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Abstract

In this work, we introduce a new algorithm for ana-

lyzing a diagram, which contains visual and textual infor-

mation in an abstract and integrated way. Whereas dia-

grams contain richer information compared with individ-

ual image-based or language-based data, proper solutions

for automatically understanding them have not been pro-

posed due to their innate characteristics of multi-modality

and arbitrariness of layouts. To tackle this problem, we

propose a unified diagram-parsing network for generating

knowledge from diagrams based on an object detector and

a recurrent neural network designed for a graphical struc-

ture. Specifically, we propose a dynamic graph-generation

network that is based on dynamic memory and graph the-

ory. We explore the dynamics of information in a diagram

with activation of gates in gated recurrent unit (GRU) cells.

On publicly available diagram datasets, our model demon-

strates a state-of-the-art result that outperforms other base-

lines. Moreover, further experiments on question answering

shows potentials of the proposed method for various appli-

cations.

1. Introduction

Within a decade, performances on classical vision prob-

lems such as image classification [7], object detection

[5, 16], and segmentation [17] have been largely improved

by the use of deep learning frameworks. Based on the great

successes of deep learning for such low-level vision prob-

lems, a next step could be deriving semantics from images

such as relations between objects. For example, to under-

stand a given soccer scene more deeply, it would be very

important not only to detect the objects in the image, such

as players and a ball but also to figure out the relationships

between the objects.
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Figure 1. Examples of how relational knowledge can be generated

from a diagram. In the first row, inputs are only diagrams which

have various types of topics, illustrations, texts and layouts. Our

model can infer a graphical structure in a diagram as in the second

row. In the end, we can extract relational knowledge in the form

of sentence from the generated graphs.

In this work, among various vision problems, we aim

to understand diagram images, which have played a major

role in classical knowledge representation and education.

Previously, most machine learning algorithms have focused

on extracting knowledge from the information described by

natural languages or structured databases (e.g. Freebase [3],

Wordnet [20]). In contrast to language-based knowledge, a

diagram contains rich illustrations including text, visual in-

formation and their relationships, which can depict human’s

perception of objects more succinctly. As shown in Figure

1, some complicated concepts such as “food web in a jun-

gle” and “life cycle of a moth” can be easily described as

a diagram. On the other hand, a single natural image or

a single sentence may not be sufficient to deliver the same

amount of information to the readers.

Whereas the diagram has good characteristics of knowl-

edge abstraction, it requires composite solutions to properly
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analyze and extract the contained knowledge. Since dia-

grams in a science textbook employ a wide variety of meth-

ods for explaining concepts in their layout and composition,

understanding a diagram can be a challenging problem of

inferring human’s general perception of structured knowl-

edge. Unlike conventional vision problems, this task must

involve inference models for vision, language and particu-

larly relations among objects which can be a novel point.

Despite the noted arbitrariness, we believe that a simple

method generally exists to analyze and interpret the knowl-

edge conveyed in a diagram.

There have not been many studies on diagram analysis

yet, but Kembhavi et al. [9] recently proposed a pioneer-

ing work analyzing the diagram’s structure (DSDPnet). The

main flow of the algorithm is twofold: 1) Object detection:

Objects in the diagram are detected and segmented individ-

ually by conventional methods such as those in [2, 11]. 2)

Relation inference: The relations among detected objects

are inferred by a recurrent neural network (RNN) to trans-

mit contexts sequentially. However, this approach has sev-

eral limitations. First, concatenating separated methods re-

sults in a long pipeline from input to output, which can

cause accumulated errors and lose contexts on a diagram.

Second, and more importantly, the vanilla RNN is not fully

capable of dealing with the information formed as a graph

structure.

In this paper, we propose a novel method to solve

the aforementioned issues. Our contributions are twofold.

