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Figure 1. Multiple frames extracted from a single motion blurred image. On the left column we show the input image and two enlarged

details with different motion blur. On the columns to the right we show the estimated 7 frames and corresponding enlargements.

Abstract

We present a method to extract a video sequence from

a single motion-blurred image. Motion-blurred images are

the result of an averaging process, where instant frames are

accumulated over time during the exposure of the sensor.

Unfortunately, reversing this process is nontrivial. Firstly,

averaging destroys the temporal ordering of the frames.

Secondly, the recovery of a single frame is a blind decon-

volution task, which is highly ill-posed. We present a deep

learning scheme that gradually reconstructs a temporal or-

dering by sequentially extracting pairs of frames. Our main

contribution is to introduce loss functions invariant to the

temporal order. This lets a neural network choose during

training what frame to output among the possible combina-

tions. We also address the ill-posedness of deblurring by

designing a network with a large receptive field and imple-

mented via resampling to achieve a higher computational

efficiency. Our proposed method can successfully retrieve

sharp image sequences from a single motion blurred image

and can generalize well on synthetic and real datasets cap-

tured with different cameras.

1. Introduction

It is often said that photos capture a memory, an instant in

time. Technically, however, this is not strictly true. Photos

require a finite exposure to accumulate light from the scene.

Thus, objects moving during the exposure generate motion

blur in a photo. Motion blur is an image degradation that

makes visual content less interpretable and is therefore of-

ten seen as a nuisance. However, motion blur also combines

information about both texture and motion of the objects in

a single blurry image. Hence, recovering texture and mo-

tion from motion blurred images can be used to understand

the dynamics of a scene (e.g., in entertainment with sports

or in surveillance when monitoring the traffic). The task of

recovering a blur kernel and a sharp image, whose convolu-

tion gives rise to a given blurry image, is called motion de-

blurring or blind deconvolution. Unfortunately, this formu-

lation of the task is accurate only for some special cases of

motion blur. In particular, it holds in the cases when blur is

the same across an image (the so-called shift invariant blur

[19]) or when blur can be modeled as a linear combination

of a basis of shift fields (e.g., in the case of camera shake

[5]). However, in the case of multiple moving objects, also

called dynamic blur [21], a blurry image is no longer some

convolution of a blur pattern with a single sharp image. In

this case, a blurry image is the averaging over time of in-

stant frames, where multiple objects move independently

and cause occlusions.

In this paper we introduce blind deconvolution with dy-

namic blur as the task of recovering a sequence of sharp

frames from a single blurry image. As illustrated in Fig. 1,

given a single motion-blurred image (left column) we aim

at recovering a sequence of 7 frames each depicting some

instantaneous motion of the objects in the scene. To the

best of our knowledge, this is the first time this problem

has been posed and addressed. The two main challenges

16334



in solving this task are that: 1) blur removal is an ill-posed

problem and 2) averaging over time destroys the temporal

ordering of the instant frames. To handle the ill-posedness

of deblurring we use a deep learning approach and train a

convolutional neural network with a large receptive field. A

large receptive field could be achieved by using large con-

volutional filters. However, such filters would have a detri-

mental impact on the memory requirements and the compu-

tational cost of the network. We avoid these issues by using

a re-sampling layer (see Sec. 6). Handling the loss of the

temporal ordering is instead a less well-studied problem in

the literature. To make matters worse, this ordering ambi-

guity extends to the motion of each object in the scene, thus

leading to a combinatorial explosion of valid solutions. One

possible exception to this scenario is the estimation of the

frame in the middle of the sequence. In most motion blurred

images the middle frame corresponds to the center of mass

of the local blur, which can be unambiguously identified

given the blurry input image [21, 23]. However, as we show

in the Experiments section, the other frames do not enjoy

the same uniqueness. We find that training a neural network

by defining a loss on a specific frame of the sequence, other

than the middle one, yields very poor results (see Sec. 7).

We thus analyze temporal ambiguities in Sec. 4 and present

a novel deep learning method that extracts instant frames in

a sequential manner. Our main contribution is to train neural

networks via loss functions that are invariant to the temporal

ordering of the frames. These loss functions use the average

of two frames and the absolute value of their difference as

targets. This allows each network to choose which frames

to output during training. Moreover, to make the network

outputs more realistic and sharp, we use adversarial train-

ing [9]. In the Experiments section we demonstrate that our

trained networks can successfully extract videos from both

synthetic and real motion-blurred images. In addition to

providing accurate motion information about objects in the

scene, we plan to use our method for video editing and tem-

poral superresolution of videos. By exploiting the informa-

tion embedded in motion blur, our method has the potential

to interpolate subsequent frames with high accuracy.

