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Abstract

Objects may appear at arbitrary scales in perspective

images of a scene, posing a challenge for recognition sys-

tems that process images at a fixed resolution. We pro-

pose a depth-aware gating module that adaptively selects

the pooling field size in a convolutional network architec-

ture according to the object scale (inversely proportional to

the depth) so that small details are preserved for distant ob-

jects while larger receptive fields are used for those nearby.

The depth gating signal is provided by stereo disparity or

estimated directly from monocular input. We integrate this

depth-aware gating into a recurrent convolutional neural

network to perform semantic segmentation. Our recurrent

module iteratively refines the segmentation results, leverag-

ing the depth and semantic predictions from the previous

iterations.

Through extensive experiments on four popular large-

scale datasets, we demonstrate this approach achieves com-

petitive semantic segmentation performance with a model

which is substantially more compact. We carry out extensive

analysis of this architecture including variants that operate

on monocular RGB but use depth as side-information dur-

ing training, unsupervised gating as a generic attentional

mechanism, and multi-resolution gating. We find that gated

pooling for joint semantic segmentation and depth yields

state-of-the-art results for quantitative monocular depth es-

timation.

1. Introduction

An intrinsic challenge of parsing rich scenes is under-

standing object layout relative to the camera. Roughly

speaking, the scales of the objects in the image frame are

inversely proportional to the distance to the camera. Hu-

mans easily recognize objects even when they range over

many octaves of spatial resolution. For example, the cars

near the camera in urban scene can appear a dozen times

larger than those at distance as shown by the lower panel

in Figure 1. However, the huge range and arbitrary scale

at which objects appear pose difficulties for machine image

Figure 1: Upper: depth-aware gating spatially modulates

the selected pooling scale using a depth map predicted from

monocular input. In this paper, we also evaluate related ar-

chitectures where scene depth is provided directly at test

time as a gating signal, and where spatially adaptive at-

tentional gating is learned without any depth supervision.

Lower: example ground-truth compared to predictions with

and without the depth gating module. Rectangles over-

layed on the image indicate pooling field sizes which are

adapted based on the local depth estimate. We quantize the

depth map into five discrete scales in our experiments. Us-

ing depth-gated pooling yields more accurate segment label

predictions by avoiding pooling across small multiple dis-

tant objects while simultaneously allowing sufficiently large

pooling fields for nearby objects.

understanding. Although individual local features (e.g., in

a deep neural network) can exhibit some degree of scale-

invariance, it is not obvious this invariance covers the range

scale variation that exists in images.

In this paper, we investigate how cues to perspective ge-

ometry conveyed by image content (estimated from monoc-
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ular cues, stereo disparity, or measured directly via spe-

cialized sensors) might be exploited to improve recognition

and scene understanding. We focus specifically on the task

of semantic segmentation which seeks to produce per-pixel

category labels.

One straightforward approach is to stack the depth map

with RGB image as a four-channel input tensor which can

then be processed using standard architectures. In practice,

this RGB-D input has not proven successful and sometimes

even results in worse performance [15, 32]. We conjecture

including depth as a per-pixel input doesn’t adequately ad-

dress scale-invariance in learning; such models lack an ex-

plicit mechanism to generalize to depths not observed dur-

ing training and hence still require training examples with

object instances at many different scales to learn a multi-

scale appearance model.

Instead, our method takes inspiration from the work of

[23], who proposed using depth estimates to rescale local

image patches to a pre-defined canonical depth prior to anal-

ysis. For patches contained within a fronto-parallel surface,

this can provide true depth-invariance over a range of scales

(limited by sensor resolution for small objects) while effec-

tively augmenting the training data available for the canoni-

cal depth. Rather than rescaling the input image, we pro-

pose a depth gating module that adaptively selects pool-

ing field sizes over higher-level feature activation layers in

a convolutional neural network (CNN). Adaptive pooling

works with a more abstract notion of scale than standard

multiscale image pyramids which operate on input pixels.

