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Abstract

We propose a novel approach to estimate the three de-

grees of freedom (DoF) drift-free rotational motion of an

RGB-D camera from only a single line and plane in the

Manhattan world (MW). Previous approaches exploit the

surface normal vectors and vanishing points to achieve ac-

curate 3-DoF rotation estimation. However, they require

multiple orthogonal planes or many consistent lines to be

visible throughout the entire rotation estimation process;

otherwise, these approaches fail. To overcome these limita-

tions, we present a new method that estimates absolute cam-

era orientation from only a single line and a single plane

in RANSAC, which corresponds to the theoretical minimal

sampling for 3-DoF rotation estimation. Once we find an

initial rotation estimate, we refine the camera orientation by

minimizing the average orthogonal distance from the end-

points of the lines parallel to the MW axes. We demonstrate

the effectiveness of the proposed algorithm through an ex-

tensive evaluation on a variety of RGB-D datasets and com-

pare with other state-of-the-art methods.

1. Introduction

Camera orientation estimation from a sequence of im-

ages is a fundamental problem for many applications in

computer vision [23, 10] and robotics [20, 25]. Recent vi-

sual odometry (VO) and visual simultaneous localization

and mapping (V-SLAM) methods [7, 9, 18] have shown

promising results in estimating camera orientation from a

variety of video sequences. However, these approaches can-

not avoid drift error in the rotation estimate without compu-

tationally expensive SLAM techniques (loop closure, global

3D map construction).

Several studies [2, 6, 25, 14] have focused on accu-

rate and drift-free rotation estimation in urban and in-

door scenes consisting of parallel and orthogonal lines and

planes, called the Manhattan world (MW) [4]. They ex-

ploit structural regularities to achieve accurate 3-DoF ro-
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Figure 1. In an uncharacteristic scene (top left), given a single line

detected in the RGB image (top right) and a single plane identified

in the depth image (bottom left), the proposed method can estimate

drift-free camera orientation and VPs (bottom right).

tation estimation by using the distribution of surface nor-

mal vectors and points at infinity, i.e., vanishing points

(VPs). The accuracy of VO has been improved dramatically

in [30, 16, 15] by using the MW assumption in rotation esti-

mation. Although they can estimate the rotational motion of

the camera accurately by exploiting significant structural or-

ganization, there are still some problems: multiple orthog-

onal planes or many consistent lines must remain visible

throughout the entire video sequence. In practice, robots

often encounter harsh environments where there are insuffi-

cient structural regularities (see Fig. 1 and Fig. 7), resulting

in the failure of rotation estimation or a loss of accuracy.

To address these issues, we propose a novel approach

that estimates absolute 3-DoF camera orientation from only

a single line and plane to recognize the spatial regularities

of structural environments as shown in Fig. 1. We detect

and track the normal vector of a plane from the depth image

in order to determine two orientation angles of the 3-DoF

rotation. The remaining orientation angle is computed with
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a line from the RGB image, which lies on the plane and is

parallel to the MW axes. We incorporate the 3-DoF rotation

estimation from only a single line and plane into the model

estimation step of the RANSAC, which is the minimal solu-

tion for rotation estimation [2]. Furthermore, we refine the

initial rotation estimate by minimizing the average orthog-

onal distance from the multiple lines, which are parallel to

the MW axes. Our algorithm requires a plane and a line

on the plane aligned with the MW to be visible, which is

typically the case in most indoor environments.

Extensive evaluations show that the proposed method

produces accurate and drift-free camera orientation on a va-

riety of video sequences compared to other state-of-the-art

approaches. The contributions of this work are as follows:

• We present a novel approach to estimate accurate and

drift-free 3-DoF camera orientation from only a single

line and plane in the RANSAC framework.

• We refine the initial rotation estimate with the parallel

and orthogonal lines to obtain a more accurate 3-DoF

camera orientation.

• We evaluate the proposed algorithm on the ICL-

NUIM [11] and TUM [27] RGB-D datasets, showing

robust, stable, and accurate performance.

2. Related Work

The use of the Manhattan world (MW) estimation for

determining the orientation of a camera has been studied

previously due to its importance in high-level vision appli-

cations such as 3D reconstruction and scene understanding.

