
Analyzing Filters Toward Efficient ConvNet

Takumi Kobayashi

National Institute of Advanced Industrial Science and Technology, Japan

takumi.kobayashi@aist.go.jp

Abstract

Deep convolutional neural network (ConvNet) is a

promising approach for high-performance image classifi-

cation. The behavior of ConvNet is analyzed mainly based

on the neuron activations, such as by visualizing them. In

this paper, in contrast to the activations, we focus on filters

which are main components of ConvNets. Through analyz-

ing two types of filters at convolution and fully-connected

(FC) layers, respectively, on various pre-trained ConvNets,

we present the methods to efficiently reformulate the filters,

contributing to improving both memory size and classifica-

tion performance of the ConvNets. They render the filter

bases formulated in a parameter-free form as well as the

efficient representation for the FC layer. The experimental

results on image classification show that the methods are

favorably applied to improve various ConvNets, including

ResNet, trained on ImageNet with exhibiting high transfer-

ability on the other datasets.

1. Introduction

In computer vision fields, deep convolutional neural

network (ConvNet) [33, 30, 8] is successfully applied to

such as image classification with producing state-of-the-

art performance. A large number of convolution layers

are stacked in the deep ConvNet to extract effective im-

age features and back-propagation is applied in an end-

to-end manner to train a huge number of parameters, i.e.,

convolution filters, contained in those layers. For effec-

tively training the networks, large-scale annotated data (Im-

ageNet [12]) is exploited and some techniques such as

stochastic gradient descent [47, 67], rectified linear unit

(ReLU) [40], DropOut [51] and BatchNormalization [24],

are proposed while the network architectures are also

steadily improved [30, 8, 20, 63].

In the other direction from enthusiastically improving

performance of ConvNets, there are some works toward an-

alyzing ConvNets [68, 36, 39, 14, 3]. Most of them ana-

lyze neuron activations in the ConvNets such as by visual-

izing them for understanding how the ConvNets work on

images. Though the filters in the first convolution layer

are obviously visible, it is difficult to see how the sec-

ond and the later layers operate on an input image do-

main. Thus, they are visualized in a pseudo manner us-

ing exemplars via tracking the high neuron activations [68]

through DeConvNet [69], inverting them by means of back-

propagation [36, 39] or estimating inverse function [14].

Those methods are useful for visually evaluating the invari-

ance achieved by ConvNets and [68] guides us to slightly

modify the network architecture for improving classifica-

tion performance. Differently from such visualization, the

neuron activations are statistically analyzed in [3] to derive

feature representation based on a simple statistical model.

In this study, we analyze filters of ConvNets toward im-

proving their efficiency, rather than analyzing the behavior

of ConvNets. It is thus in contrast to the above-mentioned

previous works focusing on the neuron activations. The

ConvNets are composed of convolution, fully-connected

(FC) and classification (multilayer perceptron: MLP) lay-

ers, where the fully-connected layer links the convolution

layers with the MLP classifier. Note that we distinguish the

fully-connected and MLP layers both of which may have

been grouped and referred to as ‘fully-connected’ layers in

the other studies; the fully-connected layer that we men-

tion in this paper is fc6 while we call fc7 and fc8 by

MLP layers, if we follow the conventional naming of lay-

ers [30, 8, 50]. We can see that the filters in the convolution

and FC layers have spatial dimensions larger than 1×1, ex-

hibiting structural patterns through learning ConvNets, and

thus we analyze the spatial structure in the trained filters.

The main contributions of this work are three-fold: (1)

Through analyzing the filters sampled from various pre-

trained ConvNets, we present the methods to reformulate

both convolution and FC filters, providing parameter-free

basis filters and efficient representation for FC layer, to im-

prove ConvNets in terms of memory consumption and clas-

sification performance. (2) We conducted thorough exper-

iments on an ImageNet classification task to validate the

methods on various types of ConvNets which contain con-

volution as well as FC layers, with demonstrating the favor-

able transferability of the improved ConvNet onto the other

15619

datasets. (3) We also show that by similarly analyzing the

convolution filters of ResNet [20], the methods are favor-

ably applied even to the ResNet which excludes FC layer.

2. Analysis of convolution filters

We first analyze convolution filters which are main build-

ing blocks in ConvNets. As in most ConvNets, we assume

isometric convolution filters denoted by W ∈R
s×s×C with

the filter size s and the number of input channel C; here, we

further assume a filter of odd size s=2r+1 which is a com-

mon shape in ConvNets. The filters are applied to extract

spatial characteristics as well as correlations among input

channels from the feature maps including an input image at

the first layer. According to the long history of image pro-

cessing/analysis, we can naturally suppose that the filters

are related to derivatives [15]. And, considering convolu-

tion operation, it is also necessary to consider rotation of

the filters in disregard of spatial translation.

2.1. Basis filters

The above discussion inspires us to employ steerable fil-

ters [16] for representing the convolution filters. They are

advantageous in describing any rotated filters by a linear

combination of a few steerable filters and are quite efficient

in the case of Gaussian derivative filters [16]. Thus, our

goal in this section is to find out the general form of basis

filters that describe any convolution filters in ConvNets. It is

also practically beneficial since the number of parameters in

ConvNets are reduced through efficiently re-parameterizing

convolution filters by means of the bases.

It, however, is hard to determine such bases for arbitrary

convolution filters W of any depth C. Thus, we decom-

pose (slice) the filter W into {wc}
C
c=1 such that W ∗Z =

∑C

c=1 wc ∗zc where ∗ indicates a convolution operator and

wc ∈ R
s×s and zc ∈ R

W×H are the c-th slices of the fil-

ter W and the input feature map Z ∈R
W×H×C along the

channel dimension, respectively. We formulate the general

bases for the spatial filters wc of which 2D shape is shared

across any channel-wise convolution filters. Suppose we are

given B basis filters {bi}
B
i=1, the convolution filter wc can

be formulated by

wc =

B
∑

i=1

αicbi ⇒ W ∗Z =

B,C
∑

i,c=1

αicbi ∗ zc (1)

where {αic}
B,C
i=1,c=1 are the coefficients of the bases to con-

struct the filter W . Considering that there are D filters

{W (j)}Dj=1 for D outputs and the bases are shared across

them, (1) shows that the number of (learnable) parameters

for the convolution filter is reduced into BCD from s2CD.

For efficient representation, we can impose the constraint

of orthonormality on the basis filters, and thus the orthonor-

mal steerable filters could be basis for convolution filters.