First, using a robust object detection model instead of con-

ventional methods and a novel graph-based method, a uni-

fied diagram parsing network (UDPnet) is proposed to un-

derstand a diagram by jointly solving the two tasks of object

detection and relation matching, which tackles the first lim-

itation of the existing work. Second, we propose a RNN-

based dynamic graph generation network (DGGN) to fully

exploit the diagram information by describing with a graph

structure. To solve the problem, we propose a dynamic

adjacency tensor memory (DATM) for the DGGN to store

information about the relationships among the elements in

a diagram. The DATM has features of both an adjacency

matrix in graph theory and a dynamic memory in recent

deep learning. With this new type of memory, the DGGN

suggests a novel way to propagate information through the

structure of a graph. In order to demonstrate the effective-

ness of the proposed DGGN, we evaluated our model on a

couple of diagram datasets. We also analyzed the inside of

GRU [4] cells to observe the dynamics of information in the

DGGN.

2. Related Works

Visual relationships: Studies on visual relationships have

been emerging in the field of computer vision. This line of

research includes detection of visual relationships [18, 14]

and generation of a scene graph [8]. Most of these ap-

proaches are based on algorithms for grouping elements by

relationships, and aiming to find relationships among the

elements. Recently, this research field has focused on the

scene graph analysis algorithm, which tackles the problem

of understanding general scenes in natural images. Lu et

al. [18] incorporated language prior to reasoning over a pair

of objects and Xu et al. [24] solved scene graph inference

using GRUs via iterative message passing. Whereas most

of the previous studies dealt with natural images, we aim

to infer visual relationships and generate a graph based on

these relationships. Moreover, our method extracts knowl-

edge from an abstracted diagram by inferring human’s gen-

eral perception.

Neural networks on a graph: Generalization of neural net-

works for arbitrarily structured graphs has drawn attention

in the last few years. Graph neural networks (GNNs) [21]

were introduced as an RNN-based model that iteratively

propagates nodes in the graph until the nodes reach a sta-

ble fixed point. Later, Li et al. [15] proposed gated graph

neural networks (GG-NNs), which apply GRU as an RNN

model for the task. In contrast to the RNN-based models,

Marino et al. [19] proposed graph search neural network

(GSNN) to build knowledge graphs for multi-label classi-

fication problems. GSNN iteratively predicts nodes based

on current knowledge by a way of pre-trained ‘importance

network’. The main difference between previous methods

and ours is that our model can generate a graph structure

based on relationships between nodes. Since generating a

graph should involve in dynamic establishment or removal

of edges between nodes, we also adopt RNN for DGGN as

most neural-network-based methods for a graph. The pro-

posed DGGN not only works by message-passing between

nodes, but also builds the edges of a graph online, which

provides great potential for graph generation and solution

of inference problems.

Memory augmented neural network: Since Weston et al.

[22] proposed a memory network for the question answer-

ing problem, a memory augmented network became pop-

ular in natural language processing. This memory compo-

nent has shown great potential to tackle many problems of

neural networks such as catastrophic forgetting. In particu-

lar, Graves et al. applied the memory component in Neural

Turing machine [6], and showed that the neural network can

update and retrieve memory dynamically. Using this con-

cept, a number of dynamic memory models have been pro-

posed to solve multi-modal problems such as visual ques-

tion answering [13, 23]. In this paper, we incorporate the

scheme of the dynamic memory in DGGN to easily capture

and store the graph structure.
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Figure 2. Overview of the unified diagram parsing network (UDPnet). In (a) the detection branch, an object detector can extract n objects of

4 different types. Then in order to exploit pairs of objects, we produce n2 relationship candidates with duplicated objects. (b) In the graph

generation branch, we pass local features f (l) from n2 candidates to the dynamic graph generation network (DGGN) with a global feature

f (g). In the final step, each relationship candidate can be determined whether it is valid or not. At last, we can establish a relationship

graph with nodes and edges.

