
Learning Intelligent Dialogs for Bounding Box Annotation

Ksenia Konyushkova

CVLab, EPFL

ksenia.konyushkova@epfl.ch
∗

Jasper Uijlings

Google AI Perception

jrru@google.com

Christoph H. Lampert

IST Austria

chl@ist.ac.at

Vittorio Ferrari

Google AI Perception

vittoferrari@google.com

Abstract

We introduce Intelligent Annotation Dialogs for bounding

box annotation. We train an agent to automatically choose

a sequence of actions for a human annotator to produce

a bounding box in a minimal amount of time. Specifically,

we consider two actions: box verification [34], where the

annotator verifies a box generated by an object detector, and

manual box drawing. We explore two kinds of agents, one

based on predicting the probability that a box will be posi-

tively verified, and the other based on reinforcement learning.

We demonstrate that (1) our agents are able to learn efficient

annotation strategies in several scenarios, automatically

adapting to the image difficulty, the desired quality of the

boxes, and the detector strength; (2) in all scenarios the re-

sulting annotation dialogs speed up annotation compared to

manual box drawing alone and box verification alone, while

also outperforming any fixed combination of verification and

drawing in most scenarios; (3) in a realistic scenario where

the detector is iteratively re-trained, our agents evolve a

series of strategies that reflect the shifting trade-off between

verification and drawing as the detector grows stronger.

1. Introduction

Many recent advances in computer vision rely on super-

vised machine learning techniques that are known to crave

for huge amounts of training data. Object detection is no

exception as state-of-the-art methods require a large number

of images with annotated bounding boxes around objects.

However, drawing high quality bounding boxes is expensive:

The official protocol used to annotate ILSVRC [38] takes

about 30 seconds per box [43]. To reduce this cost, recent

works explore cheaper forms of human supervision such as

image-level labels [6, 21, 53], box verification series [34],

point annotations [27, 33], and eye-tracking [31].

Among these forms, the recent work on box verification

series [34] stands out as it demonstrated to deliver high

quality detectors at low cost. The scheme starts from a given

∗This work was done during an internship at Google AI Perception

Figure 1: Left: an image with a target class cat. The weak

detector identified two box proposals with high scores. The

best strategy in this case is to do a series of box verifications.

Right: an image with a target class potted plant. The weak

detector identified many box proposals with low scores. The

best strategy is to draw a box.

weak detector, typically trained on image labels only, and

uses it to localize objects in the images. For each image, the

annotator is asked to verify whether the box produced by

the algorithm covers an object tightly enough. If not, the

process iterates: the algorithm proposes another box and the

annotator verifies it.

The success of box verification series depends on a variety

of factors. For example, large objects on homogeneous back-

grounds are likely to be found early in the series, and hence

require little annotation time (Fig. 1, left). However, small

objects in crowded scenes might require many iterations, or

could even not be found at all (Fig. 1, right). Furthermore,

the stronger the detector is, the more likely it is to correctly

localize new objects, and to do so early in the series. Finally,

the higher the desired box quality (i.e. how tight they should

be), the lower the rate of positively verified boxes. This

causes longer series, costing more annotation time. There-

fore, in some situations manual box drawing [32, 43] is

preferable. While more expensive than one verification, it

always produces a box annotation. When an annotation

episode consists of many verifications, its duration can be

longer than the time to draw a box, depending on the relative

costs of the two actions. Thus, different forms of annotation

are more efficient in different situations.

In this paper we introduce Intelligent Annotation Dialogs

(IAD) for bounding box annotation. Given an image, detec-

tor, and target class to be annotated, the aim of IAD is to

automatically choose the sequence of annotation actions that

19175



results in producing a bounding box in the least amount of

time. We train an IAD agent to select the type of action based

on previous experience in annotating images. Our method au-

tomatically adapts to the difficulty of the image, the strength

of the detector, the desired quality of the boxes, and other fac-

tors. This is achieved by modeling the episode duration as a

function of problem properties. We consider two alternative

ways to do this, either a) by predicting whether a proposed

box will be positively or negatively verified (Sec. 4.1), or

b) by directly predicting the episode duration (Sec. 4.2).

We evaluate IAD by annotating bounding boxes in the

PASCAL VOC 2007 dataset [15] in several scenarios:

a) with various desired quality levels; b) with detectors of

varying strength; and c) with two ways to draw bounding

boxes, including a recent method which only takes 7s per

box [32]. In all scenarios our experiments demonstrate that

thanks to its adaptive behavior IAD speeds up box annotation

compared to manual box drawing alone, or box verification

series alone. Moreover, it outperforms any fixed combina-

tion of them in most scenarios. Finally, we demonstrate

that IAD learns useful strategies in a complex realistic sce-

nario where the detector is continuously improved with the

growing amount of the training data. Our IAD code is made

publicly available1.

2. Related work

Drawing bounding boxes Fully supervised object detec-

tors are trained on data with manually annotated bounding

boxes, which is costly. The reference box drawing inter-

face [43] used to annotate ILSVRC [38] requires 25.5s for

drawing one box. Recently, a more efficient interface re-

duces costs to 7.0s without compromising on quality [32].

