
Image Generation from Scene Graphs

Justin Johnson1,2∗ Agrim Gupta1 Li Fei-Fei1,2

1Stanford University 2Google Cloud AI

Abstract

To truly understand the visual world our models should

be able not only to recognize images but also generate them.

To this end, there has been exciting recent progress on gen-

erating images from natural language descriptions. These

methods give stunning results on limited domains such as

descriptions of birds or flowers, but struggle to faithfully

reproduce complex sentences with many objects and rela-

tionships. To overcome this limitation we propose a method

for generating images from scene graphs, enabling explic-

itly reasoning about objects and their relationships. Our

model uses graph convolution to process input graphs, com-

putes a scene layout by predicting bounding boxes and seg-

mentation masks for objects, and converts the layout to an

image with a cascaded refinement network. The network is

trained adversarially against a pair of discriminators to en-

sure realistic outputs. We validate our approach on Visual

Genome and COCO-Stuff, where qualitative results, abla-

tions, and user studies demonstrate our method’s ability to

generate complex images with multiple objects.

1. Introduction

What I cannot create, I do not understand

– Richard Feynman

The act of creation requires a deep understanding of the

thing being created: chefs, novelists, and filmmakers must

understand food, writing, and film at a much deeper level

than diners, readers, or moviegoers. If our computer vision

systems are to truly understand the visual world, they must

be able not only recognize images but also to generate them.

Aside from imparting deep visual understanding, meth-

ods for generating realistic images can also be practically

useful. In the near term, automatic image generation can

aid the work of artists or graphic designers. One day, we

might replace image and video search engines with algo-

rithms that generate customized images and videos in re-

sponse to the individual tastes of each user.

As a step toward these goals, there has been exciting re-

∗Work done during an internship at Google Cloud AI.

Sentence Scene Graph

OursStackGAN
[59]

[47]

sheep

grass skyocean

tree

sheep

boat in

by

by

behind

standing on

above

Figure 1. State-of-the-art methods for generating images from

sentences, such as StackGAN [59], struggle to faithfully depict

complex sentences with many objects. We overcome this limita-

tion by generating images from scene graphs, allowing our method

to reason explicitly about objects and their relationships.

cent progress on text to image synthesis [41, 42, 43, 59] by

combining recurrent neural networks and Generative Ad-

versarial Networks [12] to generate images from natural

language descriptions.

These methods can give stunning results on limited do-

mains, such as fine-grained descriptions of birds or flowers.

However as shown in Figure 1, leading methods for generat-

ing images from sentences struggle with complex sentences

containing many objects.

A sentence is a linear structure, with one word follow-

ing another; however as shown in Figure 1, the information

conveyed by a complex sentence can often be more explic-

itly represented as a scene graph of objects and their rela-

tionships. Scene graphs are a powerful structured represen-

tation for both images and language; they have been used

for semantic image retrieval [22] and for evaluating [1] and

improving [31] image captioning; methods have also been

developed for converting sentences to scene graphs [47] and

for predicting scene graphs from images [32, 36, 57, 58].

In this paper we aim to generate complex images with

many objects and relationships by conditioning our genera-

tion on scene graphs, allowing our model to reason explic-

itly about objects and their relationships.

With this new task comes new challenges. We must de-

velop a method for processing scene graph inputs; for this

we use a graph convolution network which passes informa-

tion along graph edges. After processing the graph, we must

11219



bridge the gap between the symbolic graph-structured in-

put and the two-dimensional image output; to this end we

construct a scene layout by predicting bounding boxes and

segmentation masks for all objects in the graph. Having pre-

dicted a layout, we must generate an image which respects

it; for this we use a cascaded refinement network (CRN) [6]

which processes the layout at increasing spatial scales. Fi-

nally, we must ensure that our generated images are realistic

and contain recognizable objects; we therefore train adver-

sarially against a pair of discriminator networks operating

on image patches and generated objects. All components of

the model are learned jointly in an end-to-end manner.

We experiment on two datasets: Visual Genome [26],

which provides human annotated scene graphs, and COCO-

Stuff [3] where we construct synthetic scene graphs from

ground-truth object positions. On both datasets we show

qualitative results demonstrating our method’s ability to

generate complex images which respect the objects and re-

lationships of the input scene graph, and perform compre-

hensive ablations to validate each component of our model.