3. Proposed Method

Figure 2 shows a overall framework of the proposed

UDPnet. The proposed network consists of two branches:

1) an object detection network, and 2) a graph generation

network handling the relations among the detected objects.

In the first branch, a set of objects O = {oi}
n
i=1 in a dia-

gram image is detected. In the second branch, the relations

R = {rj}
m
j=1 among the objects are generated. We define

an object oi as < location, class >, and a relation rj in the

form of < o1, o2 >. Both branches can be optimized simul-

taneously by a multi-task learning method in an end-to-end

manner. After the optimization process, we can use the gen-

erated relational information to solve language-based prob-

lems such as question-answering.

3.1. Detecting Constituents in a Diagram

As seen in the Figure 1, various kinds of objects can be

included in a diagram depending on the information being

conveyed. Those objects are usually described in a simpli-

fied manner and the number of object classes is huge, which

makes detecting and classifying objects more difficult. In

our work, instead of detecting classical object types such as

cats and dogs, we define objects in four categorical classes

which are adequate for diagrams: blob (individual object),

text, arrow head and arrow tail. As a detector, we used SSD

[16] which has been reported to have a robust performance.

3.2. Generating a Graph of relationships

3.2.1 Overall Procedure of Graph Generation

In our method, the relation matching for objects in a dia-

gram is conducted by predicting the presence of an edge

between a pair of vertices using graph inference. The nodes

and edges of a graph match to the objects and the relations

of paired objects, respectively. Therefore, the graph is de-

scribed as a bipartite graph,

G = (V,E), (1)

where V = X ∪ Y represents the set of paired disjoint ver-

tices X ⊂ V and Y ⊂ V , and E denotes edges of the

graph each of which connects a pair of nodes x ∈ X and

y ∈ Y . To construct a bipartite graph, we duplicate the de-

tected objects O as Ox and Oy and assume that those two

sets are disjoint. Then we predict whether an edge between

the nodes ox ∈ Ox and oy ∈ Oy exists.

The connection between nodes is determined by their

spatial relationship and the confidence score for each ob-

ject class which is provided by the object detector. Note

that we do not use convolution features from ROI pooling

because there can be various kinds of objects in a diagram,

whose shape and texture are hard to be generalized. Instead,

we define a feature fx ∈ R
13 for the object ox including

location (xmin, ymin, xmax, ymax), center point (xcenter,

ycenter), width, height and confidence scores. Thus, the re-

lationship between two objects ox and oy is described as

local feature f (l) = [fx, fy] ∈ R
26, and the feature vector

f (l) acts as an input to a RNN layer. To prevent the order of

local features in a sequence from affecting the performance,

we randomly shuffle the order of the features before training

in every iteration.

Furthermore, to extract the layout of a diagram and spa-

tial information of all objects, a global feature f (g) is uti-

lized as an input to the RNN. The global feature f (g) ∈
R

128 is constructed by the sum of the convolution feature of

conv-7 layer (256× 1× 1) of backbone network in the first

branch and the binary mask feature of a diagram (128× 1).

To match the dimension of conv-7 feature as that of hidden

units, we use a fully connected layer in the last step. For the

mask feature, we pass the R
nh×nw×nc dimensional binary

mask map to the 4 layered convolution and max pooling to
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Figure 3. Comparison of the vanilla GRU and the proposed

DGGN. (a) In vanilla GRU, information is sequentially transmitted

only to a randomly selected next cell. (b) In DGGN, past hidden

states are calculated with the dynamic adjacency memory, and the

information on the entire graph is propagated in both the update

and the retrieval processes simultaneously.

match the dimension to the hidden unit, where nh and nw

are the width and height of an image, and nc is the number

of object classes.