We consider both interfaces in this paper.

Training object detectors from image-level labels

Weakly Supervised Object Localization (WSOL) [6, 13, 14,

16, 21, 53] methods train object detectors from images la-

beled only as containing certain object classes, but without

bounding boxes. This avoids the cost of box annotation,

but leads to considerably weaker detectors than their fully

supervised counterparts [6, 16, 21, 53]. To produce better

object detectors, extra human annotation is required.

Other forms of weak supervision Several works aim to

reduce annotation cost of manual drawing by using ap-

proximate forms of annotation. Eye-tracking is used for

training object detectors [31] and for action recognition in

videos [26]. Point-clicks are used to derive bounding box

annotations in images [33] and video [27], and to train se-

mantic segmentation models [2, 3, 50]. Other works train

semantic segmentation models using scribbles [25, 51].

In this paper we build on box verification series [34],

where boxes are iteratively proposed by an object detector

1
https://github.com/google/intelligent_annotation_dialogs

and verified by a human annotator. Experiments show that

humans can perform box verification reliably (Fig. 6 of [34]).

Besides, the Open Images dataset [23] contains 2.5 Million

boxes annotated in this manner, demonstrating it can be done

at scale.

Interactive annotation Several works use human-

machine collaboration to efficiently produce anno-

tations. These works address interactive segmenta-

tion [8, 37, 12, 18, 17, 30], attribute-based fine-grained

image classification [10, 35, 7, 49], and interactive video

annotation [48]. Branson et al. [9] transform different

types of location information (e.g. parts, bounding boxes,

segmentations) into each other with corrections from an

annotator. These works follow a predefined annotation pro-

tocol, whereas we explore algorithms that can automatically

select questions, adapting to the input image, the desired

quality of the annotation, and other factors.

The closest work [39] to ours proposes human-machine

collaboration for bounding box annotation. Given a reper-

toire of questions, the problem is modeled with a Markov

decision process. Our work differs in several respects.

(1) While Russakovsky et al. [39] optimizes the expected

precision of annotations over the whole dataset, our method

delivers quality guarantees on each individual box. (2) Our

approach of Sec 4.1 is mediated by predicting the probability

of a box to be accepted by an annotator. Based on this, we

provide a provably optimal strategy which minimizes the

expected annotation time. (3) Our reinforcement learning

approach of Sec. 4.2 learns a direct mapping from from

measurable properties to annotation time, while avoiding

any explicit modelling of the task. (4) Finally, we address a

scenario where the detector is iteratively updated (Sec. 5.3),

as opposed to keeping it fixed.

Active learning (AL) In active learning the goal is to train

a model while asking human annotations for unlabeled ex-

amples which are expected to improve the model accuracy

the most. It is used in computer vision to train whole-image

classifiers [20, 22], object class detectors [47, 52], and se-

mantic segmentation [41, 45, 46]. While the goal of AL is

to select a subset of the data to be annotated, this paper aims

at minimizing the time to annotate each of the examples.

Reinforcement learning Reinforcement learning (RL)

traditionally aims at learning policies that allow autonomous

agents to act in interactive environments. Reinforcement

learning has a long tradition e.g. in robotics [1, 28, 24]. In

computer vision, it has mainly been used for active vision

tasks [11, 4, 19], such as learning a policy for the spatial

exploration of large images or panoramic images. Our use

of RL differs from this, as we learn a policy for image anno-

tation, not for image analysis. The learned policy enables

the system to dynamically choose the annotation mechanism

by which to interact with the user.

9176

https://github.com/google/intelligent_annotation_dialogs


3. Problem definition and motivation

3.1. Why use intelligent annotation dialogs?

In this paper we tackle the problem of producing bound-

ing box annotations for a set of images with image-level

labels indicating which object classes they contain. Consider

annotating a cat in Fig. 1 (left). The figure shows two bound-

ing boxes found by the detector. We notice that: a) the image

is relatively simple with only one distinct object; b) there are

only few high-scored cat detections; c) they are big; d) we

might know a-priori that the detector is strong for the class

cat and thus detections for it are often correct. As box verifi-

cation is much faster than drawing, the most efficient way

to annotate a box in this situation is with a box verification

series.

Now consider instead annotating a potted plant in Fig. 1

(right). We notice that: a) the image is cluttered with many

details; b) there are many low-scored potted plant detections;

c) they are small; d) we might know a-priori that the detec-

tor is weak for this class and thus the detections for it are

often wrong. In this situation, it is unlikely that the correct

bounding box comes early in the series. Thus, manual box

drawing is likely to be the fastest annotation strategy.

Even during annotation of one image-class pair, the best

strategy may combine both annotation types: Given only

one high-scored box for cat, the best expected strategy is to

verify one box, and, if rejected, ask manual box drawing.