2. Prior Work

Uniform Motion Deblurring. Blind deconvolution has

been studied for several decades, and tremendous progress

has been made in the case of uniform motion blur [26, 20,

2, 4, 35] and camera shake blur [10, 36, 1]. Yan et al.

[35] present an extremely effective image prior by combin-

ing the bright and dark channel priors of Pan et al. [26].

Michaeli et al. [20] incorporated recurrence of small image

patches across different scales of a natural image. Gong et

al. [6] introduced a gradient activation algorithm for kernel

estimation.

Non-Uniform Motion Deblurring. Recently, the general

motion deblurring problem has attracted a lot of attention.

[13] propose an energy model to estimate different motion

blurs and their associated pixel-wise weights. [14] use a

TV-L1 model to simultaneously estimate motion flow and a

latent sharp image. Sun et al. [33] trained a convolutional

neural network (CNN) for predicting a probability distribu-

tion of motion blurs. A sharp image is estimated by us-

ing a patch-level image prior. Pan et al. [25] developed an

efficient algorithm to jointly estimate object segmentation

and camera motion, where each layer is deblurred under the

guidance of a soft-segmentation. [7] estimated a dense mo-

tion flow with a fully convolutional neural network and re-

covered the latent sharp image from the estimated motion

flow. Bahat et al. [1] recover the unknown blur field by an-

alyzing the spectral content and deblur the image from the

estimated blur field with a patch recurrence prior. Pan et

al. [24] proposed a method to learn data fitting functions

from a large set of motion blurred images with the associ-

ated ground truth blur kernels. Nimisha et al. [22] used ad-

versarial training to learn blur-invariant features which fed

to a decoder to produce a deblurred image. Recent work

[21, 23, 15] suggests to generate synthetic data for dynamic

scene motion blur by averaging consecutive frames cap-

tured with a high frame rate camera. This dataset could then

be used to train a neural network. For example, [21] trained

an end-to-end model with a multi-scale convolutional neu-

ral network to restore the latent image directly.

Video Deblurring. A number of methods consider the task

of restoring a sharp sequence from a blurry video sequence.

Zhang et al. [37] propose a video deblurring method that

jointly estimates the motion between consecutive frames as

well as blur within each frame. Sellent et al. [30] instead ex-

ploit a stereo video sequence. Wieschollek et al. [34] intro-

duce a recurrent network architecture to deblur images by

taking temporal information into account. Kim et al. [15]

also exploit a (spatio-temporal) recurrent network, but aim

for real-time performance. Kim et al. [18] propose a method

for simultaneously removing general blurs and estimating

optical flow from a video sequence. Ren et al. [29] ex-

ploit semantic segmentation of each blurry frame to under-

stand the scene contents and use different motion models

for image regions to guide the optical flow estimation. Su et

al. [32] propose a CNN that deblurs videos by incorporat-

ing information accumulated across frames. Pan et al. [27]

propose a framework to jointly estimate the scene flow and

deblur the image. Park et al. [28] develop a method for

the joint estimation of camera pose, depth, deblurring, and

super-resolution from a blurred image sequence.

However, none of these approaches solves the task of

extracting a video sequence from a single motion-blurred

image. In the following sections, we first illustrate the main

challenges of our problem, then we introduce our novel loss

functions and show how they address these challenges. The
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network design is introduced in Sec. 6 and tested on syn-

thetic and real datasets in the Experiments section.

3. From Video to Image

An image y ∈ R
M×N captured with exposure τ can be

written as

y = g
(

1
τ

∫ τ

0
x̃(t)dt

)

= g
(

1
T

∑T−1
i=0 x[i]

)

, (1)

where g is the camera response function, which relates the

irradiance at the image plane to the measured image inten-

sity, and x̃(t) is the instant image (irradiance) at time t. We

discretize the time axis into T segments, and define a se-

quence of frames x[i], with i = 1, . . . , T . Each frame x[i]
corresponds to the integral of x̃(t) over a segment, i.e.,

x[i] = T
τ

∫ τ

T
(i+1)

τ

T
i

x̃(t)dt. (2)

Object motion introduces a relative shift (in pixels) of re-

gions between subsequent instant images x̃(t). Given the

maximum shift ∆ that we are interested in handling, and

by defining negligible blur as a shift of 1 pixel, we can de-

fine the maximum number T of time segments by setting

T = ∆. This choice only ensures that on average each

frame x[i] will have no motion blur. However, motions

with acceleration may cause blur larger than 1 pixel in some

frames.

