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Abstract

Gaussian mixture models (GMM) are powerful paramet-

ric tools with many applications in machine learning and

computer vision. Expectation maximization (EM) is the

most popular algorithm for estimating the GMM parameters.

However, EM guarantees only convergence to a stationary

point of the log-likelihood function, which could be arbi-

trarily worse than the optimal solution. Inspired by the

relationship between the negative log-likelihood function

and the Kullback-Leibler (KL) divergence, we propose an

alternative formulation for estimating the GMM parameters

using the sliced Wasserstein distance, which gives rise to

a new algorithm. Specifically, we propose minimizing the

sliced-Wasserstein distance between the mixture model and

the data distribution with respect to the GMM parameters.

In contrast to the KL-divergence, the energy landscape for

the sliced-Wasserstein distance is more well-behaved and

therefore more suitable for a stochastic gradient descent

scheme to obtain the optimal GMM parameters. We show

that our formulation results in parameter estimates that are

more robust to random initializations and demonstrate that

it can estimate high-dimensional data distributions more

faithfully than the EM algorithm.

1. Introduction

Finite Gaussian Mixture Models (GMMs), also called

Mixture of Gaussians (MoG), are powerful, parametric, and

probabilistic tools that are widely used as flexible models for

multivariate density estimation in various applications con-

cerning machine learning, computer vision, and signal/image

analysis. GMMs have been utilized for: image representa-

tion [5, 16] to generate feature signatures, point set reg-

istration [23], adaptive contrast enhancement [9], inverse

problems including super-resolution and deblurring [18, 54],

time series classification [8], texture segmentation [42], and

robotic visuomotor transformations [22] among many others.

As a special case of general latent variable models, fi-

nite GMM parameters could serve as a concise embedding

[39], which provide a compressed representation of the data.

Moreover, GMMs could be used to approximate any density

defined on R
d with a large enough number of mixture com-

ponents. To fit a finite GMM to the observed data, one is

required to answer the following questions: 1) how to esti-

mate the number of mixture components needed to represent

the data, and 2) how to estimate the parameters of the mix-

ture components. Several techniques have been introduced

to provide an answer for the first question [36]. The focus of

this paper in on the latter question.

The existing methods to estimate the GMM parameters

are based on minimizing the negative log-likelihood (NLL)

of the data with respect to the parameters [50]. The Expec-

tation Maximization (EM) algorithm [14] is the prominent

way of minimizing the NLL (though, see, e.g., as an alterna-

tive [37, 21]). While EM remains the most popular method

for estimating GMMs, it only guarantees convergence to

a stationary point of the likelihood function. On the other

hand, various studies have shown that the likelihood func-

tion has bad local maxima that can have arbitrarily worse

log-likelihood values compared to any of the global maxima

[21, 24, 2]. More importantly, Jin et al. [23] proved that with

random initialization, the EM algorithm will converge to a

bad critical point with high probability. This issue makes the

EM algorithm sensitive to the choice of initial parameters.

In the limit (i.e. having infinite i.i.d samples), minimizing

the NLL function is equivalent to minimizing the Kullback-

Leibler divergence between the data distribution and the

GMM, with respect to the GMM parameters. Here, we pro-

pose, alternatively, to minimize the p-Wasserstein distance,

and more specifically the sliced p-Wasserstein distance [27],

between the data distribution and the GMM. The Wasserstein

distance and its variations have attracted a lot of attention

from the Machine Learning (ML) and signal processing com-

munities lately [27, 3, 15]. It has been shown that optimizing

with respect to the Wasserstein loss has various practical ben-

efits over the KL-divergence loss [43, 15, 38, 3, 19]. Impor-

tantly, unlike the KL-divergence and its related dissimilarity

measures (e.g. Jensen-Shannon divergence), the Wasser-

stein distance can provide a meaningful notion of closeness

(i.e. distance) for distributions supported on non-overlapping

low dimensional manifolds. This motivates our proposed
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formulation for estimating GMMs.