These examples illustrate that every image, class and

detector output requires a separate treatment for designing

the best annotation strategy. Thus, there is need for a method

that can take advantage of this information to select the

most time efficient sequence of annotation actions. In this

paper, we propose two methods to achieve this with the help

of Intelligent Annotation Dialog (IAD) agents. In our first

approach (Sec. 4.1) we explicitly model the expected episode

duration by taking into consideration the probability for each

proposed box to be accepted. Our second approach (Sec. 4.2)

casts the problem in terms of reinforcement learning and

leans a strategy from trial-and-error interactions without an

intermediate modeling step.

3.2. Problem definition

We are given an image with image-level labels that in-

dicate which object classes it contains. We treat each class

independently, and we want to produce one bounding box

given a single image-class pair. In particular, given that the

image contains a set B⋆ of object instances of the target class,

we want to produce a bounding box b̂ of sufficient quality

around one such object b⋆. We measure the quality in terms

of Intersection-over-Union (IoU) and we want to find b̂ such

that there exists b⋆ ∈ B⋆ : IoU(b̂, b⋆) ≥ α. More specif-

ically, we want to automatically construct a sequence of

actions which produces b̂ while minimizing annotation time,

image

class:  

boat

Detector

box proposals

IAD
agent

Correct box? Correct box?

END

Draw a box

yes

yes

no no

Figure 2: Intelligent Annotation Dialog agent in action. For

a given image and class boat the detector identifies a set of

box proposals. IAD agent produces a planned dialog V 2D
that means that the first two box proposals are verified and if

none of them is accepted, manual box drawing is done. In

reality, the annotation terminates after two box verifications.

choosing from two annotation actions: manual bounding box

drawing D [32, 43] that takes tD seconds and bounding box

verification V [34] that takes tV seconds.

We design the annotation dialog to end with a success-

fully annotated bounding box. Logically, the only possible

planned sequence of actions which does this has the form

V mD. No sequence of verification V is guaranteed to pro-

duce a bounding box, so if m verifications fail to produce

one, manual drawing is required. Conversely, manual draw-

ing always produces a box and the dialog ends. Fig 2 il-

lustrates how IAD agent produces a planned sequence of

V 2D for the task of detecting a boat in the image with sev-

eral detections. In reality, only a sequence of actions V 2 is

executed because a boat is found at the second verification.

Verification questions are generated using an object de-

tector. Papadopoulos et al. [34] present the highest scored

detection to the annotator. Upon rejection, they remove

boxes which highly overlap with the rejected one (this pro-

cedure is called search space reduction), after which they

present the next box with the highest score. In this paper we

assume the detector stays constant during a single annota-

tion dialog, which means we can do search space reduction

by non-maximum suppression (NMS). Let us denote by B0

the sequence of detections followed by NMS. Because of

NMS, we can assume boxes in B0 to be independent for

verification. Let S be the set of all possible sequences of dis-

tinct elements in B0. Now our goal is to plan a sequence of

actions π = V mD on a sequence Sm = (s1, . . . , sm) ∈ S .

We can now formally define the optimization criterion

for the IAD agent. Let t(V mD,Sm) be the duration of the

episode when strategy V mD is applied to a sequence Sm

9177



and let us denote its expected duration as T (V mD,Sm).
The task of IAD is to choose 1) the maximum number of

verifications m = k that will define a sequence of actions

V kD, and 2) a sequence of boxes Ak = (a1, . . . , ak) ∈
S such that the duration of the episode is minimized in

expectation:

T (V kD,Ak) ≤ T (V mD,Sm),

m ∈ {0, . . . , n}, ∀Sm ∈ S.
(1)

4. Methods

We now present our two methods to construct Interactive

Annotation Dialogs (IAD).

4.1. IAD by predicting probability of acceptance

One way to minimize the expected duration of the episode

is by estimating the probability that the proposed boxes will

be accepted by the annotator. We can train a classifier g that

will predict if the box bi ∈ B0 is going to be accepted or not

as a function of various parameters of the state of the episode.

By looking at the probability of acceptance p(bi) for every

box, we can compute the expected duration of the episode

T (V mD,Sm) for any V mD and Sm. Given this acceptance

probability estimation, we show that there exists a simple

decision rule that chooses m and Sm so as to minimize the

expected episode duration.

Optimal strategy Suppose for now that we know the prob-

abilities p(bi) for every box bi to be accepted at a quality

level α:

p(bi) = P[ max
b⋆∈B⋆

{IoU(bi, b
⋆)} ≥ α]. (2)

Later in this section we will explain how to estimate p(bi) in

practice.