3.2.2 Dynamic Graph Generation Network

In our problem, the local feature vector f
(l)
i,j , (i, j = 1, ..., n)

contains the connection information between the nodes oi ∈
X and oj ∈ Y . For simplicity, instead of two indices i and

j, we will use one index t to denote the local feature, i.e.

f
(l)
t , (t = 1, ..., n2). In the previous work [9], vanilla RNN

was used and the connection vector f
(l)
t was inputted se-

quentially to train the RNN. The problem is that there is no

guarantee that the input f
(l)
t will be associated with the f

(l)
t+1

because the vector f
(l)
t is randomly shuffled in stochastic

gradient training. Besides, while we define this problem as

the bipartite graph inference, vanilla RNN could not capture

the graph structure and propagate it into the next unit.

To solve the aforementioned problem, we propose the

DGGN method which incorporates GRU as a base model.

As shown in Figure 3, the proposed method of propagating

previous states to the next step is completely different from

that of the vanilla GRU. In order to exploit the graph struc-

ture, instead of just sequentially transferring features as in

vanilla GRU (Figure 3(a)), we aggregate messages from ad-

jacent edges (Figure 3(b)). To pass the messages from ad-

jacent edges, the proposed DGGN requires a dynamic pro-

gramming scheme which can build the graph structure in an

online manner.

In this paper, we incorporate the adjacency matrix in

the graph theory which has been mainly used to propagate

message through known structure of the graph [21].

b) Update step of DGGN

a) Retrieve step of DGGN

ji

GRU
i

j

1) 2)

Weighted Mean 
Pool

Message Propagation

Figure 4. Specific explanations of update and retrieve steps with

the DATM in DGGN. (a) In the retrieve step, past messages are

transmitted from adjacent edges (a-1). Specifically, to obtain pre-

vious hidden state, we conduct weighted mean pool with extracted

matrix at indexes of objects. (b) In the update step, model can

store the inferred information into the DATM with a concatenated

vector at indexes of input objects.

However, in our problem, the adjacency matrix is unknown,

which has to be estimated. Therefore, we propose a

dynamic memory component into this problem which holds

the connection information among nodes. In this work, we

expand 2-dimensional adjacency matrix to 3-dimensional

memory. The dynamic adjacency tensor memory(DATM)

D ∈ R
n×n×(m+1) is defined as a concatenation of the

adjacency matrix A ∈ R
n×n and the corresponding hidden

unit H whose (i, j) element hi,j is an m dimensional hid-

den vector of the GRU which is related to the connection

between the nodes oi and oj . The adjacency matrix A

represents the connection status between each of n nodes

in the directed graph. Each cell in the adjacency matrix

only indicates whether the corresponding pair of nodes has

a directed arc or not. Then both retrieve and update steps

with tensor D are implemented to aggregate messages from

adjacent edges and to build up graph simultaneously.

Retrieve Step: Figure 4(a) shows the retrieve step of

DGGN. We can get the previous hidden state ĥt−1 which

collects messages propagated through adjacent edges (Fig-

ure 4 (a-1)). In doing so, as shown in Figure 4(a-2) and

equation (2), we take average of the adjacent vectors of oi
and oj weighted by the probability of the existence of an

edge. Formally, we extract an adequate hidden unit ĥt for

the input vector f
(l)
t+1 representing the connection with node

i and j, as in

ĥt =
n∑

k=1

ak,ihk,i +
n∑

k=1

ak,jhk,j + f (g). (2)

Here, ai,j represents the (i, j) element of the matrix A, and

hi,j ∈ R
m is the hidden unit stored in the (i, j) location
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of the tensor H . In this step, the probability ai,j works

as weights for aggregating messages which represents the

philosophy that more credible adjacent edges should give

more credible messages. Before transmitted to GRU layer,

the global feature f (g) is added to reflect the global shape

of the diagram.