The approaches for understanding the structural regularities

in man-made environments can be classified into either es-

timating the VPs from the intersection of multiple parallel

lines in the image or estimating the principal normal vectors

of the surface with 3D information in depth image.

A VP, which is invariant to camera translation move-

ments, has been widely used for tracking the rotational mo-

tion of the camera accurately [1, 24, 2]. In [6, 2], Manhat-

tan frame (MF) estimation is performed based on three lines

with two of the lines parallel and orthogonal to the third in

RANSAC [8], which is the minimal sampling for rotation

estimation. The method in [5] finds a triplet of orthogo-

nal vanishing points with RANSAC-based line clustering

to track the camera orientation along a video sequence in

real-time. [17] jointly estimates the VPs and camera ori-

entation based on sequential Bayesian filtering without the

MW assumption. These VP-based methods, however, are

not robust and stable in the presence of spurious or noisy

line segments. A sufficient number of parallel and orthogo-

nal lines should exist in the image for accurate and reliable

rotation estimation.
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Figure 2. Geometric relationships between the line, plane, and the

Gaussian sphere in the MW. The line is projected onto the Gaus-

sian sphere as a great circle. Each orthogonal plane and its corre-

sponding normal vector are drawn with the same color. The nor-

mal vector of the great circle (black) from the line and the normal

vector of the dominant plane (red) do not have to be perpendicular.

Recent studies have utilized 3D information to estimate

dominant orthogonal directions in a MW from a depth sen-

sor like a Kinect camera. [25, 26] propose real-time max-

imum a posteriori (MAP) inference algorithms for estimat-

ing MW in the surface normal distribution of a scene on a

GPU. The method in [30, 16] estimates drift-free camera

orientation with an efficient SO(3)-constrained mean shift

algorithm given the surface normal vector distribution. In

[3, 14], a branch-and-bound (BnB) strategy is employed

to guarantee the globally optimal Manhattan frame estima-

tion. While these approaches based on the surface nor-

mals demonstrate more stable and accurate rotation estima-

tion results than VP-based methods, at least two orthogonal

planes must be observable in the depth images.

Prior research has used the connection between VPs in

the RGB image and 3D information from depth image to

perform MW estimation. Given an a priori known nor-

mal vector of the horizon plane, an estimate of the cam-

era orientation is performed with additional line segments

in RANSAC [2]. The method in [15] tracks the MW utiliz-

ing both lines and planes together, but it requires a sufficient

number of lines in the image. [19] estimates global geome-

try of indoor MW environments by integrating RGB images

with associated depth data.

3. Proposed Method

We propose a new method for estimating a drift-free 3-

DoF rotational motion of an RGB-D camera from the RGB

and depth image pairs. For each pair of RGB-D images, we

perform two steps: 1) estimate the absolute camera orien-

tation with respect to the MF using only a single line and

plane in RANSAC [8]; and 2) refine this initial rotation es-

timate with parallel and orthogonal lines from inliers. An

overview of the proposed algorithm is shown in Fig. 3.
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Figure 3. Overview of the proposed method. We estimate the drift-free camera orientation by using only a single line and plane in RANSAC.

We refine the initial rotation estimation by minimizing the orthogonal distance from the endpoints of the parallel and orthogonal lines.

Figure 4. The normal vector (red axis) of a dominant plane (red)

tracked from the distribution of the surface normals (black dots).

We project the relevant surface normals inside a conic section of

the red axis into the tangential plane to perform the mean shift.

3.1. Dominant Plane Detection and Tracking

We first detect a dominant plane in the current environ-

ment from a depth image’s 3D point cloud with a RANSAC

algorithm [29]. The algorithm first randomly selects three

points and computes the model parameters (normal vector)

of the corresponding plane. It then checks the number of

inliers exceed a given threshold by calculating the distance

between the 3D points and the plane. It repeats these first

two steps until it finds the best (dominant) 3D plane sup-

ported by the largest number of inliers.