Imagine for a moment that we have only one box proposal

b1. In this case the only two possible sequences of actions

are D and V 1D. Let us compute the expected time until the

end of the episode for both of them. The episode duration

for strategy D is just the time required for manual drawing:

T (D) = tD.
For the second strategy V 1D, the end of the episode is

reached with probability p(b1) when a box proposal is ac-

cepted and with probability q(b1) = 1− p(b1) when manual

drawing is done. Hence, the expected duration of the episode

is

T (V 1D, (b1)) = tV + q(b1)tD. (3)

As we want to choose the strategy with the lowest expected

duration of the episode, D is preferred to V 1D if T (D) ≤
T (V 1D, (b1)), i.e.

tD ≤ tV + q(b1)tD ⇐⇒ p(b1) ≤ tV /tD. (4)

Now let us go back to a situation with a sequence of box

proposals B0. We sort B0 in the order of decreasing proba-

bility of acceptance p(bi), resulting in a sequence of boxes

S̄n. Consider the following strategy (Alg. IAD-Prob): Verify

boxes from S̄n for which p(bi) > tV /tD; if none of them is

accepted, then do manual box drawing. We claim that the

strategy produced by IAD-Prob is optimal, i.e. it minimizes

the expected duration of the episode.

Algorithm IAD-Prob

1: Input: B0 = (b1, . . . , bn); p(b1), . . . , p(bn); tV ; tD
2: S̄n = (s̄1, s̄2, . . . , s̄n)← sort(B0) by p(bi)
3: π = ()
4: Ak = ()
5: while p(s̄i) > tV /tD do

6: Ak ← Ak ⌢ s̄i
7: π ← V kD
8: return sequence of actions π, sequence of boxes Ak

Theorem 1. If probabilities of acceptance {p(bi)} are

known, the strategy of applying a sequence of actions V kD
defined by IAD-Prob to a sequence of boxes Ak minimizes

the annotation time, i.e. for all m ∈ {0, . . . , n} and for all

box sequences Sm:

T (V kD,Ak) ≤ T (V mD,Sm) (5)

Sketch of the proof. The proof consists of two parts. First,

we show that for any strategy V mD, the best box sequence is

obtained by sorting the available boxes by their probability of

acceptance and using the first m of them. Second, we show

that the number of verification steps found by IAD-Prob, k,

is indeed the optimal one.

We start by rewriting the expected episode length in
closed form. For a strategy V mD and any sequence of
boxes, Sm = (s1, . . . , sm), we obtain

T (V m
D,Sm) = tV + q(s1)tV + q(s1)q(s2)tV + . . .

+ q(s1)q(s2) · · · q(sm−1)tV + q(s1)q(s2) · · · q(sm)tD

= tV

m−1
∑

l=0

l
∏

j=1

q(sj) + tD

m
∏

j=1

q(sj). (6)

Our first observation is that (6) is monotonically decreasing
as a function of q(s1), . . . , q(sm). Consequently, the small-
est value is obtained by selecting the set of m boxes that
have the smallest rejection probabilities. To prove that their
optimal order is sorted in decreasing order, assume that Sm

is not sorted, i.e. there exists an index l ∈ {1, . . . ,m−1} for
which q(sl) > q(sl+1). We compare the expected episode

length of Sm to that of a sequence S̃m in which sl and sl+1

are at switched positions. Using (6) and noticing that many

9178



of the terms cancel out, we obtain

T (V m
D,Sm)− T (V m

D, S̃m)

= tV
(

q(sl)−q(sl+1)
)

(

l−1
∏

j=1

qj

)

> 0. (7)

This shows that S̃m has strictly smaller expected episode

length than Sm, so Sm cannot have been the optimal order.

Consequently, for any strategy V mD, the optimal se-

quence is to sort the boxes by decreasing probability of

rejection, i.e. increasing acceptance probability. We denote

it by S̄m = (s̄1, . . . , s̄m).
Next, we show that the number, k, of verification actions

found by the IAD-Prob algorithm is optimal, i.e. V kD is
better or equal to V mD for any m 6= k. As we already know
that the optimal box sequence for any strategy V mD is S̄m,
it is enough to show that

T (V m−1
D, S̄m−1) ≥ T (V m

D, S̄m), (8)

for all m ∈ {1, . . . , k}, and

T (V m−1
D, S̄m−1) ≤ T (V m

D, S̄m). (9)

for all m ∈ {k + 1, . . . , n}. To prove these inequalities, we
again make use of expression (6). For any m ∈ {1, . . . , n−
1} we obtain

T (V m
D, S̄m)− T (V m−1

D, S̄m−1)

= tV

m−1
∏

j=1

q(s̄j) + tD

m
∏

j=1

q(s̄j)− tD

m−1
∏

j=1

q(s̄j)

=
(

m−1
∏

j=1

q(s̄j)
)

(

tV + q(s̄m)tD − tD
)

. (10)

For m ∈ {1, . . . , k}, we know that p(s̄m) > tV /tD by

construction of the strategy. As in (4), this is equivalent

to tV + q(s̄m)tD − tD ≥ 0. Consequently, (10) is non-

negative in this case, and inequality (8) is confirmed. For

m ∈ {k + 1, . . . , n}, we know p(s̄m) ≤ tV /tD, again

by construction. Consequently, tV + q(s̄m)tD − tD ≤ 0,

which shows that (10) is nonpositive in this case, confirming

(9).