For example, the orthonormal steerable filters of up to 2nd

order are analytically given as

b
[0](x, y) ∝ e

−1

2σ2
(x2+y2), (2)

b
[1]
0 (x, y)∝ye

−1

2σ2
(x2+y2), b

[1]
1 (x, y)∝xe

−1

2σ2
(x2+y2),

b
[2]
0 (x, y)∝(x2+y2−σ2)e

−1

2σ2
(x2+y2),

b
[2]
1 (x, y)∝(x2−y2)e

−1

2σ2
(x2+y2), b

[2]
2 (x, y)∝xye

−1

2σ2
(x2+y2),

where the superscript index in b indicates the order of

derivatives and σ is the standard deviation of Gaussian enve-

lope function, which are two parameters in the bases. The

bases can be practically computed via Gram-Schmidt or-

thonormalization; for the practical algorithm, refer to the

supplementary material. In Fig. 1, our basis filters (2) of

3× 3 with σ=1 are compared to the actual bases computed

by applying singular value decomposition (SVD) to the

3×3 convolution filters in the pre-trained VGG-vd-16 Con-

vNet1 [50]. We can find well correspondence between them,

which demonstrates feasibility to employ the orthonormal

steerable filters for the bases of convolution filters.

While the filter size is designed by users, we then per-

form analysis for specifying two parameters of the deriva-

tive order N and the envelope size σ in the bases, both of

which would be dependent on the filter size r. Note that we

hereafter regard the N -th order bases as all the orthonormal

steerable basis filters of up to N -th derivative order; the N -

th order bases contain 1
2 (N + 1)(N + 2) basis filters [16].

To find the relationship between those parameters (N, σ)

and the filter size (r), we define the following criterion to

evaluate how well the bases explain the optimized convolu-

tion filters in the pre-trained ConvNets;

ǫ̃(W ;B) = 1−

∑

c ‖
∑

b∈B vec(b)vec(b)⊤vec(wc)‖
2
2

∑

c ‖vec(wc)‖22
,

ǫ(W;B) =
1

|W|

∑

W∈W
ǫ̃(W ;B), (3)

where vec is an operator to vectorize a filter (matrix),

B = {bi}
B
i=1 and W = {W (j)}Dj=1 are the banks of bases

and convolution filters in the target convolution layer, re-

spectively. It should be noted that the number of basis filter

|B| depends only on the derivative order N , |B| = 1
2 (N +

1)(N+2). ǫ̃ measures reconstruction error by the bases B in

comparison to the total filter energy
∑

c ‖vec(wc)‖
2
2, and ǫ

averages them across the convolution filters W at the tar-

get convolution layer; it is further averaged across all con-

volution layers and various ConvNets. Thus, the smaller ǫ

means that B fits the convolution filters well.

We draw the optimized convolution filters from 12

pre-trained ConvNets, all of which are trained on ImageNet

dataset [12] and downloaded from [1]; they are listed in the

supplementary material. Fig. 2a shows the results by fitting

1All the convolution filters in VGG-vd-16 are in the shape of 3×3.

5620

1 2 3 4 5 6

(a) The first six bases in VGG-vd-16

b[0] b
[1]
0 b

[1]
1 b

[2]
0 b

[2]
1 b

[2]
2

(b) Orthonormal steerable filters (2)

-0.5

0

0.5

Figure 1. Comparison between (a) the 3×3 ba-

sis filters computed from the pre-trained VGG-

vd-16 [50] and (b) ours by (2) of σ=1. Weights

are shown in pseudo colors.

Derivative Order

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
e
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r
0

0 [1] 1[3] 2 [6] 3 [10] 4 [15] 5 [21] 6 [28] 7[36] 8 [45] 9 [55] 10 [66]

N [# of bases]

3# 3 (r = 1)
5# 5 (r = 2)
7# 7 (r = 3)
9# 9 (r = 4)
11# 11 (r = 5)

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

0

0.05

0.1

0.15

0.2

0.25

0.3

R
e
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

(a) Derivative order N of bases (b) σ of Gaussian envelope in basis filter

Figure 2. Fitting the proposed orthonormal steerable bases to the convolution filters in the

pre-trained ConvNets [1]. The results at the filled markers are used to establish Analysis 1.

to them the bases of various order N with σ2 = 1
2 (r+1)

where r indicates the filter reach size, i.e., s= 2r+1. The

higher order produces larger number of bases, obviously

decreasing error ǫ. Thus, based on ǫ < 0.1 which means

over 90% reconstruction by the bases, we can find that

the derivative order of N = 2r gives sufficiently favorable

reconstruction. On the other hand, Fig. 2b shows the results

for various σ in the bases of N=2r, implying that there are

minima. By seeing the minima on respective filter sizes,

we roughly2 derive the relationship of σ2 = 1
2 (r+1). As a

result, our analysis can be summarized as follows:

Analysis 1: for convolution filters

For the convolution filter of (2r+1)×(2r+1) size, its bases

are defined by the orthonormal steerable filters of up to

order N=2r and the variance σ2 = 1
2 (r + 1) , produc-

ing (r + 1)(2r + 1) basis filters.

2.2. Quantitative evaluation

We quantitatively evaluate Analysis 1 by applying it to

the ConvNets based on VGG-M [8]. The ConvNets are re-

parameterized by introducing the filter bases into the con-

volution layers as in (1) and are trained from scratch on

ILSVRC2014 training dataset. We investigate the order N

of the bases that directly affects the number of basis filters,

while the effect of σ is limited to smoothing of filters.

In Table 1a, the basis set produced by Analysis 1 is com-

pared to the original convolution filters without bases, the

random orthonormal bases in which the numbers of basis

filters are all the same as ours, and the steerable filter with-

out orthogonalization [16]. Note that the original convolu-

tion filters implicitly assume the full-rank bases. By apply-

ing Analysis 1, the parameters for the convolution filters are

significantly reduced by
(r+1)(2r+1)

(2r+1)2 ≈ 1
2 while keeping the

performance as well as outperforming the other bases.

The detailed comparison is also shown in Table 1b∼d by

increasing/decreasing the order N of bases on the respec-

tive convolution sizes. Obviously, reduction of basis order

degrades the performance, while less improvement is found

2The 9×9 filter appears only in one layer, causing the observation of

low confidence; see details of the ConvNets in the supplementary material.

even by increasing the order; actually the performances are

slightly deteriorated, except for the case of 3×3 filter.

These results validate Analysis 1 of convolution filters

from the viewpoint of classification performance, though it

is derived from the approximation of the pre-trained filters.

2.3. Discussion and Related Works

By applying Analysis 1, convolution filters of any sizes

are described by the linear combinations (1) of the pre-

defined basis filters whose number is also pre-set. Thereby,

the number of parameters to be learned is significantly re-

duced from s2CD of whole filters {W (j)}Dj=1 to BCD of

coefficients where B=(2r+1)(r+1)=s s+1
2 is the number

of basis filters. Thus, Analysis 1 roughly halves the param-

eter size (memory size) of any convolution layers in Con-

vNets. In the forward/backward-propagation, computation

at the convolution layer can be decomposed into the convo-

lutions by the fixed bases and their linear combination (im-

plemented by 1×1 convolution) as in network-in-network

model [35]. The off-the-shelf ConvNet learner is also ap-

plicable by reconstructing the convolution filters from the

bases and their coefficients in negligible computation cost.