To overcome the computational burden of the Wasser-

stein minimization for high-dimensional distributions, we

propose to use the sliced Wasserstein distance [6, 29, 27].

Our method slices the high-dimensional data distribution via

random projections and minimizes the Wasserstein distance

between the projected one-dimensional distributions with

respect to the GMM parameters. We note that the idea of

characterizing a high-dimensional distribution via its random

projections has been studied in various work before [51, 25].

The work in [25], for instance, minimizes the L1 norm be-

tween the slices of the data distribution and the GMM with

respect to the parameters. This method, however, suffers

from the same shortcomings as the KL-divergence based

methods.

The p-Wasserstein distances and more generally the opti-

mal mass transportation problem have recently gained plenty

of attention from the computer vision and machine learning

communities [27, 48, 41, 28, 53, 46, 3]. We note that the

p-Wasserstein distances have also been used in regard to

GMMs, however, as a distance metric to compare various

GMM models [11, 33, 44]. Our proposed method, on the

other hand, is an alternative framework for fitting a GMM to

data via sliced p-Wasserstein distances.

In what follows, we first formulate the p-Wasserstein dis-

tance, the Radon transform, and the Sliced p-Wasserstein

distance in Section 2. In Section 3, we reiterate the con-

nection between the K-means problem and the Wasserstein

means problem [20], extend it to GMMs, and formulate the

Sliced Wasserstein means problem. Our numerical experi-

ments are presented in Section 4. Finally, we conclude our

paper in Section 5.

2. Preliminary

2.1. p­Wasserstein distance:

In this section we review the preliminary concepts and

formulations needed to develop our framework. Let Pp(Ω)
be the set of Borel probability measures with finite p’th

moment defined on a given metric space (Ω, d), and let ρ ∈
Pp(X) and ν ∈ Pp(Y ) be probability measures defined on

X,Y ⊆ Ω with corresponding probability density functions

Ix and Iy, dρ(x) = Ix(x)dx and dν(y) = Iy(y)dy. The

p-Wasserstein distance for p ∈ [1,∞) between ρ and ν is

defined as the optimal mass transportation (OMT) problem

[52] with cost function c(x, y) = dp(x, y), such that:

Wp(ρ, ν) =

(

inf
γ∈Γ(ρ,ν)

∫

X×Y

dp(x, y)dγ(x, y)

)
1

p

, (1)

where Γ(ρ, ν) is the set of all transportation plans, γ ∈
Γ(ρ, ν), and satisfy the following:

γ(A× Y ) = ρ(A) for any Borel subset A ⊆ X

γ(X ×B) = ν(B) for any Borel subset B ⊆ Y
.

Due to Brenier’s theorem [7], for absolutely continuous

probability measures ρ and ν (with respect to Lebesgue mea-

sure) the p-Wasserstein distance can be equivalently obtained

from,

Wp(ρ, ν) = (inff∈MP (ρ,ν)

∫

X

dp(f(x), x)dρ(x))
1

p (2)

where, MP (ρ, ν) = {f : X → Y | f#ρ = ν} and f#ρ

represents the pushforward of measure ρ,

∫

f−1(A)

dρ(x) =

∫

A

dν(y) for any Borel subset A ⊆ Y.

When a transport map exists, the transport plan and the

transport map are related via, γ = (Id× f)#ρ. Note that in

most engineering and computer science applications Ω is a

compact subset of Rd and d(x, y) = |x− y| is the Euclidean

distance. By abuse of notation we will use Wp(ρ, ν) and

Wp(Ix, Iy) interchangeably throughout the manuscript. For

a more detailed explanation of the Wasserstein distances

and the optimal mass transport problem, we refer the reader

to the recent review article by Kolouri et al. [27] and the

references there in.