Predicting acceptance probability To follow the optimal

strategy IAD-Prob, we need the probabilities of acceptance

{p(bi)} which we estimate using a classifier g. To obtain

these probabilities we start with a (small) set Z0 of annotated

bounding boxes on a set of images I0. We apply a detector

f0 on I0 to obtain a set of detections B0. Afterwards, we

generate a feature vector φi for every box bi ∈ B0. The exact

features are specified in Sec. 5.1 and include measurements

such as detector scores, entropy, and box-size.

Next, we simulate verification responses for box propos-

als B0 of every image-class pair with known ground truth.

A box bi gets label yi = 1 if its IoU with any of the ground

truth boxes is great or equal to α, otherwise it gets label

0. This procedure results in feature-label pairs (φi, yi) that

serve as a dataset for training a probabilistic classifier g.

Intuitively, the classifier learns that, for example, boxes

with high detector’s score are more likely to be accepted

than boxes with low detector’s score, bounding boxes for

class cat are more likely to be accepted than bounding boxes

for class potted plant, and smaller bounding boxes are less

likely to be accepted than big ones.

4.2. IAD by reinforcement learning

The problem of finding a sequence of actions to produce

a box annotation can be naturally formulated as a reinforce-

ment learning problem. This approach allows us to learn a

strategy directly from trial-and-error experience and to avoid

the explicit modeling of Sec. 4.1. To construct an optimal

strategy it does not need any prior knowledge about the en-

vironment. Thus, it is easily extensible to other types of

actions or to stochastic environments with variable response

time by an annotator.

Suppose that bounding boxes in an episode are verified

in order of decreasing detector’s score given by B0. In an

episode of annotating one image for a given target class, the

IAD agent interacts with the environment in the form of the

annotator. A state sτ is characterised by the properties of a

current image, detector and a current box proposal (as φi in

Sec. 4.1). In each state the agent has a choice of two possible

actions a: 1) ask for verification of the current box (a = V )

and 2) ask for a manual drawing (a = D) The reward at

every step τ is the negative time required for the chosen

action: rτ = −tV and rτ = −tD. If a box is positively

verified or manually drawn, the episode terminates with a

reward 0. Otherwise the agent finds itself in the next state

corresponding to the next highest-scored box proposal in B0.

The total return of the episode is the sum of rewards over all

steps. Denoting the number of steps after which an episodes

terminates by K, the return is R =
∑K

τ=1
rτ . This is equal

to −(K − 1)tV − tD if the episode finished with manual

drawing, or −KtV if it finished with box acceptance. By

trying to maximise the return R, the agent learns a policy π
that minimises the total annotation time. This results in a

strategy that consists of a sequence of actions π applied to a

sequence of boxes B0.

Training the agent The agent can learn the optimal policy

π from trial and error interactions with the environment. As

in Sec. 4.1, we train on a small subset of annotated bounding

boxes Z0. We learn a policy with Q-learning which learns to

approximate Q-function Qπ(a, sτ ) that indicates what return

the agent should expect at state sτ after taking an action a
and after that following a strategy π.

9179



5. Experiments

5.1. Experimental setup

We evaluate the performance of the IAD approach on the

task of annotating bounding boxes on the PASCAL VOC

2007 trainval dataset. In all experiments our detector is

Faster-RCNN [36] using Inception-ResNet [44] as base net-

work.

Annotator actions and timings We simulate the annota-

tor based on the ground truth bounding boxes. When asked

for verification, a simulated human annotator deterministi-

cally accepts a box proposal if IoU≥ α and it takes tV = 1.8
seconds [34]. When the simulated annotator is asked to draw

a box, we use the ground truth box. We consider two inter-

faces for drawing: the classical manual drawing M [43] and

the new faster Extreme Clicking X [32]. We consider that

it takes a simulated user tM = 25.5 or tX = 7 seconds to

return a bounding box that corresponds to any of the objects

b⋆ [43, 32].

Box proposal order The order of box proposals for verifi-

cations is set to be B0, i.e. in decreasing order of detector’s

score (Sec. 3.2). Then, the optimality condition of strategy

IAD-Prob assumes that a box with higher score is more likely

to be accepted than a box with lower score. Empirically, we

observe only rare cases when this assumption is violated,

but even then, changing the order does not improve results.

Thus, we keep the original order B0 for computational effi-

ciency and consistency with IAD-RL. The images come in

the same fixed random order for all methods.

Box features When predicting the acceptance probability

(Sec. 4.1) and during reinforcement learning (Sec. 4.2), we

use the following features φi characterizing box bi, image,

detector, and target class: a) prediction score of the detector

on the box: d(bi); b) relative size of the box bi in the image;

c) average prediction score of all box proposals for the tar-

get class; d) difference between c) and d(bi); e) difference

between the maximum score for the target class among all

box proposals and d(bi); f) one-hot encoding of class.

IAD-Prob To predict box acceptance probabilities, we use

a neural network classifier with 2 to 5 layers containing 5
to 50 neurons in each layer for predicting the acceptance of

a box and these parameters are chosen in cross-validation

(Sec. 4.1). We experimented with other types of classifiers

including logistic regression and random forest and did not

find any significant difference in their performance.