Basis (prefixed) filters are found in some works. Scatter-

ingNet [49] is built upon the pre-defined wavelet filter banks

which are cascaded with nonlinear operations to form the

pre-fixed network. In [43], the pre-fixed Gabor filters are

employed to extract orientation-based features only at the

first layer, without considering the basis filters nor their (lin-

ear) combination. In contrast to those methods, we employ

orthonormal steerable filters as bases and learns the coef-

ficient weights for those pre-defined bases in an end-to-end

manner. As the pre-defined basis filters reconstruct the con-

volution filters with the learnt weights, our method is gen-

erally applicable to various ConvNets without changing the

network architecture as shown in Sec. 4. In [25, 10], basis

filters are introduced to make ConvNets steerable in terms

of certain types of transformation groups, while we leverage

them to analyze the convolution filters toward improving ef-

ficiency of the ConvNets (Fig. 2 and Sec. 4.3). Our work

is closely connected to [26] which directly employs Gaus-

sian derivative filters with parameters to be tuned by users.

5621

Table 1. Performance comparison on filter bases of various orders. The top-5 error rates (%) are measured by 10-crop testing [30] on

ILSVRC2014 validation set. Numbers in parentheses indicate the number of basis filter, and the underlined ones mean the full-rank (s2).

(a) VGG-M

Convolution filter size

Bases
7×7

1st layer
5× 5

2nd layer
3× 3

3∼5th layer Error

original - [49] - [25] - [9] 12.96

random - [28] - [15] - [6] 13.65
steerable [16]

w/o orthogonality 6 [28] 4 [15] 2 [6] 13.64

Analysis 1 6 [28] 4 [15] 2 [6] 13.19

(b) VGG-M

Bases
7×7

1st layer
5× 5

2nd layer
3× 3

3∼5th layer Error

Analysis 1 6 [28] 4 [15] 2 [6] 13.19

steerable 5 [21] 4 [15] 2 [6] 13.34

steerable 7 [36] 4 [15] 2 [6] 13.26

steerable 6 [28] 3 [10] 2 [6] 13.40

steerable 6 [28] 5 [21] 2 [6] 13.26

steerable 6 [28] 4 [15] 1 [3] 13.93

steerable 6 [28] 4 [15] 3 [9] 13.12

(c) VGG-M9×9

Bases
9×9

1st layer
5× 5

2nd layer
3× 3

3∼5th layer Error

steerable 7 [36] 4 [15] 2 [6] 13.27

Analysis 1 8 [45] 4 [15] 2 [6] 13.21

steerable 9 [55] 4 [15] 2 [6] 13.28

(d) VGG-M11×11

Bases
11×11
1st layer

5× 5
2nd layer

3× 3
3∼5th layer Error

steerable 9 [55] 4 [15] 2 [6] 13.30

Analysis 1 10 [66] 4 [15] 2 [6] 13.07

steerable 11 [78] 4 [15] 2 [6] 13.26

However, through our analysis (Sec. 2.1), we provide the

parameter-free basis filters only dependent on the filter size

(Analysis 1). And, they are different in orthogonality which

is necessary for effective learning as shown in Table 1a. In

addition, it is noteworthy that our work covers the FC filter

(Sec. 3) in contrast to the previous works [26, 25, 10] which

only consider convolution filters.

From the viewpoint of filter decomposition, our method

is related to the works for slimming ConvNets via decom-

posing convolution filters [27, 32, 13, 60, 59]. It, however,

is totally different from them in that those methods decom-

pose the trained filters a posteriori after learning the Con-

vNets and thus require re-training such as by fine-tuning,

while the proposed Analysis 1 operates on convolution fil-

ters a priori before end-to-end learning. Therefore, those

posterior methods would be applicable to the ConvNets that

are learned according to Analysis 1 for further reducing

the parameter size such as by decomposing the coefficients

{α
(j)
ic }B,C,D

i=1,c=1,j=1 of the bases.

3. Analysis of fully-connected filters

The filter at the fully-connected (FC) layer, so-called

fc6, works on a feature map in a different way from the

convolution filters. Namely, the FC filter sees whole in-

put without convolution and is applied mainly to compress

the dimensionality by processing the feature map globally,

while the convolution filter extracts local spatial character-

istics. Considering that the FC filter operates on the whole

spatial domain, a legacy image processing technique for im-

age compression inspires us to employ the discrete cosine

transform (DCT) [18] for representing the filter in an or-

thonormal manner; this is different motivation from the case

of convolution filters based on derivatives (Sec. 2).

3.1. Basis filters

As is the case with convolution filters (Sec. 2.1), we con-

sider the bases for the 2D spatial filter into which the FC

filter is sliced along the channel dimension. Suppose the in-

put feature map is defined on R
S×S×C of the spatial extent

S, and the DCT bases are mathematically written by

b
[m,n](x, y) = βmβn cos

{mπ

2S
(2x+1)

}

cos
{nπ

2S
(2y+1)

}

,

(4)

where (x, y) ∈ {0, · · · , S−1}×{0, · · · , S−1} and β0 =
1√
S
, βi =

√

2
S

for 0< i≤ S−1. The order N of the DCT

bases is defined by N = n + m for 0 ≤ m,n ≤ S − 1
as shown in Fig. 3b, and we regard the N -th order DCT

bases to contain all the bases (4) of up to N -th order; B=
{b[m,n]}m+n≤N . N is the only parameter in the bases.

Similarly to Fig. 1, the actual bases at the FC layer are

computed by applying SVD to the FC filter in the pre-

trained VGG-M [8] and are depicted in Fig. 3a, exhibiting

similarity to the DCT bases in Fig. 3b. Then, the relation-

ship between the order N and the input size S is investi-

gated over the pre-trained ConvNets of AlexNet [30], Caffe-

reference [28] and VGG-S/F/M [8] for S = 6 and VGG-vd-

16/19 [50] for S =7. The reconstruction error ǫ (3) by the

DCT bases is shown in Fig. 4. Note that the number of bases

even in the same DCT order are different according to the

spatial size S. As in Sec. 2.1, based on ǫ < 0.1, the order

can be determined as N=S−1.