This gating mechanism allows spatially varying processing

over the visual field which can capture context for semantic

segmentation that is not too large or small, but “just right”,

maintaining details for objects at distance while simultane-

ously using much larger receptive fields for objects near the

camera. This gating architecture is trained with a loss that

encourages selection of target pooling scales derived from

“ground-truth” depth but at test time makes accurate infer-

ences about scene depth using only monocular cues.

Inspired by studies of human visual processing (e.g., [8])

that suggest dynamic allocation of computation depending

on the task and image content (background clutter, occlu-

sion, object scale), we propose embedding gated pooling

inside a recurrent refinement module that takes initial esti-

mates of high-level scene semantics as a top-down signal to

reprocess feed-forward representations and refine the final

scene segmentation (similar to the recurrent module pro-

posed in [4] for human pose). This provides a simple im-

plementation of “Biased Competition Theory” [3] which al-

lows top-down feedback to suppress irrelevant stimuli or in-

correct interpretations, an effect we observe qualitatively in

our recurrent model near object boundaries and in cluttered

regions with many small objects.

We train this recurrent adaptive pooling CNN architec-

ture end-to-end and evaluate its performance on several

scene parsing datasets. The monocular depth estimates pro-

duced by our gating channel yield state-of-the-art perfor-

mance on the NYU-depth-v2 benchmark [35]. We also

find that using this gating signal to modulate pooling inside

the recurrent refinement architecture results in improved se-

mantic segmentation performance over fixed multiresolu-

tion pooling. We also compare to gating models trained

without depth supervision where the gating signal acts as a

generic attentional signal that modulates spatially adaptive

pooling. While this works well, we find that depth super-

vision results in best performance. The resulting system

matches state-of-the-art segmentation performance on four

large-scale datasets using a model which, thanks to recur-

rent computation, is substantially more compact than many

existing approaches.

2. Related work

Starting from the “fully convolutional” architecture of

[31], there has been a flurry of recent work exploring CNN

architectures for semantic segmentation and other pixel-

labeling tasks [20]. The seminal DeepLab [6] model modi-

fies the very deep residual neural network [16] for semantic

segmentation using dilated or atrous convolution operators

to maintain spatial resolution in high-level feature maps.

To leverage features conveying finer granularity lower in

the CNN hierarchy, it has proven useful to combine fea-

tures across multiple layers (see e.g., FCN [31], LRR [13]

and RefineNet [27]). To simultaneously cover larger fields-

of-view and incorporate more contextual information, [38]

concatenates features pooled over different scales.

Starting from the work of [17, 34], estimating depth from

(monocular) scene semantics has been examined in a vari-

ety of indoor and outdoor settings (see e.g., [25]). Accurate

monocular depth estimation using a multiscale deep CNN

architecture was demonstrated by [11] using a geometri-

cally inspired regression loss. Follow-on work [10] showed

that depth, surface orientation and semantic labeling predic-

tions can benefit each other in a multi-task setting using a

shared network model for feature extraction.

The role of perspective geometry and geometric context

in object detection was emphasized by a line of work start-

ing with [18] and others (e.g., [2]) and has played an in-

creasingly important role, particularly for scene understand-

ing in urban environments [12]. We were inspired by [23],

who showed reliable depth recovery from image patches

(i.e., without vanishing point estimation) and that the re-

sulting depths could be used to estimate object scale and

improve segmentation in turn. Chen et al. [7] used an atten-

tion gating mechanism to combine predictions from CNN

branches run on rescaled images (multi-resolution), a nat-

ural but computationally expensive approach that we com-

pare experimentally to our proposal (multi-pool).
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Figure 2: The input to our recurrent module is the concate-

nation (denoted by ⊘) of the feature map from an interme-

diate layer of the feed-forward pathway with the prior recur-

rent prediction. Our recurrent module utilizes depth-aware

gating which carries out both depth regression and quan-

tized prediction. Updated depth predictions at each iteration

gate pooling fields used for semantic segmentation. This re-

current update of depth estimation increases the flexibility

and representation power of our system yielding improved

segmentation. We illustrate the prediction prior to, and after

two recurrent iterations for a particular image and visualize

the difference in predictions between consecutive iterations

which yield small but notable gains as measured by average

intersection-over-union (IoU) benchmark performance.