Update Step: In the update step shown in Figure 4(b) ,

we update the cell Dij with an m + 1 length vector that

concatenates the output at and the hidden state ht from a

GRU cell (8).

rt = σ(Wxrft +Whrĥt−1 + br), (3)

zt = σ(Wxzft +Whzĥt−1 + bz), (4)

h̄t = tanh(Wxhft +Whh(rt ⊙ ĥt−1) + bh), (5)

ht = zt ⊙ ĥt−1 + (1− zt)⊙ h̄t, (6)

at = σ(Wlht + bl), (7)

Dij = [at, ht]. (8)

Here, σ(·) is a sigmoid function. To obtain the hidden state

ĥt, the vectors ĥt−1 and f
(l)
t are used as previous hidden

state and input vectors of the standard GRU, respectively.

Update gate zt has a role to adjust influx of previous infor-

mation ĥt−1 in the GRU cell (6). The binary output at is

obtained after fully connected layer (7).

3.3. Multi-task Training and Cascaded Inference

In this work, the proposed UDPnet shown in Figure 2

is trained in an end-to-end manner. Because the UDP-

net consists of two branches (object detection by SSD and

graph generation by DGGN), by nature, the problem is a

multi-task learning problem. Thus, different losses for each

branches are combined into the overall loss L as follows:

L = αLc + βLl + γLr. (9)

The overall loss is a weighted sum of the classification loss

Lc and the location regression loss Ll for the object detec-

tion branch, and the relation classification loss Lr for the

graph generation network.

As defined in original SSD, the classification loss Lc is

the cross-entropy loss over confidences of multiple classes

and the location regression loss Ll is a smooth L1 loss [5]

between the predicted box and the ground truth box. The

relation classification loss Lr is the cross-entropy loss over

two classes, adjacent or not. For a faster convergence, we

first pre-trained object detection branch alone, then fine-

tuned both branches jointly with the overall loss.

During training, matching strategy between the candi-

dates and the ground truths is important for both box de-

tection and relationship inference. To solve the issue, we

set our own strategy for matching candidate pairs and the

ground truth. First, given n objects detected at the first

branch of object detection, we generate n2 pairs of rela-

tion candidates. For each relation candidate, the two in-

tersection over unions (IOUs), each of which is computed

between one of the detected objects and the closest ground

truth object, are averaged. Then, each ground truth relation-

ship is matched with the best overlapped relation candidate.

To consider the imbalance in the number of detected ob-

jects among different diagrams, we should sample the same

number of relation candidates from each training diagram.

At inference, we first detect objects in a diagram. Then

we apply non maximum suppression (NMS) with an IoU

threshold of 0.45 on boxes with scores higher than 0.01.

Unlike in training, we should use all boxes that were de-

tected to generate candidate pairs for next branch. Next, we

apply graph generation branch to all relation candidates to

infer relationship to each other. Finally, we can obtain a

diagram graph composed of adjacent edges between nodes

with confidence scores higher than 0.1.

After graph inference, we can post-process the generated

relational information to further generate knowledge sen-

tences which can be inputs of question answering models.

Thus, our methods can make a bridge between visual in-

ference and linguistic reasoning. Actually, we applied pro-

posed pipeline in this paper to Textbook Question Answer-

ing competition [10] and the details on the post-processing

can be found in the supplementary material.

4. Evaluation

In this section, we validate the performance of the

proposed algorithm for the two sub-problems: graph

generating and question answering.

Datasets. We performed experiments on two different

datasets: AI2D [9] and FOODWEBS [12]. AI2D contains

approximately 5,000 diagrams representing scientific topics

at an elementary school level. Overall, the AI2D dataset

contains class-annotation for more than 118K constituents

and 53K relationships among them, including segmentation

mask for each of the elements. AI2D also contains more

than 15,000 multiple choice questions about diagrams. The

polygons for segmentation provided with the AI2D dataset

were reshaped into rectangles for simplicity and efficiency.

FOODWEBS consists of 490 food web diagrams and

5,208 questions encountered on eighth grade science

exams. FOODWEBS focuses on question answering using

questions about environmental problems. Unlike AI2D,

the diagrams in FOODWEBS do not have annotations for

relations among objects, and we used this dataset only as a

benchmark of question answering.