IAD-RL We learn a policy for the reinforcement learning

agent with a method similar to [29] (Sec. 4.2). The function

approximation of Q-values is a fully-connected neural net-

work with 2 layers and 30 neurons at every layer. We learn

it from interactions with simulated environment using expe-

rience replay. We use exploration rate ǫ = 0.2, mini-batches

of size 64 and between 500 and 1000 training iterations. A

subset of training samples is reserved for validation: we use

it for choosing parameter of neural network and for early

stopping.

5.2. IAD with a fixed detector

Scenarios We evaluate our methods in several scenarios,

by varying the following properties of the problem: a) the

desired quality of boxes, b) the strength of the detector,

and c) which interface is used to draw a box. Intuitively,

different properties tend to prioritize different actions V or

D. The higher the desired quality is, the more frequently

manual box drawing is needed. When the detector is strong,

box verification is successful more often and is preferred to

drawing due to its small cost. Finally, using the fast Extreme

Clicking interface, manual drawing is cheaper and becomes

more attractive. Specifically, we consider the following three

configurations, each for both quality levels:

1. Weak detector, slow drawing, varying quality

Classical, slow interface to draw boxes [43] with a

weak detector. To train the detector (Sec. 5.1), we

first produce bounding box estimates using standard

Multiple Instance Learning (MIL, e.g. [5, 13, 42]). The

first two columns of Tab. 1 report the average time per

one annotation episode.

2. Weak detector, fast drawing, varying quality

The fast Extreme Clicking [32] for drawing boxes. We

report the results in columns 3 and 4 of Tab. 1.

3. Strong detector, fast drawing, varying quality

In many situations we have access to a reasonably

strong detector before starting annotation of a new

dataset. To model this we train f0 on the PASCAL

2012 dataset train set which contains 16k boxes. The

results are presented in the last two columns of Tab. 1.

Dataset We use PASCAL 2007 trainval [15], where we

assume that image-level annotations are available for all

images, whereas bounding boxes are given only in a small

subset of images Z0. The task is to annotate the rest of

the images Z ′ with bounding boxes. Z and Z ′ are set with

10-fold validation and the reported results are averages over

them.

Standard strategies As baselines, we consider two stan-

dard annotation strategies. The first is to always do manual

drawing (D). The second is to run box verification series,

followed by drawing if all available boxes have been rejected

(V ∗D). This strategy is guaranteed to terminate successfully

while being the closest to [34].

Fixed strategies We introduce a family of fixed strate-

gies that combine the two actions V and D in a predefined

manner, without adapting to a particular image, class and

detector: V 1D, V 2D, and V 3D.

9180



Drawing technique Slow drawing Fast drawing

Detector Weak detector Weak detector Strong detector

Quality level α = 0.7 α = 0.5 α = 0.7 α = 0.5 α = 0.7 α = 0.5

D (standard) 25.50 ± 0.00 25.50 ± 0.00 7.00 ± 0.00 7.00 ± 0.00 7.00 ± 0.00 7.00 ± 0.00
V 1D 23.01 ± 0.07 17.30 ± 0.07 7.62 ± 0.02 6.05 ± 0.02 3.45 ± 0.01 2.50 ± 0.01
V 2D 23.79 ± 0.06 16.67 ± 0.06 8.92 ± 0.02 6.67 ± 0.02 3.48 ± 0.01 2.45 ± 0.01
V 3D 24.67 ± 0.07 16.38 ± 0.07 10.21 ± 0.02 7.32 ± 0.03 3.65 ± 0.02 2.48 ± 0.01
V ⋆D (standard) 42.29 ± 0.07 17.37 ± 0.07 31.82 ± 0.11 11.46 ± 0.04 8.83 ± 0.09 3.18 ± 0.02

IAD-Prob 23.07 ± 0.23 12.64 ± 1.29 6.81 ± 0.02 5.86 ± 0.04 3.42 ± 0.18 2.73 ± 0.08
IAD-RL 23.62 ± 0.38 16.30 ± 0.09 6.83 ± 0.03 5.89 ± 0.05 3.60 ± 0.07 2.66 ± 0.06

lower bound 18.55 ± 0.05 10.23 ± 0.04 5.99 ± 0.01 4.66 ± 0.01 2.80 ± 0.01 2.19 ± 0.01

Table 1: Average episode duration for standard, fixed and IAD strategies in scenarios varying in drawing speed, strength of

detector and quality level. Best fixed strategy results are highlighted in bold. The best result of each scenario is indicated in

yellow (multiple highlights if very close). The two IAD agents do approximately equally well.