We track the normal vector of the dominant plane with

a mean shift algorithm based on the tangent space Gaus-

sian MF (TG-MF) model [26] given the density distribution

of surface normal vectors on the Gaussian sphere S
2 [30]

in Fig. 4. The unit surface normal vector of each pixel

is calculated by taking the cross product of two tangential

vectors at the 3D points in the point cloud. To obtain the

noiseless tangential vectors for stable surface normal vec-

tors, we average the surrounding tangential vectors within

a certain neighborhood, which can be done efficiently and

quickly using integral images [13]. Unlike the previous ap-

proaches [30, 16], we only track a single normal vector of

the dominant plane as shown in Fig. 4. By using the tracked

(detected) normal vector from the previous frame as an ini-

tial value, we perform the mean shift algorithm in the tan-

gent plane R
2 of the Gaussian sphere S

2 with a Gaussian

kernel (for full details, refer to [30]). Although we could

use RANSAC to discover a dominant plane for every frame,

tracking is less expensive and makes a smoother estimate.

If the density distribution of the surface normal vectors

around the currently tracked normal vector is too low, we re-

initialize and detect a new dominant plane again with plane

model-based RANSAC. We assign the normal vector of the

new dominant plane to the closest axis in the MF under the

assumption that the MF does not change too much between

subsequent frames. There are 24 possible representations

for the same MF orientation; we convert the matrices repre-

senting the MF into a unique canonical form [30] for con-

sistent tracking.

3.2. One Line and One Plane RANSAC

Our approach utilizes line and plane geometric features,

which provide the theoretical minimal solution for 3-DoF

rotation estimation [2] as illustrated in Fig. 2. A plane pro-

vides two constraints on the two orientation angles, and the

remaining orientation angle θ is constrained by a line. Once

a dominant plane and a parallel line lying on the corre-

sponding plane are found in the MW, they can determine

the orientation of the Manhattan structure uniquely. By us-

ing this geometric feature, we estimate the 3-DoF drift-free

rotational motion of the camera with respect to the MW in

the RANSAC framework.

We detect N line segments using LSD [28], and calcu-

late their corresponding unit normal vectors of great circles

on the Gaussian sphere S
2. Each RANSAC iteration starts

by randomly selecting one great circle among N line seg-

ments. Given the tracked normal vector (the first VP v1) of

the dominant plane from the previous Section 3.1, we take

cross product between the first VP and the normal vector of
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Figure 5. Orthogonal distance metric from the endpoints of the line

l to an auxiliary line l̂ defined with the VP and the middle point of

the line l in the image space.

the selected great circle to define the second VP v2. The

third VP v3 (blue) is automatically determined by the cross

product of the first VP (red) and the second VP (green) as

shown in Fig. 2.

To evaluate the currently estimated orientation in

RANSAC, we use the average orthogonal distance in the

image plane as illustrated in Fig. 5 [12], which is a function

of lines and camera orientation (VPs). The average orthog-

onal distance can be computed from the endpoints of the

line l to an auxiliary line l̂, which passes through the closest

VP and the middle point of the line l as follows:

di,k = (di1,k + di2,k) /2 (1)

where di1,k =
|Ai,kui1 +Bi,kvi1 + Ci,k|

√

A2
i,k +B2

i,k

where Ai,k, Bi,k, Ci,k are the auxiliary line parameters of

the i-th line segment with the k-th VP, and ui1, vi1 is the

first endpoint of the i-th line segment in the image plane.

Unlike the typical RANSAC algorithm in [2] which uses

only the number of inliers, we find the largest consensus

line set utilizing not only the average orthogonal distance

di,k but also the length of a line segment [21]:

vote (vk) =
∑Mk

i=1 w1

(

1−
di,k

ta

)

+ w2

(

length(li)
max(length(l))

)

(2)

where Mk, k ∈ {2, 3} is the number of associated line

segments for each VP v2 and v3, respectively. di,k and ta
are the average orthogonal distance of the i-th line segment

with the k-th closest VP and a certain threshold defined by

user (in our experiments, 1 pixel). The i-th line length rel-

ative to the maximum line length is also considered in the

second term in Eq. (2) because the longer the lines are, the

more reliable they are. The weights w1 and w2 denote the

importance of each term, the orthogonal distance and the

line length, respectively (in our experiments, 0.7 and 0.3).