3.2. Quantitative evaluation

The preliminary analysis result for DCT bases, N=S−1,

is quantitatively evaluated in terms of classification perfor-

mance. On ImageNet dataset, we train from scratch the

ConvNet with Analysis 1 of VGG-M [8] containing the FC

layer of S = 6 to which we can apply the DCT bases of

the order N ∈ {0, · · · , 10}. The performance results are

shown in Fig. 5, leading to the following three findings:

1) the performance is kept at N = S−1 = 5 halving the

number of parameters in the FC layer, 2) the lower-order

bases give better performance and especially the best per-

formance is achieved by N =1, and 3) even the 0-th order

basis exhibits almost the same performance as the original

one (N = 10) while significantly reducing the number of

parameters by 1
S2 =

1
36 . Note that the 0-th order basis is just

the uniform weighting (Fig. 3b) corresponding to average-

pooling. Based on these results, we can say that the fully-

5622

4

83

72

6

1

5 12

14

11

25

10 31

9 13

15

16

26

27

32

33

20

21

17

18

28

29 34

35

22

23

19

30 36

24

0 1 2 3 4 5

6

7

8

9

10

(a) The bases in VGG-M (b) DCT bases (4) on 6×6

Figure 3. Comparison between (a) the FC basis filters

computed from the pre-trained ConvNet (VGG-M [8])

and (b) the DCT bases (4). The numbers in (b) indicate

the DCT orders. Weights are shown in pseudo colors.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
e

c
o

n
s
tr

u
c
ti
o

n
 e

rr
o

r
0

0
[1,1]

1
[3,3]

2
[6,6]

3
[10,10]

4
[15,15]

5
[21,21]

6
[26,28]

7
[30,34]

8
[33,39]

9
[35,43]

10
[36,46]

11
[,48]

12
[,49]

DCT Order [# of bases for S = 6, S = 7]N

6# 6 (S = 6)
7# 7 (S = 7)

Figure 4. Reconstruction errors by fit-

ting DCT bases to the FC filters.

0 1 2 3 4 5 6 7 8 9 10
12.7

12.8

12.9

13

13.1

13.2

13.3

13.4

T
o

p
-5

 e
rr

o
r

ra
te

 (
%

)

avg.-pool originalS!1

DCT order N

Figure 5. Classification performance

by VGG-M of various DCT orders.

connected layer is redundantly parameterized, and in partic-

ular, the third finding further inspires us to reformulate the

fully-connected layer as follows.

3.3. BoW­based representation for FC layer

Let zxy ∈ R
C be the C-dimensional feature vector at

(x, y) position in the input feature map Z ∈R
S×S×C . The

fully-connected layer followed by the ReLU layer is math-

ematically written by, for one output channel,

ReLU

[

S,S
∑

x=1,y=1

w
⊤
xyzxy + ρ

]

(5)

where ReLU(x) , max[0, x] and wxy is the C-dimensional

filter vector at (x, y) in the FC filter W ∈ R
S×S×C . By

applying the 0-th order DCT basis which is equivalent to

average-pooling followed by linear projection via α∈R
C ,

the FC layer (5) is transformed into

ReLU

[

1

S2

S,S
∑

x=1,y=1

α
⊤
zxy+ρ

]

. (6)

This formulation simply aggregates the score of local de-

scriptor (feature) zxy projected onto the vector α which

comprises the coefficients of the 0-th order DCT basis

across channels. Such a process on the local descriptors be-

longs to the framework of bag-of-words (BoW) [11] which

aggregates the code weight, i.e., non-negative similarity

score, of the visual words assigned to the local descriptors.

Inspired by the BoW approach, (6) is modified into

1

S2

S,S
∑

x=1,y=1

ReLU[α⊤
zxy + ρ]. (7)

In (7), we regard α as the visual word vector and the non-

negative similarity score (code weight) to α is measured by

dot-product and thresholding (ReLU) with the bias ρ. The

code weights at the local descriptors zxy are average-pooled

over the input map of S×S as in the standard BoW. Though

(7) is simply implemented by swapping the sequence of

ReLU and average-pooling in (6) as shown in Fig. 7b, it

is noteworthy that (7) is theoretically founded on the BoW

model which delivers an effective feature representation of

medium level with favorable transferability (Sec. 4.2).

Following the progress of BoW [57, 23], we can apply

max-pooling [6] to (7) instead of average-pooling:

max
x,y

ReLU[w̃⊤
zxy + ρ] = ReLU[max

x,y
{w̃⊤

zxy + ρ}]. (8)

The max-pooling woks well on the hand-crafted local de-

scriptors with sparse code weights [57, 23]. (8) is easily

implemented by using the max-pooling layer.

In consequence, based on the findings in Sec. 3.2, we

can conclude our analysis on FC filter as follows:

Analysis 2: for fully-connected filters

⊲The bases of the FC filter are given by the DCT bases

(4) of up to order N=1 producing 3 basis filters, or

⊲BoW-based FC layer (Sec. 3.3) should be applied.

3.4. Related Works

Some ConvNets [35, 52, 53, 20] heuristically replace the

FC layer with average-pooling. On the other hand, we nat-

urally introduce the average-pooling based on the analy-

sis of the FC layer from the frequency viewpoint by DCT

(Sec. 3.2), and then derive the BoW-based representation

(7, 8). In contrast to the classification score pooling in [35],

our model (7) produces effective BoW-based feature repre-

sentation which can be extended via max-pooling (8) and is

well transferable (Sec. 4.2). It is connected to but different

from the feature-pooling in [52, 53, 20]; Sec. 4.3 shows that

it favorably works to improve ResNet [20].

While in [9] the neuron activations at the intermediate

convolution layer, such as conv5, are fed into Fisher kernel

in the framework of transferring ConvNet features, we em-

bed the BoW-based coding into ConvNets which is trained

in an end-to-end manner. In NetVLAD [4], VLAD layer is

similarly embedded and learned for place recognition. Our

BoW-based layer (7, 8) is much simpler with lower dimen-

sionality and is advantageous in transferring features.

As to FC layer decomposition, we introduce the DCT

bases a priori while Fast R-CNN [17] decompose the FC

filter a posteriori via SVD for accelerating detection.

5623

4. Experimental Results

4.1. Image classification on ImageNet dataset

We apply Analysis 1&2 to various ConvNets of

AlexNet [30] and VGG-S/M/F [8] as well as the deeper

ConvNets of VGG-vd-16/19 [50]. Note that the ConvNets

are re-parameterized by applying the proposed methods to

the convolution layers as well as the fully-connected layer

(Fig. 7). All the ConvNets of both the original and our

models are trained from scratch on ILSVRC2014 training

dataset3. We implemented them by using MatConvNet tool-

box [55], following the learning procedure provided in the

toolbox; the details are shown in the supplementary mate-

rial. Performance is measured on ILSVRC2014 validation

set and we report top-5 error rates by 10-crop testing [30] on

a resized input image whose minimum side has 256 pixels.