Lower bound We also report the lower bound on the du-

ration of the annotation episode. If we knew which box

(Sec 3.2) in the proposal sequence B0 is the first that will be

accepted, we could choose a sequence of actions that leads to

the lowest annotation cost. If accepted box is at the position

k⋆ in sequence B0, then the strategy is the following. If

the cost of k⋆ verifications is lower than the cost of a draw-

ing, then the verification series is done, otherwise, drawing

is done. Note how this lower bound requires knowing the

ground-truth bounding box. So, it is only intended to reveal

the limits of what can be achieved by the type of strategies

that we explore.

Results Tab. 1 shows that the scenario settings indeed in-

fluence the choice between V and D, along three dimen-

sions: a) When annotations of higher quality are required,

the best fixed strategy does fewer verifications, i.e. it re-

sorts to manual drawing ealier in the series than when lower

quality is acceptable (columns 1 vs. 2, 3 vs. 4, 5 vs. 6).

b) When the detector is strong (columns 5 and 6), the best

fixed strategy does more box verifications than with a weak

detector (columns 3 and 4). c) When manual drawing is fast

(columns 3 and 4), the best fixed strategy tends to do fewer

box verifications than when drawing is slow (columns 1 and

2). The gap to the lower bound indicates how hard each of

the scenarios is.

Importantly, both of our IAD strategies outperform any

standard strategy in all scenarios. Moreover, IAD-Prob is

significantly better than the best fixed strategy in three sce-

narios, equal in two, and worse in one. No single fixed strat-

egy works well in all scenarios, and finding the best fixed

strategy requires manual experimentation. In contrast, IAD

offers a principled way to automatically construct an adap-

tive strategy that works well in all problem settings. Indeed,

the consistent competitive performance of IAD demonstrates

that it learns to adapt to the scenario at hand.

5.3. IAD with an iteratively improving detector

In realistic settings, the detector becomes stronger with

a growing amount of annotations. Thus, to annotate bound-

ing boxes with minimal cost, the object detector should be

iteratively re-trained on previously annotated data.

Horizontal re-training One way to introduce detector re-

training is suggested by the box verification series tech-

nique [34]. It starts with a given object detector f0, typi-

cally trained on image-level labels using MIL. In the first

iteration, f0 is applied to all images, and the highest scored

detection b1 in each image is sent for human verification.

After this, the detector is re-trained on all accepted boxes,

giving a new detector f1. In the second iteration, f1 is

applied to all images where a proposed box was rejected,

attempting to localize the objects again as f1 is stronger

than f0 (re-localization phase). Afterwards, these new de-

tections are sent for verification, and finally the detector is

re-trained again. The re-training, re-localization, and ver-

ification phases are iteratively alternated for a predefined

number of iterations. We refer to this method as V -hor in

our experiments. It essentially corresponds to the original

method [34].

Vertical re-training A different way to incorporate detec-

tor re-training is inspired by batch-mode active learning [40].

In this case, a subset of images I1 (batch) is annotated until

completion, by running box verification series in each image

while keeping the initial detector f0 fixed. After this, the

detector is re-trained on all boxes produced so far, giving

f1, and is then applied to the next batch I2 to generate box

proposals. The process iteratively moves from batch to batch

until all images are processed.

IAD with vertical re-training It is straightforward to ap-

ply vertical retraining to any fixed dialog strategy. However,

re-training the detector on more data increases the advantage

of V over D, so a truly adaptive strategy should change as

9181



0 20000 40000

annotation time (sec.)

0.0

0.5

1.0

%
im

ag
es

0 2500 5000 7500

# images

0

10

20

ep
is

o
d
e

d
u
ra

ti
o
n

X

V - hor

IAD-Prob

1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

V

X

VV

V X

other

Figure 3: Left: the proportion of annotated images as a function of annotation time for IAD-Prob and standard strategies.

Middle: average episode duration for various batches of data. Right: the proportion of various annotation sequences in batches

of data at 6 iteration.

the detector gets stronger. We achieve this with the following

procedure. At any given iteration τ , we train dialog strategy

IAD-Prob(Iτ , fτ−1) using boxes collected on Iτ and detec-

tor fτ−1. IAD-Prob(Iτ , fτ−1) is applied with detector fτ to

collect new boxes on the next batch Iτ+1. Note that IAD-

Prob(Iτ , fτ−1) is trained with the help of detector fτ−1, but

it is applied with the box proposals of detector fτ . This pro-

cedure introduces a small discrepancy, but it is not important

when detectors fτ and fτ−1 are sufficiently similar, which is

the case in the experiments below. To initialize the procedure

we set f0 to be a weakly supervised MIL detector and we

annotate I1 by manual box drawing D.

We set the desired quality of bounding boxes to high (i.e.

α = 0.7) and we use Extreme Clicking for manual drawing.

We perform 6 re-training iterations with an increasingly large

batch size: |I1| = 3.125%, |I2| = 3.125%, |I3| = 6.25%,

|I4| = 12.5%, |I5| = 25%, |I6| = 50%. This batching

schedule is motivated by the fact that the gain in detector’s

performance after re-training is more noticeable when the

previous training set is considerably smaller.