When we calculate the vote value in Eq. (2), we do not use

the line segments parallel to the tracked normal vector of the

dominant plane (the first VP v1) because the plane normal

tracking on the surface normal vector distribution is quite

Figure 6. Improved performance to recognize the regularities of

structural space by using the Eq. (2) (right) compared to the typical

RANSAC algorithm (left).

accurate [25, 16]. We find the lines and the corresponding

camera orientation (VPs) leading to the highest total vote

sum value from Eq. (2). It is noteworthy that the proposed

one line and one plane RANSAC is computationally effi-

cient since the number of required line sample to perform

model estimation is only one similar to [22]. As the num-

ber of RANSAC iterations (computational complexity) ex-

ponentially increases depending on the number of required

samples [12], using only one line sample to estimate the

model makes our algorithm computationally inexpensive.

Fig. 6 shows the effectiveness of the continuous crite-

ria in Eq. (2) compared to the standard RANSAC. When

we try the standard RANSAC, it sometimes fails because it

only considers whether the average orthogonal distance is

smaller or larger than a certain threshold dichotomically. If

there are many spurious or noisy lines, it cannot recognize

the structural regularities correctly in the left of Fig. 6. We

can find the correct inlier line set by using the continuous

criteria written in Eq. (2) in the right of Fig. 6.

Our approach can fail when there is not any line that is

parallel to the MW axes, or we cannot find any valid lines

because of extreme motion blur. In other words, for our al-

gorithm to succeed, we must have at least: 1) a plane from

the depth image; and 2) a line from the RGB image, which

lies on the plane and is parallel to the MW axes. While

these geometric conditions may seem restrictive, our exten-

sive experiments on multiple datasets in the Section 4 show

that they often hold in most structural indoor environments,

and our approach achieves better accuracy and demonstrates

the effectiveness.

3.3. Multiple Lines Refinement

The initial rotation estimate from only a single line and

plane in the previous RANSAC step can be affected by

noise in the line segments, resulting in suboptimal rotation

estimation. To estimate more accurate and optimal cam-

era orientation, we further refine the initial rotation estima-

tion from the single line and plane RANSAC by minimizing

the average orthogonal distance with parallel and orthogo-

nal lines in inliers.
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Since the tracked normal vector of the dominant plane

on the surface normal vector distribution is relatively ac-

curate [25, 16], the cost function, which is the average or-

thogonal distance written in Eq. (1), is only a function of

the remaining one orientation angle θ constrained by mul-

tiple inlier lines. We express the 3-DoF camera orientation

(VPs) as the axis-angle representation where the direction

of an axis of rotation is the tracked unit normal vector of

the dominant plane, and the magnitude of the rotation about

the axis is the remaining orientation angle θ. The optimal

drift-free camera orientation, which minimizes the orthogo-

nal distance of all parallel and orthogonal inlier lines found

in the RANSAC, can be obtained by solving the following

optimization problem:

θ∗ = argmin
θ

3
∑

k=2

Mk
∑

i=1

(di,k (θ))
2

(3)

where Mk, k ∈ {2, 3} is the number of parallel or orthog-

onal lines related to the k-th VP counted in the RANSAC

as inliers. di,k(θ) denotes the orthogonal distance of the i-
th line segment with the k-th VP in the image space. We

use the Levenberg–Marquardt (LM) algorithm for solving

Eq. (3). By additionally constraining the remaining orien-

tation angle θ from the parallel and orthogonal lines found

in RANSAC, we can estimate more accurate and consistent

rotational motion compared to the initial rotation estimate

directly from the RANSAC process.

Note that the first RANSAC step (Section 3.2) and the

second (Section 3.3) optimization of the algorithm seem to

be redundant as both estimate the rotational motion of the

camera. The additional refinement step, however, makes the

estimated camera orientation more accurate and consistent

by utilizing multiple lines. We validate the effect of the

refinement in the next evaluation section.