One-dimensional distributions: The case of one-

dimensional continuous probability measures is specifically

interesting as the p-Wasserstein distance has a closed form

solution. More precisely, for one-dimensional probability

measures there exists a unique monotonically increasing

transport map that pushes one measure into another. Let

Jx(x) = ρ((−∞, x]) =
∫ x

−∞
Ix(τ)dτ be the cumulative

distribution function (CDF) for Ix and define Jy to be the

CDF of Iy. The transport map is then uniquely defined as,

f(x) = J−1
y (Jx(x)) and consequently the p-Wasserstein

distance is calculated as:

Wp(ρ, ν) =

(
∫

X

dp(J−1
y (Jx(x)), x)dρ(x)

)
1

p

=

(
∫ 1

0

dp(J−1
y (z), J−1

x (z))dz

)

1

p

(3)

where in the second line we used the change of variable

Jx(x) = z. The closed form solution of the p-Wasserstein is

an attractive property that gives rise to the Sliced-Wasserstein

(SW) distances. Next we review the Radon transform, which

enables the definition the Sliced p-Wasserstein distance.

2.2. Radon transform

The d-dimensional Radon transform, R, maps a func-

tion I ∈ L1(Rd) where L1(Rd) := {I : R
d →

R|
∫

Rd |I(x)|dx ≤ ∞} to the set of its integrals over the

hyperplanes of Rd and is defined as,

RI(t, θ) :=

∫

Rd

I(x)δ(t− x · θ)dx (4)
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For all θ ∈ S
d−1 where S

d−1 is the unit sphere in R
d. Note

that R : L1(Rd) → L1(R × S
d−1). For the sake of com-

pleteness, we note that the Radon transform is an invertible,

linear transform and we denote its inverse as R−1, which is

also known as the filtered back projection algorithm and is

defined as:

I(x) = R−1(RI(t, θ))

=

∫

Sd−1

(RI(., θ) ∗ h(.)) ◦ (x · θ)dθ (5)

where h(.) is a one-dimensional filter with corresponding

Fourier transform Fh(ω) = c|ω|d−1 (it appears due to the

Fourier slice theorem, see [40] for more details) and ‘∗’ de-

notes convolution. Radon transform and its inverse are exten-

sively used in Computerized Axial Tomography (CAT) scans

in the field of medical imaging, where X-ray measurements

integrate the tissue-absorption levels along 2D hyper-planes

to provide a tomographic image of the internal organs. Note

that in practice acquiring infinite number of projections is

not feasible therefore the integration in Equation (5) is re-

placed with a finite summation over projection angles. A

formal measure theoretic definition of Radon transform for

probability measures could be found in [6].

Radon transform of empirical PDFs: The Radon trans-

form of Ix simply follows Equation (4). However, in most

machine learning applications we do not have access to the

distribution Ix but to its samples, xn. Kernel density estima-

tion could be used in such scenarios to approximate Ix from

its samples,

Ix(x) ≈
1

Nρ

Nρ
∑

n=1

φ(x− xn)

where φ : Rd → R
+ is a density kernel where

∫

Rd φ(x)dx =
1 (e.g. Gaussian kernel). The Radon transform of Ix can

then be approximated from its samples via:

RIx(t, θ) ≈
1

Nρ

Nρ
∑

n=1

Rφ(t− xn · θ, θ) (6)

Note that certain density kernels have analytic Radon

transformation. For instance when φ(x) = δ(x) the Radon

transform Rφ(t, θ) = δ(t).

Radon transform of multivariate Gaussians: Let

φ(x) = Nd(µ,Σ) be a d-dimensional multivariate Gaussian

distribution with mean µ ∈ R
d and covariance Σ ∈ R

d×d.

A slice/projection of the Radon transform of φ is then a one-

dimensional normal distribution Rφ(·, θ) = N1(θ·x, θTΣθ).
Given the linearity of the Radon transform, this indicates

that a slice of a d-dimensional GMM is a one-dimensional

GMM with component means θ · µi and variance θTΣiθ.