Baseline. we used the following ablation models to com-
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Figure 5. Qualitative results of diagram graph generation and a pipeline to solve question answering problem. (a) Each row shows an

example of various kinds of diagram. From the left, original diagrams and diagrams with detected constituents are presented. In last

two columns, comparison between the DGGN and the Vanilla GRU with final results is shown. (b) From a diagram graph, we extract

knowledge sentences, then solve multi-choice problems.

pare with our method:

• Fully connected layer - only incorporating the object de-

tection branch in our model and replacing the graph gener-

ation branch with fully connected layers.

• Vanilla GRU - similar to the previous baseline but using a

vanilla GRU instead of the graph generation branch.

• DGGN w/o global feature - exploiting the same structure

as our model but excluding the global feature from inputs in

the second branch.

• DGGN w/o weighted mean pool - averaging hidden vec-

tors of adjacent edges without multiplying weights which

represent the strength of each adjacency.

• DGGN w/ ROI-pooled feature - concatenating a 2 × 2
ROI-pooled feature in the local feature f , expanding it into

a 34 dimensional vector.

Metrics. We propose to measure mean Average Precision

(AP) for edge evaluation and IoU for graph completion.

First, AP can measure both the recall and precision of a

model in predicting the existence of edges. Since our rela-

tion candidate should have two boxes, we use average IoUs

of those boxes with ground truth boxes as IoU for a relation.

We used IoU thresholds τ ∈ {0.3, 0.4, 0.5, 0.6, 0.7} for ex-

periments and report the mean AP by averaging the results

of all the thresholds.

Additionally, we adopt an IoU metric to measure com-

pletion of entire graph, since JIG metric was not clearly

defined in the work of DSDPnet. For both of nodes and

Table 1. Comparison results of AP on the AI2D test set.

Method mAP AP30 AP50 AP70

Fully connected layer 8.87 9.22 8.92 8.24

Vanilla GRU 39.28 39.89 43.11 31.54

DGGN

w/o global feature 39.34 40.51 43.03 31.11

w/o weighted mean pool 42.15 44.22 44.99 34.37

w/ ROI-pooled feature 39.73 43.09 42.19 31.38

DGGN 44.08 44.23 47.13 38.97

edges, we define IoU of node and edge as the number of

the intersection divided by the number of the union. Note

that we only use the number of overlapped nodes or edges

instead of using overlapped area in the original IoU metric.

Implementation Details. We implemented the first branch

based on SSDv2 modified from the original SSD. For the

second branch, we use 1 layer GRU with 128 hidden states.

During training, we sample 160 positive and negative rela-

tionship candidates at a ratio of 1 to 7. The training and

testing codes are built on Pytorch. Additional experiments

about QA on diagrams utilized the implementation1 under

the same conditions of previous work (Dqa-Net) [9].

4.1. Quantitative Results

Table 1 shows comparisons DGGN with baselines on the

AI2D dataset. Our results demonstrate that the DGGN out-

1https://github.com/allenai/dqa-net

64172



Table 2. Comparison results of IoU on the AI2D test set.
Method IoUnode IoUedge

Vanilla GRU 70.06 15.58

DGGN

w/o global feature 70.95 14.44

w/o weighted mean pool 69.48 24.84

w/ ROI-pooled feature 69.24 23.00

DGGN 69.77 25.86

Table 3. Accuracy of Question Answering on AI2D and FOOD-

WEBS. The results of VQA and DQA-Net(Dsdp) on AI2D and

FOODWEBS are refer to [9] and [12], respectively.
Method AI2D [9] FOODWEBS [12]

Dqa-Net(GT) 41.55 -

VQA 32.90 56.50

Dqa-Net(Dsdp) 38.47 59.30

Dqa-Net(Ours) 39.73 58.22

performs baselines. In the second row of the table 1, the

Fully connected layer model shows 8.87 mAP, which is

extremely low. This is because the relational information

among the nodes (elements) is not reflected to fully con-

nected layer. The vanilla GRU shows 39.28 mAP, which

is lower than those of any variants of DGGN. This implies

that the vanllia GRU model was not successful for embed-

ding the relational information among the nodes, because

the GRU model can only learn the sequential order of the in-

put. In this problem, however, the shuffled order of the rela-

tion candidates does not have meaningful sequential knowl-

edge of the relationship.