The motion-blur model (1) thus far described is quite

general, as regions can shift in an unconstrained way and

subsequent instant images can introduce or remove texture

(occlusions). Indeed, this model can handle the most gen-

eral case of motion-blur, often called dynamic blur. This

suggests a new formulation of motion deblurring with dy-

namic blur:

Given a motion-blurred image y, recover the T

frames x[1], . . . , x[T ] satisfying model (1).

As mentioned in the Introduction, the task of recovering a

sharp image from a blurry one is already known to be highly

ill-posed. In our formulation, however, the task is made

even more challenging by the loss of frame ordering in the

model (1). It may be possible to determine the local order-

ing of subsequent frames by exploiting temporal smooth-

ness, however, there exist several ambiguities that we de-

scribe and discuss in the next section. For example, given

y it is impossible to know if the ordering of the original se-

quence was x[1], . . . , x[T ] or x[T ], . . . , x[1], which corre-

sponds to all objects moving forward or backward in time.

Due to the complexity of our task, we adopt a data-driven

approach. We build a dataset of blurry images with corre-

sponding ground truth frames by exploiting high frame-rate

videos as in recent methods [21, 23], and devise a novel

training method with convolutional neural networks (see

Sec. 5.3).

(a) (b) (c) (d) (e) (f) (g) (h) (i) (l)

Figure 2. Temporal ordering ambiguities. In this toy example,

we show two moving objects: a red and a green ball. Both are

translating horizontally. Columns (a)-(e) show five video frames

in four scenarios. Each of the four rows shows a plausible motion

scenario of the two objects. Column (f) shows the blurry average

of the first five columns. These averages are all identical, thus

demonstrating that all four sequences are equally valid solutions.

Column (g) shows the average of frame (b) and (d). Column (h)

shows the average of frame (a) and (e). Column (i) shows the

absolute difference of frame (b) and (d). Finally, column (h) shows

the absolute difference of frame (a) and (e).

4. Unraveling Time

In our data-driven approach we define a dataset of in-

put data (a blurry image) and target (a sequence of frames)

pairs and then train a neural network to learn this mapping.

However, the averaging of frames in model (1) destroys

the temporal ordering of the sequence x[1], . . . , x[T ]. This

makes the recovery of the frames x[i] very challenging, be-

cause it is not possible to define the target uniquely. We

might expect that local temporal ambiguities between sub-

sequent frames can be resolved by learning the temporal

smoothness (frames are more likely to form a sequence de-

scribing smooth motions). However, several other ambigu-

ities still remain. For example, the global motion direction

is valid both forward and backward in time. This direc-

tional ambiguity applies independently to each moving ob-

ject in the scene so that all motion direction combinations

are valid.

We illustrate these ambiguities in Fig. 2 with a toy ex-

ample. We consider two moving objects: a red and a green

ball both translating along the horizontal axis. The first 5
columns show all 5 frames (T = 5) in the averaging model.

Because there are 2 objects, there are 4 possible combina-

tions of motion directions (2n motions with n the number

of objects). These are shown in the 4 rows of the figure.

Column (f) shows that the corresponding average of the

frames is the same identical motion-blurred image in all 4
cases. Therefore, any of the target frames across the 4 rows

is a valid one, and it would be unfeasible for the network

to learn to predict a specific choice for just one of these 4
cases. Indeed, as we show in the Experiments section, train-

ing a network to predict a single frame results in a network
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that predicts a blurry output that is the average of the pos-

sible choices. There is one exception to these ambiguities.

The middle frame in an odd-numbered sequence does not

change across the 4 cases. This explains why prior methods

[21, 23] could successfully train a neural network to predict

the middle frame.

To address the temporal ordering ambiguities we intro-

duce novel loss functions. In the next section we explore

different options and show how we arrived at our proposed

loss function. These cases are also discussed and evaluated

in the Experiments section.