2.3. Sliced p­Wasserstein Distance

The idea behind the sliced p-Wasserstein distance is to

first obtain a family of marginal distributions (i.e. one-

dimensional distributions) for a higher-dimensional prob-

ability distribution through linear projections (via Radon

transform), and then calculate the distance between two input

distributions as a functional on the p-Wasserstein distance of

their marginal distributions. In this sense, the distance is ob-

tained by solving several one-dimensional optimal transport

problems, which have closed-form solutions. More precisely,

the Sliced Wasserstein distance between Ix and Iy is defined

as,

SWp(Ix, Iy) = (

∫

Sd−1

W p
p (RIx(., θ),RIy(., θ))dθ)

1

p (7)

The Sliced p-Wasserstein distance as defined above is sym-

metric, and it satisfies sub-additivity and coincidence axioms,

and hence it is a true metric [29].

The sliced p-Wasserstein distance is especially useful

when one only has access to samples of a high-dimensional

PDFs and kernel density estimation is required to estimate

I . One dimensional kernel density estimation of PDF slices

is a much simpler task compared to direct estimation of I

from its samples. The catch, however, is that as the dimen-

sionality grows one requires larger number of projections to

estimate I from RI(., θ). In short, if a reasonably smooth

two-dimensional distribution can be approximated by its L

projections (up to an acceptable reconstruction error, ǫ), then

one would require O(Ld−1) number of projections to ap-

proximate a similarly smooth d-dimensional distribution (for

d ≥ 2). In later sections we show that the projections could

be randomized in a stochastic Gradient descent fashion for

learning Gaussian mixture models.

3. Sliced Wasserstein Means and Gaussian

Mixture Models

Here we first reiterate the connection between the K-

means clustering algorithm and the Wasserstein means prob-

lem, and then extend this connection to GMMs and state the

need for the sliced Wasserstein distance. Let yn ∈ R
d for

n = 1, ..., N be N samples and Y = [y1, ..., yN ] ∈ R
d×N .

The K-means clustering algorithm seeks the best K points,

xk ∈ R
d for k = 1, ...,K and X = [x1, ..., xK ] ∈ R

d×K ,

that represent Y . Formally,

infC,X

1

N
‖Y −XCT ‖2

s.t. C1K = 1N , ci,j ∈ {0, 1} (8)

where C ∈ R
N×K contains the one-hot labels of Y .

Let Iy = 1
N

∑N
n=1 φ(y−yn) be the empirical distribution

of Y , where φ is a kernel density estimator (e.g. radial
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basis function kernel or the Dirac delta function in its limit).

Then, the K-means problem can be alternatively solved by

minimizing a statistical distance/divergence between Iy and

Ix = 1
K

∑K
k=1 φ(x − xk). A common choice for such

distance/divergence is the Kullback-Leibler divergence (KL-

divergence) [4, 10]. Alternatively, the p-Wasserstein distance

could be used to estimate the parameters of Ix,

infIx W
p
p (Ix, Iy) (9)

We discuss the benefits of the p-Wasserstein distance
over the KL-divergence in the next sub-section. Above
minimization is known as the Wasserstein means problem
and is closely related to the Wasserstein Barycenter prob-
lem [1, 45, 13, 20]. The main difference being in that in
these works the goal is to find a measure ν∗ such that
ν∗ = arg infν

∑

k W
p
p (νk, ν), where νk are sets of given

low dimensional distributions (2 or 3D images or point
clouds). The strategy in [1, 45, 13] could also be extended
into a clustering problem, though the two formulations are
still significantly different given the inputs into the wasser-
stein distance being very different. Note also that K-means
is equivalent to a variational EM approximation of a GMM
with isotropic Gaussians [35], therefore, a natural extension
of the Wasserstein means problem could be formulated to fit
a general GMM to Iy . To do so, we let distribution Ix to be
the parametric GMM as follows:

Ix(x) =
∑

k

αk

(2π)
d
2

√

det(Σk)
exp(−

1

2
(x−µk)

TΣ−1

k (x−µk))

where
∑

k αk = 1 and Equation (9) is solved to find µks,

Σks, and αks. Next we describe the benefits of using the

Wasserstein distance in Equation (9) to fit a general GMM to

the observed data compared to the common log-likelihood

maximization schemes.