Table 2 shows the performance results for the moderately

deep ConvNets. Analysis 1 of convolution filters efficiently

works to reduce the parameter size of the ConvNet while

keeping the performance; see the reduction of convolution

parameters in Fig. 6a. On AlexNet and VGG-F which pro-

duce rather higher error rates, the performance gap between

ours and the original one is slightly larger than those for the

more sophisticated ConvNets of VGG-M/S. The gap, how-

ever, is getting smaller as the ConvNets are improved so as

to produce better performance, as described in the later.

As to the fully-connected filter, Analysis 2 regarding

DCT bases of N = 1 effectively works, and it is notewor-

thy that the BoW representation (Sec. 3.3) contributes to

further performance improvement; the max-pooling in (8)

largely improves the performance especially on the simpler

ConvNets of AlexNet and VGG-F. While the BoW represen-

tation is shift-invariant due to the global pooling in (7, 8),

the FC layer using the DCT bases of N=1 would be effec-

tive such as for position-sensitive regression in YOLO [46].

The memory size of the ConvNets equipped with the BoW

layer is significantly reduced as shown in Fig. 6a. While

all these ConvNets contain the same MLP classifier of the

fixed size, the other layers enjoy significant memory reduc-

tion due to the filter bases by Analysis 1 for the convolution

layers and the BoW-based representation by Analysis 2 for

the FC layer. The number of parameter at the FC layer is re-

duced to CD of word vectors {α(j)}Dj=1 from S2CD where

S is the spatial size of the input feature map at fc6.

As to the spatial size S, as shown in Fig. 7a, the final con-

volution layer (conv5) is actually followed by local max-

pooling in those ConvNets, mainly for reducing the size S.

On the other hand, the proposed BoW layer (Fig. 7b) is not

dependent on the spatial dimensions (S) as it is marginal-

ized out via global avg/max-pooling. Thus, it is possible

3We confirmed that the original ConvNets of AlexNet∼ResNet
trained by ourselves in Table 2&3&5 produce similar (or a bit better) per-

formance to those provided by the authors in the 10-crop testing protocol.

Table 2. Top-5 error rates (%) on ILSVRC2014 validation set by

the moderately deep ConvNets, following 10-crop testing [30].

Conv. FC ConvNet models
Analysis 1 Analysis 2 AlexNet VGG-F VGG-M VGG-S

- - 16.58 16.36 12.96 13.19

X - 16.96 16.81 13.19 13.43

X DCT (N=1) 16.57 16.52 12.77 12.84

X BoW (avg-pool) 15.50 15.46 11.95 11.59

X BoW (max-pool) 14.58 14.84 11.95 11.60

X dense-BoW (avg) 14.70 14.98 11.95 11.57

X dense-BoW (max) 14.08 14.41 11.74 11.59

- dense-BoW (max) 14.07 14.20 11.58 11.26

orig. ours orig. ours orig. ours orig. ours

10

20

30

40

50

60

70

80

90

100

N
u

m
b

e
r

o
f

p
a

ra
m

e
te

rs
 (

M
=

2
2
0
)

58.1M

22.4M

58.0M

22.3M

98.1M

26.0M

98.1M

26.0M

AlexNet VGG-F VGG-M VGG-S

Conv. layers
FC layer
Classifier layers

orig. ours orig. ours

10

30

50

70

90

110

130

N
u
m

b
e
r

o
f
p
a
ra

m
e
te

rs
 (

M
=

2
2
0
)

131.9M

31.3M

VGG-vd-16 VGG-vd-19

137.0M

34.6M

(a) Moderately deep ConvNets (b) Deeper ConvNets

Figure 6. The number of parameters in the ConvNets. We apply

Analysis 1 and BoW layer (Analysis 2) to the ConvNets.

Table 3. Top-5 error rates (%) by the deeper ConvNets.

Conv. Analysis 1 FC Analysis 2 VGG-vd-16 VGG-vd-19

- - 7.88 7.97

X - 8.24 8.03

X BoW (avg-pool) 7.13 7.03

X BoW (max-pool) 7.33 7.27

X dense-BoW (avg) 7.10 7.06

to simply remove the local pooling layer for enlarging the

spatial size S. Increasing the number of local descriptors

makes the statistical operation such as average and max in

the pooling more stable. Such dense-BoW layer is applied

to the ConvNets by simply removing the local pooling layer

after conv5 as shown in Fig. 7c, and the performance re-

sults are shown in Table 2. Even such a simple modification

can further improve the performance on all the ConvNets.

And, the above-mentioned performance gap between the

original convolution and that of Analysis 1 on AlexNet and

VGG-F is reduced under the dense-BoW setting. As a result,

we conclude that on these ConvNets, Analysis 1 of convo-

lution filters and the dense-BoW layer by Analysis 2 are

effective in terms of both parameter size and performance.

The number of output channels in the BoW layer is re-

garded as that of visual words in the hand-crafted BoW

framework, and its effect on the classification performance

is shown in Fig. 8 where Analysis 1 and dense-BoW with

max-pooling are applied to VGG-M. Note that the BoW

layer is followed by the MLP classifier of which hidden

layer comprises 4,096 neuron nodes for the 1,000-class soft-

5624

ReLU

conv [3x3]

max-pooling [3x3]

FC [SxS]

MLP-1 [1x1]

MLP-2 [1x1]

SoftMax

local

ReLU

ReLU

1x1

40
96

S xS’ ’

SxS

ReLU

conv [3x3]

max-pooling [3x3]

conv [1x1]

MLP-1 [1x1]

MLP-2 [1x1]

SoftMax

local

1x1

ReLU

ReLU

avg-pooling [SxS]
global

B
o

W
-F

C
 l
a
y
e
r

(max)

40
96

S xS’ ’

SxS

Interchangable
 for
 max-pooling

ReLU

conv [3x3]

conv [1x1]

MLP-1 [1x1]

MLP-2 [1x1]

SoftMax

S xS’ ’

ReLU

ReLU

avg-pooling [S xS]
global

’ ’
(max)

1x1
40

96

S xS’ ’

SLP [1x1]

SoftMax

avg-pooling [SxS]
global

ReLU

conv [3x3]

conv [1x1]

ReLU

conv [1x1]

ReLU SxS
20

48

1x1
20

48

SLP [1x1]

SoftMax

conv [1x1]

ReLU

conv [1x1]

ReLU

SxS

SxS

20
48

10
24

1x1
20

48

Dimensionality
reduction

avg-pooling [SxS]
global

concat

ReLU

conv [1x1]

(a) ConvNet (b) ConvNet with BoW (c) dense-BoW (d) ResNet (e) ResNet-BoW

Figure 7. The BoW layer (Sec. 3.3) embedded in the ordinary ConvNets [30, 8, 50] and ResNet [20].

The conventional layer names are underlined, and the cuboids stand for data shape in feed-

forwarding. The multi-/single-layered perceptron (MLP/SLP) is implemented by 1×1 convolution.