Automated evaluation of generative images models is a

challenging problem unto itself [52], so we also evaluate

our results with two user studies on Amazon Mechanical

Turk. Compared to StackGAN [59], a leading system for

text to image synthesis, users find that our results better

match COCO captions in 68% of trials, and contain 59%

more recognizable objects.

2. Related Work

Generative Image Models fall into three recent cate-

gories: Generative Adversarial Networks (GANs) [12, 40]

jointly learn a generator for synthesizing images and a dis-

criminator classifying images as real or fake; Variational

Autoencoders [24] use variational inference to jointly learn

an encoder and decoder mapping between images and la-

tent codes; autoregressive approaches [38, 53] model likeli-

hoods by conditioning each pixel on all previous pixels.

Conditional Image Synthesis conditions generation on

additional input. GANs can be conditioned on category la-

bels by providing labels as an additional input to both gen-

erator and discriminator [10, 35] or by forcing the discrim-

inator to predict the label [37]; we take the latter approach.

Reed et al. [42] generate images from text using a GAN;

Zhang et al. [59] extend this approach to higher resolutions

using multistage generation. Related to our approach, Reed

et al. generate images conditioned on sentences and key-

points using both GANs [41] and multiscale autoregressive

models [43]; in addition to generating images they also pre-

dict locations of unobserved keypoints using a separate gen-

erator and discriminator operating on keypoint locations.

Chen and Koltun [6] generate high-resolution images of

street scenes from ground-truth semantic segmentation us-

ing a cascaded refinement network (CRN) trained with a

perceptual feature reconstruction loss [9, 21]; we use their

CRN architecture to generate images from scene layouts.

Related to our layout prediction, Chang et al. have inves-

tigated text to 3D scene generation [4, 5]; other approaches

to image synthesis include stochastic grammars [20], prob-

abalistic programming [27], inverse graphics [28], neural

de-rendering [55], and generative ConvNets [56].

Scene Graphs represent scenes as directed graphs,

where nodes are objects and edges give relationships be-

tween objects. Scene graphs have been used for image

retrieval [22] and to evaluate image captioning [1]; some

work converts sentences to scene graphs [47] or predicts

grounded scene graphs for images [32, 36, 57, 58]. Most

work on scene graphs uses the Visual Genome dataset [26],

which provides human-annotated scene graphs.

Deep Learning on Graphs. Some methods learn em-

beddings for graph nodes given a single large graph [39, 51,

14] similar to word2vec [34] which learns embeddings for

words given a text corpus. These differ from our approach,

since we must process a new graph on each forward pass.

More closely related to our work are Graph Neural Net-

works (GNNs) [11, 13, 46] which generalize recursive neu-

ral networks [8, 49, 48] to operate on arbitrary graphs.

GNNs and related models have been applied to molecular

property prediction [7], program verification [29], model-

ing human motion [19], and premise selection for theorem

proving [54]. Some methods operate on graphs in the spec-

tral domain [2, 15, 25] though we do not take this approach.

3. Method

Our goal is to develop a model which takes as input

a scene graph describing objects and their relationships,

and which generates a realistic image corresponding to the

graph. The primary challenges are threefold: first, we must

develop a method for processing the graph-structured input;

second, we must ensure that the generated images respect

the objects and relationships specified by the graph; third,

we must ensure that the synthesized images are realistic.

We convert scene graphs to images with an image gen-

eration network f , shown in Figure 2, which inputs a scene

graph G and noise z and outputs an image Î = f(G, z).
The scene graph G is processed by a graph convolution

network which gives embedding vectors for each object; as

shown in Figures 2 and 3, each layer of graph convolution

mixes information along edges of the graph.

We respect the objects and relationships from G by us-

ing the object embedding vectors from the graph convolu-

tion network to predict bounding boxes and segmentation

masks for each object; these are combined to form a scene

layout, shown in the center of Figure 2, which acts as an

intermediate between the graph and the image domains.