Next, we performed ablation studies with variants of

DGGN as presented in the middle of Table 1. In the ta-

ble, we can see that DGGN w/o global feature achieved the

largest margin to the best model, and this indicates that the

global feature can significantly enhance the performance.

On the other hand, the result of DGGN w/o weighted mean

pool is slightly lower than the best model which shows that

weights might not be meaningful to the performance. Inter-

estingly, DGGN w/ ROI-pooled feature scored a lower mAP

in spite of the additional information. One possible reason

is that ROI-pooled feature can cause overfit without a suffi-

cient amount of training data, since objects in diagrams are

hard to be generalized.

Table 2 shows comparisons of the modified IoU met-

ric for measuring completion of a graph. In the case of the

edge inference, we set 0.5 as the threshold of mean IoU of

each predicted box intersecting with a ground truth box and

set 0.01 as the threshold of confidence for the adjacency of

edges. Since all models use the same SSD model at the

object detection branch, results of the IoUnode are similar

to each other. They have slight different performance be-

cause of the end-to-end fine-tuning process. For IoUedge,

the DGGN shows a better performance than other baselines.

Like the results of mAP in Table 1, the usage of global fea-

ture has a significant impact on the performance.

Table 3 shows the results of the question answering ex-

periments conducted on AI2D and FOODWEBS. We only

compared to previous works in QA accuracy rather than

JIG metric due to the difference of detecting methods. For

AI2D, we first evaluated Dqa-net with ground truth anno-

tations of diagrams as our upper bound. Our model shows

an accuracy of 39.73% which outperforms previous work

and approaches upper bound by 2 % margin. On FOOD-

WEBS, we only deploy on trained model with AI2D and

extract diagram graphs from entire data. The results show

our model demonstrates comparative results. Overall, our

model performs better when compared with the VQA [1]

method, which estimates the answer directly from a dia-

gram image. These question answering tests reveal a po-

tential for expansion to the linguistic field. Also, this result

is meaningful in that our model is not directly designed to

solve the QA problem.

4.2. Qualitative Results

In this section, we analyze qualitative results as shown in

Figure 5. Three diagrams which have different layouts and

topics are presented to compare qualitatively in Figure 5(a).

For example, diagrams for the same topic “life cycle of a

ladybug” in the second and third row have different layouts.

Nevertheless, our model can understand different layouts

and generate graphs according to the intentions of the dia-

grams. In the second column, the detection results of the

object detection branch, finding four kinds of objects (blob,

text, arrow and arrow head) in the diagram, are presented.

In the third column, we present the results of graph gener-

ation on various diagrams. Then we compare our results to

those of the baseline (vanilla GRU) as shown in the last col-

umn. As seen in the results, we confirmed that our model

correctly connected the links between the objects according

to their intended relation, in most case.

Figure 5(b) shows a sample describing a pipeline of solv-

ing question-answering from a diagram graph. After the

diagram of “life cycle of a frog” is converted to a relation

graph, we can generate knowledge sentences such as “Adult

Frog links to Young Frog” with three categories : “relation”,

“entity” and “count”. Using those sentences, we solved the

multi-choice QA problems. For instance, the second ques-

tion asks for the relationship among the objects in the di-

agram. We have already generated a knowledge sentence

“Egg Mass links to Tadpole”, so the QA model can eas-

ily respond “b) tadpole” with a confidence of 0.82. This

process can contribute to the solution of various problems

related to knowledge of relationships.