5. From Image to Video

Our training data has been obtained from a GoPro Hero

5 and features videos at 240 frames per second. To obtain

blurry frames at a standard real-time video rates (30 frames

per second) we thus need to average 8 frames. However, as

we have shown in our previous section we can avoid am-

biguities in the estimation of the middle frame by using an

odd number of frames, and hence we use T = 7. How-

ever, our method can generalize to other choices of T . We

denote the neural network that predicts the frame x[i] with

φi. Since the middle frame x[4] can be predicted directly

without ambiguities, we train φ4 with the following loss

Lmiddle = |φ4(y)− x[4]|2 + Lperceptual(φ4(y), x[4]), (3)

where Lperceptual is the perceptual loss [16]. For the percep-

tual loss, we use the relu2 2 and relu3 3 layers of vgg16 net

[31]. All other losses in the sections below will focus on the

other frames.

5.1. Globally Ordering­Invariant Loss

A first way to recover all other frames is to use a loss

function based on the image formation model (1)

Lmodel =
∣

∣

∣

∑

i 6=4 x̂[i]−
∑

i 6=4 x[i]
∣

∣

∣

1
, (4)

where we have defined x̂[i] = φi(y). This loss does not

suffer from ambiguities and lets the networks decide what

frames to output. In practice, however, we find that it is too

weak. This loss works well only when a blurry frame is

generated by averaging no more than 3 frames. We find ex-

perimentally that with more averaging frames, the network

does not converge well and may not generate a meaningful

sequence.

5.2. Pairwise Ordering­Invariant Loss

Inspired by the previous observation, we notice that any

pair of symmetric frames (about the middle frame) results

in the same average and absolute differences. This choice is

motivated by the observations made in the previous section

and illustrated in Fig. 2. Columns (g) and (i) in Fig. 2 show

the average and absolute difference respectively of columns

(b) and (d). These combinations yield the same target frame

regardless of the objects motion direction. Thus, we pro-

pose to use a loss made of two components, one based on

the sum and the other based on the absolute difference be-

tween only two frames. We find experimentally that this

scheme imposes a much stronger constraint. Based on these

observations, for each pair of symmetric frames (φi, φ8−i),
we propose the following loss function

Lpair =
∑3

i=1

∣

∣

∣
|x̂[i] + x̂[8− i]| − |x[i] + x[8− i]|

∣

∣

∣

1

+
∣

∣

∣
|x̂[i]− x̂[8− i]| − |x[i]− x[8− i]|

∣

∣

∣

1
,

(5)

where x̂[i] = φi(y) and x̂[8 − i] = φ8−i(φi(y), y) for

i = 1, 2, 3. Notice that φ8−i(φi(y), y) takes as inputs

both the blurry image y and the output of the other network

φi(y). The reason for this additional input is so that the net-

work φ8−i can learn to generate a frame different from that

of φi(y). Therefore, it needs to “know” what frame the net-

work φi(y) has chosen to generate. Compared with the loss

function in eq. (4), this loss function is easier to optimize

and converges better (see results in the Experiments sec-

tion). We also find experimentally that we can further boost

the performance of our networks by additionally feeding the

middle frame prediction to each network. That is, we define

x̂[i] = φi(φ4(y), y) and x̂[8 − i] = φ8−i(φ4(y), φi(y), y)
for i = 1, 2, 3.

5.3. Learning a Temporal Direction

Up to this point, each pair of networks φi and φ8−i op-

erates independently from the other pairs. This is not ideal,

as it leaves a binary ambiguity in the temporal ordering of

each pair: We do not know if φi 7→ x[i] and φ8−i 7→ x[8−i]
or φi 7→ x[8− i] and φ8−i 7→ x[i]. Thus, after training, one

needs to find a smooth temporal ordering of the outputs of

these networks for each new input.

To avoid this additional task, we sequentially train our

networks and use the outputs of the previous networks to

determine the ordering for each data sample during train-

ing. This is needed only for frames away from the middle

core with i = 3, 4, 5. Moreover, once the temporal order-

ing chosen by the middle core networks is known to the

other networks, there is no need to feed other inputs. Hence,

we define the non-core networks as φi(φi+1(y), φi+2(y), y)
and φ8−i(φ7−i(y), φ6−i(y), y) for i = 1, 2. In practice, we

find that φi and φ8−i can share weights for i = 1, 2. This

opens up the possibility of designing a recurrent network to

predict all non-core frames. We also use an adversarial loss

Ladv to enhance the accuracy of the output of each network

φ. Except for the network that generates the middle frame,

all other networks use the adversarial loss during training.