1024 2048 4096 8192

Number of words (output channel size in FC layer)

11.5

12

12.5

13

T
o

p
-5

 e
rr

o
r

ra
te

 (
%

)

Figure 8. Classification perfor-

mances on various number of

words (output channels) in the

BoW layer. The default number is

4,096.

max. Based on the trade-off between parameter size and the

performance, it is favorable to employ 4,096 words, which

corresponds to the original setting in VGG-M.

The proposed method is then applied to the deeper Con-

vNets of VGG-vd-16/19 [50]. The performance results

shown in Table 3 and Fig. 6b demonstrate the effective-

ness of the proposed methods in these deeper models. The

max-pooling in the BoW layer, however, does not contribute

to performance improvement, even degrading performance,

in contrast to the case of moderately deep ConvNets (Ta-

ble 2). The max-pooling operates globally on the input

feature map, unlike the commonly used local max-pooling

in ConvNets. Therefore, the global max-pooling at the FC

layer makes back-propagation very sparse, which hampers

end-to-end learning in the deeper (complex) models. This is

also seen in Table 2 where the effectiveness of max-pooling

is less on VGG-M/S of plenty parameters, compared to the

simple ConvNets of AlexNet and VGG-F. And, the dense-

BoW by removing local pooling after conv5 is not so ef-

fective in VGG-vd-16/19. In the deeper models, the local

descriptors produced by conv5 are heavily overlapped in

terms of the spatial receptive fields, and thus the local pool-

ing less affects such highly smoothed local descriptors.

4.2. Transferability

Next, we evaluate the transferability [5, 38, 45] of the

ConvNet which is pre-trained based on Analysis 1&2. We

apply to various types of datasets the ConvNet of VGG-vd-

16 which is frequently employed as a generic image fea-

ture extractor instead of hand-crafted ones. The original

VGG-vd-16 is compared with ours to which Analysis 1 and

the dense-BoW (avg-pool) layer by Analysis 2 are applied,

without fine-tuning for fairly evaluating the transferability

(generality) of the ConvNets pre-trained on ILSVRC2014

training dataset. Note that our VGG-vd-16 consumes signif-

icantly lower memory, less than 1
4 of the original one, as

shown in Fig. 6b. The image features are extracted by ap-

plying the pre-trained ConvNet in a convolution manner to a

rescaled image which has 256 pixels on the minimum side,

and then are max-pooled over the image region. The neuron

activations at the intermediate layer, fc6/7 for the original

VGG-vd-16 and bow/mlp1 for ours, are employed to pro-

duce 4,096-dimensional features; bow and mlp1 are coun-

terparts to fc6 and fc7, respectively, as shown in Fig. 7.

The features are finally classified by linear SVM [54] and

classification accuracies are measured according to the stan-

dard protocol provided in the respective datasets; on Cal-

tech256, we draw 60 training samples on each class, and for

details of the other datasets, refer to the respective papers.

The performance results are shown in Table 4. The

proposed method improves the performance of the origi-

nal VGG-vd-16, being close to the state-of-the-art perfor-

mances. It should be noted that our ConvNet produces high

performance at the bow layer on all the datasets, exhibiting

favorable transferability to various tasks. In contrast, the

performance by the original one is dependent on the combi-

nation of the layer types (fc6 or fc7) and target datasets,

according to the similarity between the target task and the

ImageNet classification as discussed in [5]. Note that most

of the state-of-the-art methods are built on the pre-trained

ConvNets, while we simply apply single VGG-vd-16 pre-

trained on ImageNet to an image of single-scale. Thus, our

ConvNet would contribute to further improvement in those

methods, which is out of our focus in this paper.

4.3. Improving ResNet [20]

Finally, we analyze the deep ConvNet of ResNet [20]

which stacks plenty of 3×3 convolution layers with single-

layered perceptron (SLP) classifier. We focus on the 3 × 3
convolution and analyze them in the same manner as in

Sec. 2.1 based on the reconstruction error ǫ by the six ba-

sis filters of N = 2. In Fig. 9, we can find that (1) the

filters in the last block (conv5) exhibit quite less recon-

struction errors, while (2) larger errors are produced at the

other blocks, in comparison to the reference model of VGG-

vd-19. The first finding suggests that the conv5 block re-

sults in so simple filters as to be eliminated as redundant

one. Thus, according to Analysis 2, we replace conv5 (and

5625

Table 4. Classification accuracy (%) on the various datasets of middle scale. The ConvNet of VGG-vd-16 pre-trained on ImageNet is applied

without fine-tuning to extract image features, followed by a linear SVM. We also show the performance reported in the other papers.

object classification scene classification fine-grained classification others

VOC2007 Caltech256 Scene15 MIT67 SUN397 Bird200 Car196 Pet37 Flower102 FMD Event8 Action40
[2] [19] [31] [44] [61] [56] [29] [42] [41] [48] [34] [66]

O
ri

g
.

fc6 87.63 82.98 93.35 75.66 58.12 68.13 82.69 89.64 93.03 83.57 98.40 75.88

fc7 88.82 83.88 93.03 74.55 57.88 65.56 77.90 90.06 92.20 84.76 97.64 76.65

O
u

rs bow 88.85 85.83 93.49 79.12 62.53 77.60 86.99 91.06 96.72 85.42 98.33 79.56

mlp1 89.32 85.52 93.35 78.62 60.32 71.03 81.98 91.50 94.94 85.06 98.61 78.67

Others 77.7 [38] 86.1 [7] 95.18 [21] 86.04 [21] 70.17 [21] 85.1 [37] 92.5 [58] 93.45 [3] 96.40 [3] 82.4 [9] 96.13 [71] 80.9 [7]

73.9 [45] 85.06 [3] 92.9 [65] 81.0 [9] 62.97 [3] 76.6 [22] 86.3 [64] 90.03 [62] 94.8 [7] 81.6 [36] 95.42 [70] 72.03 [70]

conv1conv2 conv3 conv4 conv5
0

0.05

0.1

0.15

0.2

0.25

R
e
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

ResNet-50

ResNet-101

VGG-vd-19

Figure 9. Reconstruction error ǫ (3) at respective 3× 3

convolution layers in ResNet [20]; we show those of

VGG-vd-19 for reference.