4. Evaluation

We evaluate the proposed approach on a variety of RGB-

D video sequences in man-made structural environments:

• ICL-NUIM [11] is a synthetic dataset consisting of a

collection of RGB and depth images at 30 Hz captured

in a living room and office with ground-truth camera

orientation. The synthesized RGB and depth images

are corrupted by the modeled sensor noise to simu-

late typically observed real-world artifacts. It is chal-

lenging to estimate the accurate 3-DoF camera rotation

throughout the entire video sequences due to very low

texture and a single plane as shown in Fig. 7.

• TUM RGB-D [27] is a famous dataset for VO/V-SLAM

evaluation, containing RGB-D images from a Mi-

crosoft Kinect RGB-D camera in various indoor en-

Figure 7. Example images of the Manhattan world from the ICL-

NUIM [11] (top) and TUM RGB-D [27] (bottom) datasets, which

are captured in a very uncharacteristic scene.

Experiment Proposed GOME OLRE OPRE ROVE # of frame

Living Room 0 0.31 × × × × 1507

Living Room 1 0.38 8.56 3.72 0.97 26.74 965

Living Room 2 0.34 8.15 4.21 0.49 39.71 880

Living Room 3 0.35 × × 1.34 × 1240

Office Room 0 0.37 5.12 6.71 0.18 29.11 1507

Office Room 1 0.37 × × 0.32 34.98 965

Office Room 2 0.38 6.67 10.91 0.33 60.54 880

Office Room 3 0.38 5.57 3.41 0.21 10.67 1240

Table 1. Comparison of the average value of the absolute rotation

error (degrees) on ICL-NUIM benchmark [11].

vironments as shown in Fig. 7. It is recorded in room-

scale environments with ground-truth camera trajecto-

ries provided by a motion capture system.

We compare the proposed algorithm against other state-

of-the-art 3-DoF camera orientation estimation methods

using lines and planes, namely GOME [14], OLRE [2],

OPRE [30], and ROVE [17]. GOME and OPRE estimate

the drift-free rotational motion of the camera by tracking

the distribution of the surface normal vectors from the depth

images, while OLRE and ROVE utilize many consistent

line features from the RGB images to estimate the cam-

era orientation. The proposed method, GOME, OLRE, and

OPRE rely on the MW assumption whereas ROVE does not

require the MW in the scene.

4.1. ICL­NUIM Dataset

We measure the mean value of the absolute rotation er-

ror (ARE) [30] in degrees, and present the evaluation results

in Table 1. The smallest rotation error for each dataset is

bolded. Other methods using only multiple lines or planes

sometimes fail to track the camera orientation (marked as
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Figure 8. Results of the proposed method in the ICL-NUIM dataset (a) ‘Living Room 0’ and (b) ‘Office Room 1’. Clustered lines and

segmented plane with inferred MW are overlaid on the RGB images (top). Colored thick, thin lines denote the estimated 3-DoF camera

orientation and the MW (VPs), and the black lines represent the true pose of the camera (bottom). Each of the colored lines and plane in

the top images corresponds to the VP of the same color in the bottom.

× in Table 1) due to multiple lines or orthogonal planes not

always being visible throughout the entire video sequences.

In ‘Living Room 0’, at one point the camera sees only a

single plane with very low texture, leading to failure of

other approaches. The proposed method can continue track-

ing the absolute camera orientation stably and accurately as

shown in Fig. 8. The tracked normal vector of the dominant

plane is changed depending on the current situation.

Our approach outperforms the other methods for most

cases. In ’Office Room’ environments, OPRE performs

slightly better thanks to sufficient surface normals distri-

bution throughout the estimation period, but the proposed

algorithm performs nearly as well. The average ARE of

the proposed method is 0.36 degrees, while GOME, OLRE,

OPRE, and ROVE are 6.82, 5.79, 0.55, and 33.63 degrees

respectively. Since ROVE does not utilize the MW assump-

tion, ROVE cannot estimate the drift-free camera orienta-

tion, resulting in accumulation of ARE over time. The main

reason for the improved performance is that the proposed

method can stably track the absolute rotations even when

the camera sees only a planar surface with little texture by

exploiting the minimal sampling (one line and one plane) to

recognize structural regularities.