We summarize our training losses and procedure in Table 1.
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Table 1. Summary of networks, loss functions and training.

Training procedure

1. Let x̂[4] = φ4(y) and minimize

Lmiddle = |x̂[4]− x[4]|2 + Lperceptual(x̂[4], x[4]).

2. Let x̂[3] = φ3(φ4(y), y),
x̂[5] = φ5(φ3(y), φ4(y), y) and minimize

L3,5
pair =

∣

∣

∣
|x̂[3] + x̂[5]| − |x[3] + x[5]|

∣

∣

∣

1

+
∣

∣

∣
|x̂[3]− x̂[5]| − |x[3]− x[5]|

∣

∣

∣

1

+L3
adv + L5

adv.

3. Let x̂[i] = φi(φi+1(y), φi+2(y), y), x̂[8− i] =
φ8−i(φ7−i(y), φ6−i(y), y), with i = 1, 2 and

minimize

L1,2,6,7
pair =

∣

∣

∣
|x̂[1] + x̂[6]| − |x[1] + x[6]|

∣

∣

∣

1

+
∣

∣

∣
|x̂[1]− x̂[6]| − |x[1]− x[6]|

∣

∣

∣

1

+
∣

∣

∣
|x̂[2] + x̂[7]| − |x[2] + x[7]|

∣

∣

∣

1

+
∣

∣

∣
|x̂[2]− x̂[7]| − |x[2]− x[7]|

∣

∣

∣

1

+L1
adv + L2

adv + L6
adv + L7

adv.

6. Implementation

Our middle frame prediction network employs a resid-

ual learning strategy like many recent image restoration net-

works [21, 17]. It consists of three parts, feature extraction,

feature refinement and feature fusion. Feature extraction is

done by a resampling convolution with a resampling factor

equal to 4. In the feature refinement part, we use 12 resid-

ual blocks [11], where each one includes two 3 × 3 and

one 1 × 1 convolution layers with a pre-activation struc-

ture [12]. To further increase the receptive field, we replace

standard convolutional layers in the middle with 6 resid-

ual blocks with dilated convolutions. The feature extraction

and refinement parts work on grayscale images, and three

color-refined features are generated separately. The feature

fusion part works on color images to compensate misalign-

ments from the three separately-generated color-refined fea-

tures. For the non middle frame prediction networks, a sim-

ilar structure is applied. The differences are the feature ex-

traction part, where features are extracted from multiple in-

puts separately and then concatenated, resampling factor,

and number of channels. More details of these architectures

Table 2. Comparison of the middle frame prediction networks.

Method 45% [21] (dB) Our testset (dB) [21] (dB)

Nah [21] 30.52 28.19 28.48

Middle 32.20 29.02 26.98

Table 3. Execution time comparison between the state of the

art single image dynamic scene deblurring network [21] and our

model on three different resolutions on a Titan X GPU.

Method 320P 480P 720P # params

Nah [21] 2.43 3.52 4.80 12M

Middle 0.24 0.30 0.45 5M

Full 0.61 0.74 1.10 17M

can be found in the supplementary material.

7. Experiments

In this section, we perform a quantitative comparison of

the middle frame prediction network with the state-of-the-

art method [21]. For non middle frame predictions, we carry

out a qualitative evaluation as there is no existing method

predicting a video sequence from a single motion-blurred

input. We show some examples of video reconstructions

from real motion blurred images in Fig. 6. More examples

and videos are available in the supplementary material. We

validate our design through ablation studies of different loss

functions.

Training Dataset and Implementation Details. Although

there is a GoPro training set available from [21], containing

22 diverse scenes, we captured additional 20 scenes. In the

training, we downsample the GoPro frames to 45% of their

original size (1280 × 720 pixels) to suppress noise. Blurry

frames are generated by averaging 7 consecutive frames

randomly cropped of size 320 × 320. For training we use

about 15K samples. Data augmentation is applied to avoid

overfitting by randomly shuffling color channels, rotating

images, and adding 1% white gaussian noise. Networks

are implemented using PyTorch and training is done with

2 GTX 1080 Ti GPUs. The batch-size of the middle frame

prediction network and other networks are 32 and 24, re-

spectively. Training at each stage takes 1 day, and all to-

gether the full network training takes 4 days.