3.1. Wasserstein Means vs. Maximum Log­
Likelihood

General GMMs are often fitted to the observed data points,

yns, via maximizing the log-likelihood of samples with re-

spect to Ix. Formally, this is written as:

max
µk,Σk,αk

1

N

N
∑

n=1

log(Ix(yn)) (10)

It is straightforward to show that in the limit and as the

number of samples grows to infinity, N → ∞, the maximum

log-likelihood becomes equivalent to minimizing the KL-

divergence between Ix and Iy (See supplementary material

for a proof):

lim
N→∞

max
µk,Σk,αk

1

N

N
∑

n=1

log(Ix(yn)) = min
µk,Σk,αk

KL(Ix, Iy)

Figure 1. The corresponding energy landscapes for the negative

log-likelihood and the Wasserstein Means problem for scenario 1

(a) and scenario 2 (b). The energy landscapes are scaled and shifted

for visualization purposes.

The p-Wasserstein distance has been shown to have cer-

tain benefits over the commonly used KL-divergence and its

related distances/divergences (i.e., other examples of Breg-

man divergences including the Jensen-Shannon (JS) distance

and Itakura-Saito distance) [3]. For a general GMM, the

model Ix is continuous and smooth (i.e. infinitely differen-

tiable) in its parameters and is locally Lipschitz; therefore,

Wp(Ix, Iy) is continuous and differentiable everywhere,

while this is not true for the KL-divergence. In addition,

in scenarios where the distributions are supported by low

dimensional manifolds, KL-divergence and other Bregman

divergences may be difficult cost functions to optimize given

their limited capture range. This limitation is due to their

‘Eulerian’ nature, in the sense that the distributions are com-

pared at fixed spatial coordinates (i.e., bin-to-bin comparison

in discrete measures) as opposed to the p-Wasserstein dis-

tance, which is ‘Lagrangian’, and morphs one distribution

to match another by finding correspondences in the domain

of these distributions (i.e., Wasserstein distances perform

cross-bin comparisons).

To get a practical sense of the benefits of the Wasserstein

means problem over the maximum log-likelihood estima-

tion, we study two simple scenarios. In the first scenario, we

generate N one-dimensional samples, yn, from a normal dis-
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Figure 2. Illustration of the high-level approach for the Sliced-

Wasserstein Means of GMMs.

tribution N (0, σ) where we assume known σ and visualize

the negative log-likelihood (NLL) and the Wasserstein means

(WM) problem as a function of µ. Figure 1 (a) shows the first

scenario and the corresponding energy landscapes for the

negative log-likelihood and the Wasserstein means problem.

It can be seen that while the global optimum is the same for

both problems, the Wasserstein means landscape is less sen-

sitive to the initial point, hence a gradient descent approach

would easily converge to the optimal point regardless of the

starting point. In the second scenario, we generated N sam-

ples, yn, from a mixture of two one-dimensional Gaussian

distributions. Next, we assumed that the mixture coefficients

αks and the standard deviations σks, for k ∈ {0, 1}, are

known and visualized the corresponding energy landscapes

for NLL and WM as a function of µks (See Figure 1 (b)). It

can be clearly seen that although the global optimum of both

problems is the same, but the energy landscape of the Wasser-

stein means problem does not suffer from local minima and

is much smoother.

The Wasserstein means problem, however, suffers from

the fact that the W 2
2 (., .) is computationally expensive to

calculate for high-dimensional Ix and Iy. This is true even

using very efficient OMT solvers, including the ones intro-

duced by Cuturi [12], Solomon et al. [47], and Levy [31].