Table 5. Top-5 error rates (%) by ResNet-50 [20]. Numbers in parentheses indicate

the number of parameters in the ConvNets. “same/half-dim” means the same/half

number of input channels of 5×5 convolution compared to that of 3×3 convolution;

the detailed architectures are shown in the supplementary material.

conv2∼3 conv4 conv5 Error Param.

a) orig. orig. orig. 6.35 [24.35M]

b) orig. orig. BoW 6.23 [14.09M]

c) Analysis 1:3×3 orig. 6.42 [20.75M]

d) Analysis 1:3×3 BoW 6.31 [12.74M]

e) Analysis 1:3×3 Analysis 1:5×5 (same-dim.) BoW 6.01 [16.12M]

f) Analysis 1:3×3 Analysis 1:{3×3, 5×5 (half-dim.)} BoW 5.71 [16.59M]

g) Analysis 1:{3×3, 5×5 (half-dim.) } BoW 5.50 [17.15M]

h) Analysis 1:{3×3, 5×5 (same-dim.)} BoW 5.22 [23.92M]

subsequent average-pooling layer) with the proposed BoW

representation (7), as shown in Fig. 7e; in order to increase

the discriminativity of the local descriptor fed into the BoW,

the last sum-connection at conv4 is replaced with concate-

nation and it is followed by dimensionality reduction via

1×1×2048×1024 convolution like PCA in BoW.

Then, the second finding suggests applying the filters of

the higher order (N > 2) at the blocks of conv2∼4. Ac-

cording to Analysis 1, the higher-order derivatives can be

realized by the larger-sized filters and we apply the 5×5 fil-

ter size, producing 15 basis filters of the order N =4. The

5×5 filters are either replaced with 3×3 filters or embedded

in the additional residual path to that of 3×3. We feed the

5×5 convolution a feature map of the same or half number

of channel, compared to the 3×3 convolution; refer to the

supplementary material for the detailed architecture.

The above two modifications are evaluated on ResNet-

50 in Table 5. The BoW representation significantly re-

duces the parameter size while slightly improving the clas-

sification performance; combination (d) of Analysis 1 for

conv2∼4 and Analysis 2 for conv5 halves the parame-

ter size, maintaining the same performance as the original

(a). This validates the first finding regarding the redundancy

of conv5, which may be due to the preceding deep con-

volution layers that sufficiently characterize the image fea-

tures. The second modification also improves the classifi-

cation performance even by replacing the 3×3 filters with

5×5 only at the conv4 block (e). The performance is fur-

ther improved by introducing both the 3×3 and 5×5 filters

into residual paths at the blocks of conv2∼4 (f∼h). We

finally achieve the performance (h) of 5.22% [23.92M] which

is favorably competitive with ResNeXt-50 [63], 5.36%4

[23.93M]. These results show that analyzing filters based on

our bases (Sec. 2.1, Fig. 9) is useful to improve the Con-

vNet model and the proposed Analysis 1&2 work well for

improving ResNet [20]; we would improve ResNeXt [63]

in a similar way since the ResNeXt and ResNet share large

portion of the network architecture.

5. Conclusion

We have proposed the methods to reformulate filters

for improving ConvNets. Two types of methods are pre-

sented through analyzing filters at convolution and fully-

connected (FC) layers, respectively, on various pre-trained

ConvNets. We give light on the redundant parameterization

of the filters, and introduce the filter bases of lower ranks by

means of the orthonormal steerable filters and discrete co-

sine transform. The analysis on the FC layer further endows

us with the BoW-based representation. The proposed meth-

ods can improve the existing ConvNets in terms of memory

size and classification performance while keeping the over-

all network architecture. The experimental results on im-

age classification show that they work effectively in various

types of ConvNets, including ResNet, on ImageNet with

exhibiting favorable transferability on the other dataset.

4We applied the pre-trained model of ResNeXt-50 (32x4d) [63] with

10-crop testing. And, our ResNet-101 with the configuration (f) produces

4.88% [39.75M] compared to 4.96% [42.26M] of ResNeXt-101 (32x4d).

5626

References

[1] MatConvNet pre-trained models. http://www.vlfeat.

org/matconvnet/pretrained/. Accessed: 2017-1-

19.

[2] The PASCAL Visual Object Classes Challenge 2007

(VOC2007). http://www.pascal-network.org/

challenges/VOC/voc2007/index.html.

[3] J. W. A. Y. AL. Xie, L. Zheng and Q. Tian. Interactive :

Inter-layer activeness propagation. In CVPR, pages 270–279,

2016.

[4] R. Arandjelović, P. Gronat, A. Torii, T. Pajdla, and J. Sivic.

Netvlad: Cnn architecture for weakly supervised place

recognition. In CVPR, pages 5297–5307, 2016.

[5] H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and

S. Carlsson. Factors of transferability for a generic convnet

representation. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 38(9):1790–1802, 2016.

[6] Y. Boureau, J. Ponce, and Y. LeCun. A theoretical analysis of

feature pooling in visual recognition. In ICML, pages 111–

118, 2010.

[7] S. Cai, L. Zhang, and W. Z. X. Feng. A probabilistic collab-

orative representation based approach for pattern classifica-

tion. In CVPR, pages 2950–2959, 2016.

[8] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.

Return of the devil in the details: Delving deep into convo-

lutional nets. BMVC, 2014.

[9] M. Cimpoi, S. Maji, and A. Vedaldi. Deep filter banks for

texture recognition and segmentation. In CVPR, pages 3828–

3836, 2015.

[10] T. S. Cohen and M. Welling. Steerable cnns. arXiv,

1612.08498, 2016.

[11] G. Csurka, C. Bray, C. Dance, and L. Fan. Visual categoriza-

tion with bags of keypoints. In ECCV Workshop on Statisti-

cal Learning in Computer Vision, pages 1–22, 2004.

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

CVPR, pages 248–255, 2009.

[13] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus.

Exploiting linear structure within convolutional networks for

efficient evaluation. In NIPS, pages 1269–1277, 2014.

[14] A. Dosovitskiy and T. Brox. Inverting visual representations

with convolutional networks. In CVPR, pages 4829–4837,

2016.

[15] L. M. Florack, B. M. ter Haar Romeny, J. J. Koenderink,

and M. A. Viergever. Scale and the differential structure of

images. Image and Vision Computing, 10(6):376–388, 1992.

[16] W. T. Freeman and E. H. Adelson. The design and use of

steerable filters. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 13(9):891–906, 1991.

[17] R. Girshick. Fast r-cnn. In CVPR, pages 1440–1448, 2015.

[18] R. Gonzalez and R. Woods. Digital Image Processing. Pren-

tice Hall, 2007.

[19] G. Griffin, A. Holub, and P. Perona. Caltech-256 object cat-

egory dataset. Technical Report 7694, Caltech, 2007.

[20] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, pages 770–778, 2016.

[21] L. Herranz, S. Jiang, and X. Li. Scene recognition with cnns:

objects, scales and dataset bias. In CVPR, pages 571–579,

2016.

[22] S. Huang, Z. Xu, D. Tao, and Y. Zhang. Part-stacked cnn for

fine-grained visual categorization. In CVPR, pages 1173–

1181, 2016.

[23] Y. Huang, K. Huang, Y. Yu, and T. Tan. Salient coding for

image classification. In CVPR, pages 1753–1760, 2011.

[24] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

Journal of Machine Learning Research, 37:448–456, 2015.