The output image Î is generated from the layout using a

cascaded refinement network (CRN) [6], shown in the right

1220



man right	of man

boy behind

patioonfrisbee

throwing

Input:	Scene	graph

Graph	

Convolution

Object	

features

Scene	

layout
Output:	Image

Layout	prediction

Conv Upsample Conv

Downsample

Cascaded	Refinement	Network

Noise

Figure 2. Overview of our image generation network f for generating images from scene graphs. The input to the model is a scene graph

specifying objects and relationships; it is processed with a graph convolution network (Figure 3) which passes information along edges to

compute embedding vectors for all objects. These vectors are used to predict bounding boxes and segmentation masks for objects, which

are combined to form a scene layout (Figure 4). The layout is converted to an image using a cascaded refinement network (CRN) [6]. The

model is trained adversarially against a pair of discriminator networks. During training the model observes ground-truth object bounding

boxes and (optionally) segmentation masks, but these are predicted by the model at test-time.

half of Figure 2; each of its modules processes the layout at

increasing spatial scales, eventually generating the image Î .

We generate realistic images by training f adversarially

against a pair of discriminator networks Dimg and Dobj

which encourage the image Î to both appear realistic and

to contain realistic, recognizable objects.

Each of these components is described in more detail be-

low; the supplementary material describes the exact archite-

cures used in our experiments.

Scene Graphs. The input to our model is a scene

graph [22] describing objects and relationships between ob-

jects. Given a set of object categories C and a set of rela-

tionship categories R, a scene graph is a tuple (O,E) where

O = {o1, . . . , on} is a set of objects with each oi ∈ C, and

E ⊆ O × R × O is a set of directed edges of the form

(oi, r, oj) where oi, oj ∈ O and r ∈ R.

As a first stage of processing, we use a learned embed-

ding layer to convert each node and edge of the graph from

a categorical label to a dense vector, analogous to the em-

bedding layer typically used in neural language models.

Graph Convolution Network. In order to process scene

graphs in an end-to-end manner, we need a neural network

module which can operate natively on graphs. To this end

we use a graph convolution network composed of several

graph convolution layers.

A traditional 2D convolution layer takes as input a spatial

grid of feature vectors and produces as output a new spa-

tial grid of vectors, where each output vector is a function

of a local neighborhood of its corresponding input vector;

in this way a convolution aggregates information across lo-

cal neighborhoods of the input. A single convolution layer

can operate on inputs of arbitrary shape through the use of

weight sharing across all neighborhoods in the input.

Our graph convolution layer performs a similar function:

given an input graph with vectors of dimension Din at each

node and edge, it computes new vectors of dimension Dout

for each node and edge. Output vectors are a function of

a neighborhood of their corresponding inputs, so that each

graph convolution layer propagates information along edges

of the graph. A graph convolution layer applies the same

function to all edges of the graph, allowing a single layer to

operate on graphs of arbitrary shape.

Concretely, given input vectors vi, vr ∈ R
Din for all ob-

jects oi ∈ O and edges (oi, r, oj) ∈ E, we compute output

vectors for v′i, v
′

r ∈ R
Dout for all nodes and edges using

three functions gs, gp, and go, which take as input the triple

of vectors (vi, vr, vj) for an edge and output new vectors

for the subject oi, predicate r, and object oj respectively.

To compute the output vectors v′r for edges we simply set

v′r = gp(vi, vr, vj). Updating object vectors is more com-

plex, since an object may participate in many relationships;

as such the output vector v′i for an object oi should depend

on all vectors vj for objects to which oi is connected via

graph edges, as well as the vectors vr for those edges. To

this end, for each edge starting at oi we use gs to compute

a candidate vector, collecting all such candidates in the set

V s
i ; we similarly use go to compute a set of candidate vec-

tors V o
i for all edges terminating at oi. Concretely,

V s
i = {gs(vi, vr, vj) : (oi, r, oj) ∈ E} (1)

V o
i = {go(vj , vr, vi) : (oj , r, oi) ∈ E}. (2)

The output vector for v′i for object oi is then computed as

v′i = h(V s
i ∪ V o

i ) where h is a symmetric function which

pools an input set of vectors to a single output vector. An

example computational graph for a single graph convolution

layer is shown in Figure 3.

In our implementation, the functions gs, gp, and go are

implemented using a single network which concatenates

its three input vectors, feeds them to a multilayer percep-

tron (MLP), and computes three output vectors using fully-

connected output heads. The pooling function h averages

its input vectors and feeds the result to a MLP.