3.2. Sliced Wasserstein Means

We propose to use an approximation of the p-Wasserstein
distance between Ix and Iy using the SW distance. Sub-
stituting the Wasserstein distance in Equation (9) with the
SW distance leads to the Sliced p-Wasserstein Means (SWM)
problem,

inf
µk,Σk,αk

SW
p
p (Ix, Iy) =

∫

Sd−1

W
p
p (RIx(., θ),RIy(., θ))dθ,

which can be written as:

inf
µk,Σk,αk

∫

Sd−1

inff(.,θ)

∫

R

|f(t, θ)− t|pRIx(t, θ)dtdθ

(11)

where for a fixed θ, f(., θ) is the optimal transport

map between RIx(., θ) and RIy(., θ), and satisfies

∂f(t,θ)
∂t

RIy(f(t, θ), θ) = RIx(t, θ). Note that, since Ix is

an absolutely continuous PDF, an optimal transport map will

exist even when Iy is not an absolutely continuous PDF (e.g.

when φ(y) = δ(y)) . Moreover, since the slices/projections

are one-dimensional the transport map, f(., θ), is uniquely

defined and the minimization on f has a closed form solution

and is calculated from Equation (3). The Radon transforma-

tions in Equation (11) are:










RIy(t, θ) ≈ 1
N

∑N
n=1 Rφ(t− yn · θ, θ)

RIx(t, θ) =
∑

k
αk√

2πθTΣkθ
exp(− (t−µk·θ)

2

2θTΣkθ
)

(12)

The new formulation avoids the optimization for cal-

culating the Wasserstein distance and enables an efficient

implementation for clustering high-dimensional data. Fig-

ure 2 demonstrates the high-level idea behind slicing

high-dimensional PDFs Ix and Iy and minimizing the p-

Wasserstein distance between these slices over GMM com-

ponents. Moreover, given the high-dimensional nature of the

problem estimating density Iy in R
d requires large number

of samples, however, the projections of Iy, RIy(., θ), are

one dimensional and therefore it may not be critical to have

large number of samples to estimate these one-dimensional

densities.

Optimization scheme: To obtain a numerical optimiza-

tion scheme, which minimizes the problem in Equation (11)

we first discretize the set of directions/projections. This

corresponds to the use of a finite set Θ ∈ S
d−1, and a mini-

mization of the following energy function,

inf
µk,Σk,αk

1

|Θ|

|Θ|
∑

l=1

∫

R

|f(t, θl)− t|pRIx(t, θl)dt (13)

A fine sampling of Sd−1 is required for Equation (13) to

be a good approximation of (11). Such sampling, however,

becomes prohibitively expensive for high-dimensional data.

Alternatively, following the approach presented in [6] we

utilize random samples of Sd−1 at each minimization step

to approximate the Equation (11). This leads to a stochastic

gradient descent scheme where instead of random sampling

of the input data, we random sample the projection angles.

Finally, the GMM parameters are updated through an EM-

like approach where for fixed GMM parameters we calculate

the optimal transport map f between random slices of Ix
and Iy, followed by updating Ix for fixed transport maps

f(., θ)s. Below we describe these steps:

1. Generate L random samples from S
(d−1), {θ1, ..., θL}.

2. Fix the GMM, Ix, and calculate the optimal transport

map between slices RIx(·, θl) and RIy(·, θl) via:

f(t, θl) = RJ−1
y (RJx(t, θl), θl) (14)

where RJx(y)(·, θl) is the CDF of RIx(y)(·, θl).
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Figure 3. Results of 100 runs of EM-GMM and SW-GMM fitting a model with 10 modes to the ring-line-square dataset, showing four

samples of random initializations (Top) and histograms across all 100 runs for the negative log-likelihood of the fitted model and the

sliced-Wasserstein distance between the fitted model and the data distribution (Bottom).