The advantage of the additional refinement step in the

proposed method described in Section 3.3 becomes clear

when plotting the ARE statistics from the dataset ‘Liv-

ing Room 1’ in Fig. 9. We can observe that there are

some large ARE (marked as a red cross) from the proposed

method when the refinement step is not performed. The op-

timization with parallel and orthogonal lines found in the

RANSAC as inliers enables to estimate the drift-free cam-

era rotation more consistently and accurately.

Figure 9. Comparison of the proposed approach with and with-

out refinement step (NO) versus the other algorithms. We use the

absolute rotation error from the ‘Living Room 1’ to obtain error

statistics.

Experiment Proposed GOME OLRE OPRE ROVE # of frame

fr3 longoffice 1.75 × × 4.99 × 2488

fr3 nostruc notex 1.51 × × × × 239

fr3 nostruc tex 2.15 × 46.18 × 16.45 1639

fr3 struc notex 1.96 4.07 11.22 3.01 × 794

fr3 struc tex 2.92 4.71 8.21 3.81 13.73 907

fr3 cabinet 2.48 2.59 × 2.42 × 1112

fr3 large cabinet 2.04 3.74 38.12 36.34 28.41 984

Table 2. Comparison of the average value of the absolute rotation

error (degrees) on TUM RGB-D dataset [27].

4.2. TUM RGB­D Dataset

We evaluate the proposed and other algorithms on the

video sequences of the TUM RGB-D dataset, which con-

tain structural regularities (lines or planes) in the observed
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Figure 10. Inferred MW (VPs) orientation, the clustered lines and plane with the proposed method are overlaid on top of the RGB images

in the TUM RGB-D dataset (a) ‘fr3 longoffice’ and (b) ‘fr3 nostruc notex’. The thick blue line (Z) in the bottom represents the head of

the camera. The proposed method accurately estimates the absolute 3-DoF camera orientation and the VPs from a single line and plane.

scenes. We also investigate the effect of the existence of

structure and texture components in the scenes on the cam-

era rotation estimation. Table 2 compares the average ARE

results of the proposed and other methods. Our method

can track accurate and drift-free camera rotational motion

even in insufficient (imperfect) structural environments like

‘fr3 longoffice’ or ‘fr3 nostruc notex’ as shown in Fig. 10.

However, other approaches require at least two orthogonal

planes (GOME, OPRE) or many consistent line segments

(OLRE, ROVE) throughout the entire motion estimation

process. While other methods are significantly affected by

the presence or absence of the structure and texture com-

ponents in the scenes, the proposed method shows accurate

MW estimation not only in abundant but also in very low

structure and texture environments with the help of the min-

imal solution (one line and one plane).

We can also observe the effect of the refinement step in

the proposed method by drawing the boxplot of the ARE

from the dataset ‘fr3 struc tex’ in Fig. 11. Outliers marked

as red cross are removed, and the average ARE of the pro-

posed method decreases thanks to the proposed additional

refinement step.

Please refer to the video clips submitted with this paper

showing more details about the experiments.1

5. Conclusion

We propose a new method that is able to perform accu-

rate and drift-free camera orientation estimation under in-

sufficient structural environments by exploiting a single line

and plane in RANSAC, which are the minimal solution for

3-DoF rotation estimation. We refine the initial rotation es-

timate by minimizing the average orthogonal distance from

the endpoints of the parallel and orthogonal lines found in

1Video available at https://youtu.be/qusvgMequqM

Figure 11. The statistical distribution of the absolute rotation error

from the ‘fr3 struc tex’ for each method. ‘Proposed(NO)’ denotes

the performance of the proposed approach without refinement step

with multiple lines.

the RANSAC as inliers. The proposed algorithm is tested

thoroughly with a large number of RGB-D datasets on the

video sequences, and shows accurate and drift-free rotation

estimation results in the environments where the structural

regularities are challenging to find. Our method is currently

tested with an RGB-D camera in indoor environments. In

the future, we will try to implement the proposed algorithm

with a stereo camera and possibly extend to outdoor urban

environments.
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