[25] J.-H. Jacobsen, B. de Brabandere, and A. W. Smeulders. Dy-

namic steerable blocks in deep residual networks. In BMVC,

pages 1–13, 2017.

[26] J.-H. Jacobsen, J. van Gemert, Z. Lou, and A. W. M. Smeul-

ders. Structured receptive fields in cnns. In CVPR, pages

2610–2619, 2016.

[27] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up

convolutional neural networks with low rank expansions. In

BMVC, 2014.

[28] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. arXiv, 1408.5093,

2014.

[29] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object rep-

resentations for fine-grained categorization. In ICCV Work-

shop, 2013.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, pages 1097–1105, 2012.

[31] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of

features: Spatial pyramid matching for recognizing natural

scene categories. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 2169–2178, 2006.

[32] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lem-

pitsky. Speeding-up convolutional neural networks using

fine-tuned cp-decomposition. In ICLR, 2015.

[33] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.

Howard, W. Hubbard, and L. D. Jackel. Backpropagation

applied to handwritten zip code recognition. Neural Compu-

tation, 1(4):541–551, 1989.

[34] L.-J. Li and L. Fei-Fei. What, where and who? classifying

events by scene and object recognition. In ICCV, 2007.

[35] M. Lin, Q. Chen, and S. Yan. Network in network. CoRR,

abs/1312.4400, 2013.

[36] T.-Y. Lin and S. Maji. Visualizing and understanding deep

texture representations. In CVPR, pages 2791–2799, 2016.

[37] T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear models

for fine-grained visual recognition fine-grained visual recog-

nition. In ICCV, pages 1449–1457, 2015.

[38] I. L. M. Oquab, L. Bottou and J. Sivic. Learning and trans-

ferring mid-level image representations using convolutional

neural networks. In CVPR, pages 1717–1724, 2014.

[39] A. Mahendran and A. Vedaldi. Understanding deep image

representations by inverting them. In CVPR, pages 5188–

5196, 2015.

5627

http://www.vlfeat.org/matconvnet/pretrained/
http://www.vlfeat.org/matconvnet/pretrained/
http://www.pascal-network.org/challenges/VOC/voc2007/index.html
http://www.pascal-network.org/challenges/VOC/voc2007/index.html

[40] V. Nair and G. E. Hinton. Rectified linear units improve

restricted boltzmann machines. In ICML, pages 807–814,

2010.

[41] M.-E. Nilsback and A. Zisserman. Automated flower classi-

fication over a large number of classes. In Indian Conference

on Computer Vision, Graphics and Image Processing, 2008.

[42] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. V. Jawahar.

Cats and dogs. In CVPR, pages 3498–3505, 2012.

[43] J. A. Pérez-Carrasco, B. Zhao, C. Serrano, B. Acha,

T. Serrano-Gotarredona, S. Cheng, and B. Linares-Barranco.

Mapping from frame-driven to frame-free event-driven vi-

sion systems by low-rate rate coding and coincidence pro-

cessing – application to feedforward convnets. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

35(11):2706–2719, 2013.

[44] A. Quattoni and A. Torralba. Recognizing indoor scenes. In

CVPR, pages 413–420, 2009.

[45] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson.

Cnn features off-the-shelf: an astounding baseline for recog-

nition. In CVPR Workshop, pages 512–519, 2014.

[46] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. In

CVPR, pages 779–788, 2016.

[47] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learn-

ing representations by back-propagating errors. Nature,

323:533–536, 1986.

[48] L. Sharan, R. Rosenholtz, and E. Adelson. Material percep-

tion: What can you see in a brief glance? Journal of Vision,

9(8):784, 2009.

[49] L. Sifre and S. Mallat. Rotation, scaling and deformation in-

variant scattering for texture discrimination. In CVPR, pages

1233–1240, 2013.

[50] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014.

[51] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout : A simple way to prevent neu-

ral networks from overfitting. Journal of Machine Learning

Research, 15:1929–1958, 2014.

[52] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, pages 1–9, 2015.

[53] C. Szegedy, V. Vanhoucke, S. Ioffe, and J. Shlens. Rethink-

ing the inception architecture for computer vision. arXiv,

1512.00567, 2015.

[54] V. Vapnik. Statistical Learning Theory. Wiley, 1998.

[55] A. Vedaldi and K. Lenc. MatConvNet – convolutional neural

networks for matlab. In ACM MM, 2015.

[56] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Be-

longie. The caltech-ucsd birds-200-2011 dataset. Technical

Report CNS-TR-2011-001, California Institute of Technol-

ogy, 2011.

[57] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong.

Locality-constrained linear coding for image classification.

In CVPR, pages 3360–3367, 2010.

[58] Y. Wang, J. Choi, V. I. Morariu, and L. S. Davis. Mining dis-

criminative triplets of patches for fine-grained classification.

In CVPR, pages 1163–1172, 2016.

[59] Z. Wang, Z. Deng, and S. Wang. Accelerating convolu-

tional neural networks with dominant convolutional kernel

and knowledge pre-regression. In ECCV, pages 533–548,

2016.

[60] K. H. X. Zhang, J. Zou and J. Sun. Accelerating very

deep convolutional networks for classification and detection.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 38(10):1943–1955, 2016.

[61] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba.

Sun database: Large-scale scene recognition from abbey to

zoo. In CVPR, 2010.

[62] L. Xie, R. Hong, B. Zhang, and Q. Tian. Image classifica-

tion and retrieval are one. In International Conference on

Multimedia Retrieval (ICMR), pages 3–10, 2015.

[63] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He. Aggregated

residual transformations for deep neural networks. In CVPR,

pages 5987–5995, 2016.

[64] S. Xie, T. Yang, X. Wang, and Y. Lin. Hyper-class aug-

mented and regularized deep learning for fine-grained image

classification. In CVPR, pages 2645–2654, 2015.

[65] S. Yang and D. Ramanan. Multi-scale recognition with dag-

cnns. In ICCV, pages 1215–1223, 2015.

[66] B. Yao, X. Jiang, A. Khosla, A. Lin, L. Guibas, and L. Fei-

Fei. Human action recognition by learning bases of action

attributes and parts. In ICCV, 2011.

[67] M. D. Zeiler. Adadelta: An adaptive learning rate method.

arXiv, 1212.5701, 2012.

[68] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In ECCV, pages 818–833, 2014.

[69] M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive decon-

volutional networks for mid and high level feature learning.

In ICCV, pages 2018–2025, 2011.

[70] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Tor-

ralba. Learning deep features for discriminative localization.

In CVPR, pages 2921–2929, 2016.

[71] B. Zhou, A. Khosla, A. Lapedriza, A. Torralba, and A. Oliva.

Places: An image database for deep scene understanding.

arXiv, 1610.02055, 2016.

5628