3. For fixed transportmaps, f(·, θl)s, update the GMM
parameters by differentiating Equation (11):

∂SWp
p

∂αk

=

L
∑

l=1

∫

R

|f(t, θl) − t|p
√

2πθT
l
Σkθl

exp(−
(t − µk · θl)

2

2θT
l
Σkθl

)dt

∂SWp
p

∂µk

=

L
∑

l=1







∫

R

αk|f(t, θl) − t|p
√

2πθT
l
Σkθl

exp(−
(t − µk · θl)

2

2θT
l
Σkθl

)

(t − µk · θl)

θT
l
Σkθl

dt

)

θl

∂SWp
p

∂Σk

=

L
∑

l=1







∫

R

αk|f(t, θl) − t|p
√

8π(θT
l
Σkθl)3

[
(t − µk · θl)

2

θT
l
Σkθl

− 1]

exp(−
(t − µk · θl)

2

2θT
l
Σkθl

)dt

)

(θlθ
T
l )

where the summation is over L random projections

θl ∈ S
d−1. We use the RMSProp optimizer [49], which

provides an adaptive learning rate, to update the param-

eters of the GMM according to the gradients

4. Project the updated Σks onto the positive semidefinite

cone, and renormalize αks to satisfy
∑

k αk = 1.

Notice that the derivative with respect to the k’th compo-

nent of the mixture model in Equation (15) is independent

of other components. In addition, the transport map for each

projection, f(·, θ), in Equation (14) is calculated indepen-

dent of the other projections. Therefore the optimization can

be heavily parallelized in each iteration. We note that, we

have also experimented with the Adam optimizer [26] but

did not see any improvements over RMSProp. The detailed

update equations are included in the Supplementary materi-

als. In what follows we show the SWM solver for estimating

GMM parameters in action.

4. Numerical Experiments

We ran various experiments on three datasets to test our

proposed method for learning GMM parameters. The first

dataset is a two-dimensional data-point distribution consist-

ing a ring, a square, and a connecting line (See Figure 3). To

show the applicability of our method on higher-dimensional

datasets we also used the MNIST dataset [30] and the Celeb-

Faces Attributes Dataset (CelebA) [34].

4.1. Robustness to initialization

We started by running a simple experiment to demonstrate

the robustness of our proposed formulation to different ini-

tializations. In this test, we used a two-dimensional dataset

consisting of a ring, a square, and a line connecting them.

For a fixed number of modes, K = 10 in our experiment,

we randomly initialized the GMM. Next, for each initial-

ization, we optimized the GMM parameters using the EM

algorithm as well as our proposed method. We repeated this

experiment 100 times.
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Figure 4. Qualitative performance comparison on the MNIST dataset between our method, SW-GMM, and EM-GMM, showing decoded

samples for each mode (Right). Modes with bad samples are shown in red. The GMM was applied to a 128-dimensional embedding space

(Left).

Figure 3 shows sample results of the fitted GMM models

for both algorithms (Top Row). Moreover, we calculated the

histograms of the negative log-likelihood of the fitted GMM

and the sliced-Wasserstein distance between the fitted GMM

and the empirical data distribution (bottom). It can be seen

that our proposed formulation provides a consistent model

regardless of the initialization. In 100% of initializations,

our method achieved the optimal negative log-likelihood,

compared to only 29% for EM-GMM. In addition, both the

negative log-likelihood and the sliced-Wasserstein distance

for our method are smaller than those of the EM algorithm,

indicating that our solution is closer to the global optimum

(up to permutations of the modes).

4.2. High­dimensional datasets

We analyzed the performance of our proposed method

in modeling high-dimensional data distributions, here, us-

ing the MNIST dataset [30] and the CelebA dataset [34].