Finally, there have been a number of proposals to carry

out high-level recognition tasks such as human pose estima-

tion [26, 4] and semantic segmentation [33] using recurrent

or iterative processing. As pixel-wise labelling tasks are

essentially a structured prediction problem, there has also

been a related line of work that aims to embed unrolled

conditional random fields into differentiable CNN archi-

tectures to allow for more tractable learning and inference

(e.g., [20, 39]).

3. Depth-aware Gating Module

Our depth-aware gating module utilizes estimated depth

at each image location as a proxy for object scale in order to

select the appropriate spatial extent over which to pool fea-

tures. Informally speaking, for a given object category (e.g.,

cars) the size of an object in the image is inversely propor-

tional to the distance from the camera. Thus, if a region of

an image has a larger depth values, the windows over which

features are pooled (pooling field size) should be smaller in

order to avoid pooling responses over many small objects

and capture details needed to precisely segment small ob-

jects. For regions with small depth values, the same object

will appear much larger and the pooling field size should be

scaled up in a covariant manner to capture sufficient contex-

tual appearance information in the vicinity of the object.

This depth-aware gating can readily utilize depth maps

derived from stereo disparity or specialized time-of-flight

sensors. Such depth maps typically contain missing data

and measurement noise due to oblique view angle, reflec-

tive surface and occlusion boundary. While these estimates

can be improved using more extensive off-line processing

(e.g., [36]), in our experiments we use these “raw” mea-

surements. When depth measurements are not available, the

depth-aware gating can instead exploit depth estimated di-

rectly from monocular cues. The upper panel of Figure 1 il-

lustrates the architecture of our depth-aware gating module

using monocular depth predictions derived from the same

back-end feature extractor.

Regardless of the source of the depth map, we quan-

tize the depth into a discrete set of predicted scales (5 in

our experiments). The scale prediction at each image loca-

tion is then used to multiplicatively gate between a set of

feature maps computed with corresponding pooling regions

and summed to produce the final feature representation for

classification [21, 19]. In the depth gating module, we use

atrous convolution with different dilation rates to produce

the desired pooling field size on each branch.

When training a monocular depth prediction branch, we

quantize the ground-truth depth and treat it as a five-way

classification using a softmax loss. For the purpose of quan-

titatively evaluating the accuracy of such monocular depth

prediction, we also train a depth regressor over the input

feature of the module using a simple Euclidean loss for the

depth map D in log-space:

ℓdepthReg(D,D
∗) =

1

|M |

X

(i,j)∈M

‖ log(Dij)− log(Dij)
∗‖22,

where D
∗ is the ground-truth depth. Since our “ground-

truth” depth may have missing entries, we only compute

the loss over pixels inside a mask M which indicates loca-

tions with valid ground-truth depth. For benchmarking we

convert the log-depth predictions back to depths using an

element-wise exponential. Although more specific depth-

oriented losses have been explored [11, 10], we show in

experiment that this simplistic Euclidean loss on log-depth

achieves state-of-the-art monocular depth estimation when

combined with our architecture for semantic segmentation.

In our experiments, we evaluate models based on RGB-

D images (where the depth channel is used for gating)

and on RGB images using the monocular depth estimation

branch. We also evaluated a variant which is trained monoc-

ularly (without the depth loss) where the gating can be

viewed as a generic attentional mechanism. In general, we

find that using predicted (monocular) depth to gate segmen-

tation feature maps yields better performance than models

using the ground-truth depth input. This is a surprising, but
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