5. Discussion

In this section, we discuss the effectiveness of DGGN

by investigating the GRU cells, and we analyzed the
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Figure 6. Three statistics of activation value of update gate on

AI2D test sets. (a) Mean of activation values. (b) The first quartile

statistics of activation values. (c) The third quartile statistics of

activation values.

dependency of candidate order of DGGN to compare the

results between our model and baseline (vanilla GRU).

Activation of gates. To understand the DGGN better, we

analyze information dynamics in DGGN. For this, we ex-

tracted the activation values of the update gate. In equation

(6), update gate zt obtained from equation (4) determines

the amount of the received information of the cell from the

previous ĥt−1. By investigating the graph of the update

gate’s activation, we can observe that this model meaning-

fully exploits messages from the past. Obviously, the more

update gates activate, the richer the transmitted information

becomes.

We plot three statistics of activation values of update

gates using 920 test samples. In Figure 6(a), we presented

the mean of activation values which shows the significant

margin between our model (red solid line) and the baseline

(blue dotted line), and this shows that our model can gener-

ally activate update gates more effectively than the baseline

does. While the first quartile statistics in Figure 6(b) show

a larger margin than the an aforementioned result, the third

quartile statistics do not show meaningful differences be-

tween our model and the baseline in Figure 6(c). Those two

results show that our model encouraged activation in rela-

tively inactive update gates. Overall, we can conclude that

DGGN delivers more informative messages based on the

graphical structure to GRU cells and induces more influx of

information from the past which can lead to better results.

For a study in terms of time steps, we extract activation

values of update gates in GRU cells from the second

diagram in Figure 5(a). Then we average this quantity

over hidden cells with respect to time steps. As shown

in Figure 7, our model performs higher than the baseline

over almost all the steps. Specifically, almost all the yellow

dots in the graph, depicting the candidates of the connected

edge, show that the activation values of our model are

higher than baseline. Therefore, as we discussed in the

previous chapter, the cells of our model successfully infer

the relationships by accepting more adjacent information
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Figure 7. Mean of activation values of update gate on second dia-

gram of Figure 5.

with respect to time steps.

Order of relation candidates. To explore a mechanism

of aggregating messages in DGGN, we verified the effect

of the order of relation candidates. We evaluated 50 re-

sults (AP50) repeatedly with randomly ordered candidates

for the baseline and our model on the AI2D. Then we ex-

tracted variation statistics from the results. For the baseline,

variance and standard deviation of results are 2.27e−5 and

4.76e−3, respectively. Our model shows a variance and a

standard deviation of results of 1.03e−7 and 3.22e−4, re-

spectively. The result shows that the variance and the stan-

dard deviation of our model are much lower (around 13

times smaller standard deviation) than those of the baseline.

During the training process, we shuffled the order of can-

didates before transmitted into GRU cells for both models,

to avoid order dependency. However, the statistics show

that our model is more robust against the order of relation

candidates compared to the baseline. We can confirm that

the proposed model successfully extracts the graph struc-

ture regardless of the order of the input sequence due to its

ability to aggregate messages from the past.

6. Conclusion

In this work, we proposed UDPnet and DGGN to tackle

the problem of understanding a diagram and generating a

graph by the neural network. For diagram understanding,

we combine an object detector and a network that gener-

ates relations among detected objects. A multi-task learn-

ing scheme is used to train the UDPnet in an end-to-end

manner. Moreover, we propose a novel RNN module to

propagate message based on graph structure and generate a

graph simultaneously. We demonstrated that the proposed

UDPnet provides state-of-the-art quantitative and qualita-

tive results on problems of generating relation for a given

diagram. We also analyzed how our model works better

than strong baselines. Our work can be a meaningful step

in diagram understanding and reasoning problem beyond

natural image understanding. Moreover, we believe that the

DGGN could benefit other tasks related to graph structure.
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