1221



v1 vr1
v2 vr2

v3

v’1 v’r1 v’2 v’r1 v’3

gs gp go gs gp go

h h h

Figure 3. Computational graph illustrating a single graph convo-

lution layer. The graph consists of three objects o1, o2, and o3 and

two edges (o1, r1, o2) and (o3, r2, o2). Along each edge, the three

input vectors are passed to functions gs, gp, and go; gp directly

computes the output vector for the edge, while gs and go compute

candidate vectors which are fed to a symmetric pooling function

h to compute output vectors for objects.

Scene Layout. Processing the input scene graph with a

series of graph convolution layers gives an embedding vec-

tor for each object which aggregates information across all

objects and relationships in the graph.

In order to generate an image, we must move from the

graph domain to the image domain. To this end, we use

the object embedding vectors to compute a scene layout

which gives the coarse 2D structure of the image to gener-

ate; we compute the scene layout by predicting a segmenta-

tion mask and bounding box for each object using an object

layout network, shown in Figure 4.

The object layout network receives an embedding vector

vi of shape D for object oi and passes it to a mask regression

network to predict a soft binary mask m̂i of shape M ×
M and a box regression network to predict a bounding box

b̂i = (x0, y0, x1, y1). The mask regression network consists

of several transpose convolutions terminating in a sigmoid

nonlinearity so that elements of the mask lies in the range

(0, 1); the box regression network is a MLP.

We multiply the embedding vector vi elementwise with

the mask m̂i to give a masked embedding of shape D×M×
M which is then warped to the position of the bounding box

using bilinear interpolation [18] to give an object layout.

The scene layout is then the sum of all object layouts.

During training we use ground-truth bounding boxes bi
to compute the scene layout; at test-time we instead use pre-

dicted bounding boxes b̂i.

Cascaded Refinement Network. Given the scene lay-

out, we must synthesize an image that respects the object

positions given in the layout. For this task we use a Cas-

caded Refinement Network [6] (CRN). A CRN consists of

a series of convolutional refinement modules, with spatial

resolution doubling between modules; this allows genera-

tion to proceed in a coarse-to-fine manner.

Each module receives as input both the scene layout

(downsampled to the input resolution of the module) and the

output from the previous module. These inputs are concate-

nated channelwise and passed to a pair of 3× 3 convolution

Mask 
regression 
network

Box regression 
network Box

Mask: M x M Masked embedding: 
D x M x M

Object Layout:
D x H x W

Scene Layout:
D x H x W

Object Layout 
Network

Object Layout 
Network

Object Layout 
Network

Object 
Embedding 
Vector: D

Figure 4. We move from the graph domain to the image domain

by computing a scene layout. The embedding vector for each ob-

ject is passed to an object layout network which predicts a layout

for the object; summing all object layouts gives the scene layout.

Internally the object layout network predicts a soft binary segmen-

tation mask and a bounding box for the object; these are combined

with the embedding vector using bilinear interpolation to produce

the object layout.

layers; the output is then upsampled using nearest-neighbor

interpolation before being passed to the next module.

The first module takes Gaussian noise z ∼ pz as input,

and the output from the last module is passed to two final

convolution layers to produce the output image.

Discriminators. We generate realistic output images

by training the image generation network f adversarially

against a pair of discriminator networks Dimg and Dobj .

A discriminator D attempts to classify its input x as real

or fake by maximizing the objective [12]

LGAN = E
x∼preal

logD(x) + E
x∼pfake

log(1−D(x)) (3)

where x ∼ pfake are outputs from the generation network f .

At the same time, f attempts to generate outputs which will

fool the discriminator by minimizing LGAN .1

The patch-based image discriminator Dimg ensures that

the overall appearance of generated images is realistic;

it classifies a regularly spaced, overlapping set of image

patches as real or fake, and is implemented as a fully convo-

lutional network, similar to the discriminator used in [17].

The object discriminator Dobj ensures that each object

in the image appears realistic; its input are the pixels of an

object, cropped and rescaled to a fixed size using bilinear

interpolation [18]. In addition to classifying each object as

real or fake, Dobj also ensures that each object is recog-

nizable using an auxiliary classifier [37] which predicts the

object’s category; both Dobj and f attempt to maximize the

probability that Dobj correctly classifies objects.

