58] introduces the generalized distilla-

tion [59] into semi-supervised domain adaptation.

1Please refer to our supplementary materials for the training details of

the competing methods.

• HTL [36] is a representative hypothesis transfer

method that transfers knowledge from the source do-

main to the target by augmenting the feature represen-

tations of the target domain.

• Gradient Reversal [60] is an effective method for the

domain adaptation of deep neural networks. The main

idea is to learn representations to fail the classifier that

predicts from which domain a data point comes. Since

it has to access the source domain data, it is actually

not fair to compare this method with the other base-

lines or ours. Nonetheless, we still include its results

in the FDDB experiment for reference.

Some experimental details. We freeze the first eight con-

volutional layers of the Faster-RCNN model for all the ex-

periments. We fine-tune all parameters of the last 48-net de-

tection net in the CascadeCNN model. The validation set of

the target domain is used to determine the hyper-parameters

of all the methods. For Faster-RCNN, we use λ = 1e-3

and the base learning rates 1e-4 and 5e-4 for the supervised

and unsupervised settings, respectively. Early stopping hap-

pens at the 5,000th iteration for the supervised experiment

and the 6,000th for the unsupervised. For CascadeCNN, we

set λ = 2 and the base learning rate 1e-4 for both super-

vised and unsupervised settings. For the supervised case,

we fine-tune the model for 8,000 iterations with the base

learning rate and another 4,000 iterations with the learning

rate of 1e-5. For the unsupervised, we fine-tune the model

for 10,000 iterations and divide the base learning rate by 10

at the 7,000th iteration.

4.1. Comparison results

We compare our algorithm with other competing meth-

ods in this section. We evaluate the effectiveness of all the

methods by varying the number of labeled data from the tar-

get domain. More specifically, all the methods have access

to the 6 folds of training images for the adaptation, while

only N folds out of the 6 are labeled, N 2 {0, 1, 3, 5, 6}.

It is a fully unsupervised setting when N = 0, a semi-

supervised adaptation setting when 1  N  5, and a su-

pervised adaptation setting when N = 6. Note that not all

the baseline methods can handle all the settings.

Figure 2 and Figure 3 together show the ROC curves of

the discrete scores on FDDB for the (a) CascadeCNN de-

tector and (b) Faster-RCNN detector; the curves of the con-

tinuous scores are included in the supplementary materials.

When N = 0 (unsupervised adaptation), most of the

above-mentioned competing methods are not applicable any

more. As shown in Figure 2, in this challenging setting,

we observe GP cannot improve the pre-trained high-quality

face detectors while our method still brings extra gains.

When N = 6, all the training images of the target do-

main are labeled (supervised adaptation), we outperform
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Figure 2. Detection results comparison on FDDB under unsupervised (0 out of 6 folds labeled), semi-supervised (3 out of 6 folds labeled),

and supervised settings: our method generally outperforms all competing methods and does not suffer from negative transfer.
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Figure 3. More detection results under semi-supervised settings with N = {1, 5} out of 6 folds training images annotated. Combined with

Figure 2, our method can generally bring additional performance gains from additional annotated data.
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Figure 4. Ablation Studies about our approach on FDDB (supervised adaptation)
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(a) Easy Set (b) Medium Set (c) Hard Set

Figure 5. Evaluation of catastrophic forgetting on source domain after supervised adaptation to target domain: detection results on valida-

tion set of WIDER FACE (Easy, Medium and Hard sets).

all the competing methods when adapting the CascadeCNN

detector. Even for the high-quality FasterRCNN detector,

our method gives rise to the largest improvement among all

the methods, including Gradient Reversal which takes ad-

vantage of the extra training data in the source domain.

Under the semi-supervised setting, which is more realis-

tic, our method achieves significant and consistent improve-

ment for both face detectors over the original Source detec-

tors. With the additional results shown in Figure 32, varying

N from 0 to 6, our method generally performs better and

better as more annotated data become available.

Overall, compared with Source models, our method

does not cause negative transfer, while all the other com-

peting methods suffer from negative transfer to some extent

excluding Gradient Reversal.

4.2. Ablation study

We investigate our proposed method by examining its

ablated versions. Recall that our approach is two-pronged.

On the one hand, it uses the residuals in the cost function

to explicitly prevent negative transfer in terms of the cross-

entropy loss. On the other hand, it re-parameterizes the clas-

sifier of the target detector by ew = w + u, where w is the

classifier weights of the source detector. Figure 4 shows that

both components contribute to the performance improve-

ment in our method. The ROC curve of the source detector

is included for reference. Clearly, we observe that the two

components mutually complement. Besides, removing the

residual loss (Ours w/o residual loss) hurts our method more

than directly optimizing the classifier weights ew without re-

parameterization (Ours w/o residual score).

4.3. The effect of no catastrophic forgetting

Finally, we evaluate the catastrophic forgetting in the

domain adaptation context. After adapting all competing

methods to the target domain (FDDB), we evaluate their

performance back to the source domain (WIDER Face). We

2The scale of the horizontal axis of the top-right panel differs from

the other panels of CascadeCNN. If we used the same scale as the others

instead, the fine-tuning results would be left out.

test on the validation set of the WIDER Face in our exper-

iment. Source refers to the one without adaptation and is

thus with no forgetting at all.

As shown in Figure 5, it is not surprising to see that

fine-tuning leads to severe forgetting about the source do-

main. This observation is well-aligned with prior arts. Af-

ter all, domain adaptation can be seen as a special case

of the sequential multi-task learning, under which previous

studies have shown that fine-tuning causes catastrophic for-

getting [16, 48]. Both LWF and our methods maintain a

reasonably good performance in the source domain com-

pared with the Source detector. LWF prevents forgetting

about the source domain using a knowledge distillation loss,

while we do so by the residual loss coupled with the resid-

ual detection score. Thanks to the `2 regularization over

the offset vector u in the classifier of the adapted detector,

there is no noticeable difference between the new classifier

(w + u) and that (w) of the source face detector. We test

both classifiers stacked over the network of the adapted de-

tector and find that their corresponding curves almost over-

lap, as shown in Figure 5.

5. Conclusion

In this paper, we revisit the face detector adaptation prob-

lem under the new context of deep learning based face de-

tectors. The approach we proposed offers three key prop-

erties which we contend are missing or not explicitly dis-

cussed in the existing face detector adaptation works. In

short, the adaptation of face detectors is supposed to be exe-

cuted in the absence of the source domain’s data, with little

negative transfer, and incurring no catastrophic forgetting

about the source domain. Our approach explicitly accounts

for all the requirements by two residuals: a residual loss to

avoid negative transfer and a residual classifier to alleviate

catastrophic forgetting. We demonstrated the effectiveness

of our approach by adapting two face detectors from two

large-scale source datasets to two smaller target datasets.
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