Middle Frame Reconstruction. We take Nah’s [21] test

set, which contains 11 different sequences, and generate

1700 blurry frames by averaging 7 consecutive frames. The

same process is also applied to our own test set where 450

blurry images are generated. All blurry images are down-

sampled to 45% as during training. Table 2 shows the

quantitative results of Nah’s network and our proposed net-

work on two datasets. On the last two datasets (the first

two columns in the table), our network is consistently pre-

forming better. This is because the motion blur in the data
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(a
)

(b
)

(c
)

(d
)

Blurry Nah [21] Proposed Blurry crop Nah [21] crop Proposed crop

(e
)

(f
)

(g
)

Blurry Su [32] Proposed Blurry crop Su [32] crop Proposed crop

Figure 3. Middle frame prediction comparison. The first and fourth columns show the blurry inputs and cropped regions. (a)-(d) second and

fifth columns: frame predictions from [21] network. (e)-(g) second and fifth columns: frame predictions from [32] network. (a)-(g) third

and last columns: frame predictions from our proposed network. The first two rows have been generated synthetically through averaging.

The third and fourth rows are real images captured with a DSLR camera. The last three rows are real images from [3] and [32].

matches the motion blur observed by our network during

training. In contrast, Nah’s network was trained with much

more challenging data, where motion blur could be even

larger. Thus, for a fairer comparison, we also evaluate our

network on Nah’s original 1111 test images. These images

are averaged by more than 7 frames without any downsam-

pling. In this case, Nah’s network is performing better, as

our network has not learned to deal with such large motion

blur. However, the performance loss is not too significant.

Some visual comparisons on both synthetic and real im-

ages are shown in Fig. 3. Fig. 3 (a) and (b) show two

synthetic examples, one with an extremely large blur from

Nah’s original test images and the other one with a moder-

ate blur from our test set. It can be seen that although our

method does not outperform Nah’s, it can give better visual

results when blur is moderate. Two real examples captured

with a DSLR (Nikon D7100) are also shown in rows (c)

and (d). In practice, we find that if a network is trained with

large blurs, it may not remove moderate blur to the same ex-

tent as networks trained with small blurs. As we will show

later in the Experiments section, the accuracy of the middle

frame prediction has a dramatic impact on the reconstruc-

tion of the other frames.

Another advantage of our network is computational effi-

ciency. In Table 3 we show the execution time for 3 different

resolutions and number of parameters used in Nah’s and our

networks. It can be seen that our middle frame prediction

network is approximately 10 times faster than Nah’s, but

has half as many parameters. Additionally, in Fig. 3 we also

compare to the state of the art video deblurring method [32].

Notice that in [32], they use 5 consecutive blurry frames to

predict the middle sharp frame, whereas we predict the mid-

dle frame directly from only one blurry input. Three real

results are shown in Fig. 3 (e), (f) and (g). It can be seen

that, although our method suffers from some jpeg artifacts,

it gives comparable results.

Resampling Factors. We also evaluate the different re-

sampling factors for the middle frame estimation and find
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)

(g
)

(h
)

(i
)

(j
)

(k
)

(l
)

Blurry Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7

Figure 4. Ablation study on real data with different loss functions.

that 4× resampling gives a better trade-off between accu-

racy and execution time.

Independent Frame Reconstruction. A straightforward

way of estimating a full sharp sequence is to replicate the

training for each frame by minimizing the loss Lindep =
∑T

i=1 |φi(y)− x[i]|2, where φi is a network to predict x[i].
In this section we show that this scheme is not applicable

beyond middle frames, due to the temporal ordering am-

biguity. Fig. 4 (a) and (g) show the visual results with an

independent frame reconstruction scheme. From the results

we can see that the quality of the reconstructed frame wors-

ens as the distance from the middle frame increases.