To capture the nonlinearity of the image data and boost

the applicability of GMMs, we trained an adversarial deep

convolutional autoencoder (Figure 4, Left) on the image

data. Next, we modeled the distribution of the data in the

embedded space via a GMM. The GMM was then used to

generate samples in the embedding space, which were con-

sequently decoded to generate synthetic (i.e. ’fake’) images.

In learning the GMM, we compared the EM algorithm with

our proposed method, SW-GMM. We note that the entire

pipeline is in an unsupervised learning setting. Figure 4

demonstrates the steps of our experiment (Left) and provides

a qualitative measure of the generated samples (Right) for

the MNIST dataset. It can be seen that the SW-GMM model

leads to more visually appealing samples compared to the

EM-GMM. In addition, we trained a CNN classifier on the

MNIST training data. We then generated 10,000 samples

from each GMM component and classified these samples

to measure the fidelity/pureness of each component. Ide-

ally, each component should only be assigned to a single

digit. We found out that for EM-GMM the components were

in average 80.48% pure, compared to 86.98% pureness of

SW-GMM components.

Similarly, a deep convolutional autoencoder was learned

for the CelebA face dataset, and a GMM was trained in

the embedding space. Figure 5 shows samples generated

from GMM components learned by EM and by our proposed

method (The samples generated from all components is at-

tached in the Supplementary materials). We note that, Fig-

ures 4 and 5 only provide qualitative measures of how well

the GMM is fitting the dataset. Next we provide quantitative

measures for the fitness of the GMMs for both methods.

We used adversarial training of neural networks [17, 32]

to provide a goodness of fitness of the GMM to the data

distribution. In short, we use success in fooling an adver-

sary network as an evaluation metric for goodness of fit of a

GMM. A deep discriminator/classifier was trained to distin-

guish whether a data point was sampled from the actual data

distribution or from the GMM. The fooling rate (i.e. error

rate) of such a discriminator is a good measure of fitness for

the GMM, as a higher error rate translates to a better fit to
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Figure 5. Qualitative performance comparison between our method,

SW-GMM (Bottom), and EM-GMM (Top), showing decoded sam-

ples for several GMM components. The images are contrast en-

hanced for visualization purposes.

the distribution of the data. Figure 6 shows the idea behind

this experiment, and reports the fooling rates for all three

datasets used in our experiments. Note that the SW-GMM

consistently provides a higher fooling rate, indicating a bet-

ter fit to the datasets. The details of the architectures used in

our experiments are included in the supplementary material.

Fooling rate EM-GMM SW-GMM

Ring-Square-Line 46.83%± 1.14% 47.56%± 0.86%

MNIST 24.87%± 8.39% 41.91%± 2.35%

CelebA 10.37%± 3.22% 31.83%± 1.24%

Figure 6. A deep discriminator is learned to classify whether an

input is sampled from the true distribution of the data or via the

GMM. The fooling rate of such a discriminator corresponds to the

fitness score of the GMM.

5. Discussion

In this paper, we proposed a novel algorithm for esti-

mating the parameters of a GMM via minimization of the

sliced p-Wasserstein distance. In each iteration, our method

projects the high-dimensional data distribution into a small

set of one-dimensional distributions utilizing random pro-

jections/slices of the Radon transform and estimates the

GMM parameters from these one-dimensional projections.

While we did not provide a theoretical guarantee that the

new method is convex, or that it has fewer local minima,

the empirical results suggest that our method is more ro-

bust compared to KL-divergence-based methods, includ-

ing the EM algorithm, for maximizing the log-likelihood

function. Consistent with this finding, we showed that the

p-Wasserstein metrics result in more well-behaved energy

landscapes. We demonstrated the robustness of our method

on three datasets: a two-dimensional ring-square-line distri-

bution and the high-dimensional MNIST and CelebA face

datasets. Finally, while we used deep convolutional encoders

to provide embeddings for two of the datasets and learned

GMMs in these embeddings, we emphasize that our method

could be applied to other embeddings including the original

data space.
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