Training. We jointly train the generation network f and

the discriminators Dobj and Dimg . The generation network

is trained to minimize the weighted sum of six losses:

1In practice, to avoid vanishing gradients f typically maximizes the

surrogate objective Ex∼pfake
logD(x) instead of minimizing LGAN [12].

1222



G
ra

p
h

hassky cloud

sheep

grass

eating eating

mountain

behindrock

tree

in front ofstone

sheep

aboveskycloud

person

wave

riding riding background

edge

by water

board

on top of grassboy

looking at

field

sky kite brick

mountain

standing on

under

building

next to bus

has

windshield

behind

x4

bus

has

windshield

tree

behindsky line

sign

left ofcar car

above

playingfield

grass

above

person

below

person

left of

left of tree

above

cage
broccoli

carrot

broccoli

belowleft of

vegetable

inside

person

person

person

inside

left of

fence

inside

sky-other

skateboard

tree

surrounding

below

inside

above

person

T
ex

t Two sheep, one eat-

ing grass with a tree

in front of a mountain;

the sky has a cloud.

A person riding a wave

and a board by the wa-

ter with sky above.

A boy standing on

grass looking at a kite

and the sky with the

field under a mountain

Two busses, one be-

hind the other and a

tree behind the second;

both busses have win-

shields.

A person above a play-

ingfield and left of an-

other person left of

grass, with a car left of

a car above the grass.

One broccoli left of

another, which is

inside vegetables and

has a carrot below it.

Three people with the

first two inside a fence

and the first left of the

third.

A person above the

trees inside the sky,

with a skateboard sur-

rounded by sky.

L
a

y
o

u
t

Im
a

g
e

(a) (b) (c) (d) (e) (f) (g) (h)

G
ra

p
h car

parked on

in front ofwindow

along

roof

has

house

street

housetree

bush car

sky

horse

short

man leg

tail

riding

has

above

hill leg

hashas

hill

boat

water

on top of rock

sky

bird

tie

clothes

person

surrounding

above

inside

wall-panel

surrounding

clouds

horseabove

person

left of

tree

abovegrass

right of elephant

above

grass

inside

surrounding

tree

elephant clouds

above

boat

building

river

above

below

tree left of

T
ex

t

Two cars, one parked

on a street with a tree

along it, and a window

in front of a house and

a house with a roof.

Sky above a man rid-

ing a horse; the man

has a leg and the horse

has a leg and a tail.

A boat on top of water;

there is also sky, rock,

and a bird.

A glass by a plate with

food on it, and another

glass by a plate.

A tie above clothes

and inside a person,

with a wall panel sur-

rounding the person.

A tree right of a

person left of a horse

above grass, with

clouds above the

grass.

An elephant above

grass and inside trees

surrounding another

elephant.

Clouds above a boat

and a building above a

river, with trees left of

the river.

L
a

y
o

u
t

Im
a

g
e

G
T

L
a

y
o

u
t

(i) (j) (k) (l) (m) (n) (o) (p)

Figure 5. Examples of 64 � 64 generated images using graphs from the test sets of Visual Genome (left four columns) and COCO (right

four columns). For each example we show the input scene graph and a manual translation of the scene graph into text; our model processes

the scene graph and predicts a layout consisting of bounding boxes and segmentation masks for all objects; this layout is then used to

generate the image. We also show some results for our model using ground-truth rather than predicted scene layouts. Some scene graphs

have duplicate relationships, shown as double arrows. For clarity, we omit masks for some stuff categories such as sky, street, and water.

• Box loss Lbox =
P n

i=1
‖bi − b̂i‖1 penalizing the L1 dif-

ference between ground-truth and predicted boxes

• Mask loss Lmask penalizing differences between ground-

truth and predicted masks with pixelwise cross-entropy;

not used for models trained on Visual Genome

• Pixel loss Lpix = ‖I − Î‖1 penalizing the L1 difference

between ground-truth generated images

• Image adversarial loss Limg
GAN from Dimg encouraging

generated image patches to appear realistic

• Object adversarial loss Lobj
GAN from the Dobj encourag-

ing each generated object to look realistic

• Auxiliarly classifier loss Lobj
AC from Dobj , ensuring that

each generated object can be classified by Dobj

Implementation Details. We augment all scene graphs

with a special image object, and add special in image rela-

tionships connecting each true object with the image object;

this ensures that all scene graphs are connected.

1223