Global Frame Reconstruction. In this section we show

that the global ordering-invariant loss is not a good option

either. Fig. 4 (b) and (h) show the reconstructed 7 frames,

where the middle frame is reconstructed independently with

the loss Lmiddle and the other 6 frames are reconstructed

(a
)

Blurry Blurry crop

(b
)

(c
)

(d
)

Frame 1 Frame 4 Frame 7

Figure 5. A synthetic example from [21] test image. (b)-(d) Frame

4 show our estimated middle frame, Nah’s estimate and the ground

truth, respectively. As can be seen, the middle frame estimates

from both our method and Nah’s are incorrect and affect the es-

timates of the other frames. Only when the ground truth middle

frame is provided, the other frames can be estimated correctly.

jointly with the globally ordering-invariant loss Lmodel. We

can see that the non middle frame prediction network does

not converge well and generates artifacts.

Pairwise Frame Reconstruction. Fig. 4 (c), (d), (i)

and (j) show the reconstructions with the pairwise ordering-

invariant loss Lpair. Rows (d) and (j) show the case where

the middle frame prediction is also fed to the network, while

the third row shows the case without the middle frame pre-

diction. There are two main limitations of using Lpair: 1)

One has to manually reorder non middle frame predictions;

2) Although feeding the middle frame prediction to the net-

work gives better visual results than in the case without it,

still both of these two schemes generate artifacts, especially

for the frames temporally away from the middle frame.

Sequential Pairwise Frame Reconstruction. Fig. 4 (e)

and (k) show the visual results with a sequential pair-wise

reconstruction scheme. Notice that this scheme and the

pairwise ordering scheme only differ at the 4 frame predic-

tions x[1], x[2], x[6], and x[7]. We can see that the sequen-

tial scheme generates fewer artifacts especially at frames

x[1] and x[7] in Fig. 4 (k).

Teacher Forcing. We also explore the teacher forcing
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Blurry Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7

Figure 6. Examples with real images. All images are captured with a DSLR camera. Top row: an image with multiple moving objects.

Notice that the background scene is static. Second row Frame 1-7: the reconstructed video (requires zooming). Rows 3 and 4: details of

the scene. Notice that the reconstruction shows both cars moving left to right. This is not the true motion (it would correspond to one

vehicle reversing on the street). Bottom row: a rotating ball. The network can correctly reconstruct a video with a complex motion field.

method used to train recurrent neural networks [8]. Dur-

ing training we substitute the middle frame prediction φ4(y)
with the ground truth middle frame x[4] in step 2 and 3 of

our full training procedure in Table 1. This strategy brings

several benefits: 1) In practice, we observe that the teacher

forcing training strategy converges faster than with a stan-

dard sequential pairwise training; 2) It also gives visually

better predictions as shown in Fig. 4 (l), where non mid-

dle frames are predicted by a network trained with teacher

forcing; 3) The middle frame and non middle frame predic-

tion training can be done in parallel. We use teacher forcing

training as our default network training scheme.

We use 4 different networks to predict all 7 frames: one

to predict the middle frame, and the other three for middle-

symmetric pair-wise frames. We found that sharing the pa-

rameters of the pair-wise networks for frames 1, 2, 6 and 7

during training would not result in a loss of visual accuracy.

This could make predicting more than 7 frames feasible.

Importance of the Middle Frame Estimate. We observe

experimentally that a good initialization is key in making

the non middle frame prediction network work well. Fig. 5

(a) shows a blurry image and an enlarged detail with sig-

nificant motion blur. In Fig. 5 (b) we show the reconstruc-

tions of frame 1, 4 (middle) and 7 with our trained network,

where we used our estimated frame 4 to recover the other

frames. In Fig. 5 (c) we show the corresponding frames

reconstructed when feeding our network with Nah’s [21]

frame 4 estimate. Both cases fail to reconstruct the middle

frames and the other frames. However, when we feed our

networks with the ground truth middle frame (see Fig. 5

(d)), they are able to correctly reconstruct the other frames.

Discussion. Although our system can predict 7 frames

from a motion-blurred image, there are two main limita-

tions. One main limitation of our approach is that it is not

robust to large blurs. Whenever our middle frame prediction

network fails to remove blur, the non middle frame predic-

tion networks also fail.

8. Conclusions

In this paper we have presented a first method to recon-

struct a video from a single motion-blurred image. We have

shown that the task is more ambiguous than deblurring a

single frame because the temporal ordering is lost in the

motion-blurred image. We have presented a data-driven so-

lution that allows a convolutional neural network choose a

temporal ordering at the output. We have demonstrated our

model on several datasets and have shown that it generalizes

on real images captured with different cameras from those

used to collect the training set.
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