Results Fig. 3 (left) shows what proportion of boxes is

collected as a function of total annotation time. We compare

IAD-Prob against the strategy V -hor [34], and the standard

fast drawing strategy X . IAD-Prob is able to annotate the

whole dataset faster than any of the considered strategies.

Fig. 3 (middle) shows the average episode duration in each

batch. By design, the annotation time for strategy X is

constant. For V -hor, after the first re-training iteration (from

a weakly supervised to supervised detector) the average

annotation cost grows because only difficult images are left

to be annotated. On the contrary, annotation time for IAD

decreases with every new batch because dialogs become

stronger and box verifications become more successful.

Quality of boxes and resulting detector The data for

training a detector and strategy in IAD includes both man-

ually drawn boxes and boxes verified at IoU ≥ 0.7. More

precisely, IAD data collection results in 44% drawn boxes

and 56% verified boxes. The quality of the verified boxes

reaches 83% mIoU. The detector trained on the boxes pro-

duced by IAD reaches 98% of the mAP of the detector

trained on ground-truth boxes.

Evolution of adaptive strategies To gain better under-

standing of adaptive behaviour of IAD, we study the com-

position of sequences of actions produced during labelling

of each batch. Fig. 3 (right) shows the proportion of images

that are labelled by X , V , V X , V V and others sequences

of actions. At the beginning of the process (batch 2), the

vast majority of boxes is produced simply by asking for

Extreme Clicking (X). It means that IAD learns that this

is the best thing to do when the detector is weak. As the

process continues, the detector gets stronger and IAD selects

more frequently series composed purely of box verifications

(V ,V V ), and mixed series with both actions (V X). Exam-

ples of the annotation dialogs are presented in the supple-

mentary materials. This experiment demonstrates that IAD

is capable of producing strategies that dynamically adapt

to the change in problem property caused by the gradually

improving detector. One cannot achieve this with any fixed

strategy.

6. Conclusion

In this paper we introduced Intelligent Annotation Di-

alogs for the task of bounding box annotation. IAD auto-

matically chooses a sequence of actions V kD that results

in time-efficient annotations. We presented two methods to

achieve this. The first method models the annotation time by

predicting the acceptance probability for every box proposal.

The second method skips the modelling step and learns an

efficient strategy directly from trial-and-error interactions.

In the extensive experimental evaluation IAD demonstrated

competitive performance against various baselines and the

ability to adapt to multiple problem properties. In future

work we would like to model variable annotation time and

context switches.

9182



References

[1] M. Asada, S. Noda, S. Tawaratsumida, and K. Hosoda. Pur-

posive behavior acquisition for a real robot by vision-based

reinforcement learning. Machine Learning, 23(2):279–303,

1996. 2
[2] A. Bearman, O. Russakovsky, V. Ferrari, and L. Fei-Fei.

What’s the point: Semantic segmentation with point supervi-

sion. In ECCV, 2016. 2
[3] S. Bell, P. Upchurch, N. Snavely, and K. Bala. Material

recognition in the wild with the materials in context database.

In CVPR, 2015. 2
[4] M. Bellver, X. G. i Nieto, F. Marques, and J. Torres. Hierar-

chical object detection with deep reinforcement learning. In

NIPS Workshop on Deep Reinforcement Learning, 2016. 2
[5] H. Bilen, M. Pedersoli, and T. Tuytelaars. Weakly supervised

object detection with posterior regularization. In BMVC, 2014.

6
[6] H. Bilen and A. Vedaldi. Weakly supervised deep detection

networks. In CVPR, 2016. 1, 2
[7] A. Biswas and D. Parikh. Simultaneous active learning of

classifiers & attributes via relative feedback. In CVPR, 2013.

2
[8] Y. Boykov and M. P. Jolly. Interactive graph cuts for optimal

boundary and region segmentation of objects in N-D images.

In ICCV, 2001. 2
[9] S. Branson, K. Hjörleifsson, and P. Perona. Active annotation

translation. In CVPR, 2014. 2
[10] S. Branson, C. Wah, F. Schroff, B. Babenko, P. Welinder,

P. Perona, and S. Belongie. Visual recognition with humans

in the loop. In ECCV, 2010. 2
[11] J. C. Caicedo and S. Lazebnik. Active object localization

with deep reinforcement learning. In ICCV, pages 2488–2496,

2015. 2
[12] L. Castrejon, K. Kundu, R. Urtasun, and S. Fidler. Annotating

object instances with a polygon-rnn. 2017. 2
[13] R. Cinbis, J. Verbeek, and C. Schmid. Multi-fold mil training

for weakly supervised object localization. In CVPR, 2014. 2,

6
[14] T. Deselaers, B. Alexe, and V. Ferrari. Localizing objects

while learning their appearance. In ECCV, 2010. 2
[15] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and

A. Zisserman. The PASCAL Visual Object Classes (VOC)

Challenge. IJCV, 2010. 2, 6
[16] M. Haußmann, F. Hamprecht, and M. Kandemir. Variational

bayesian multiple instance learning with gaussian processes.

In CVPR, 2017. 2
[17] S. Jain and K. Grauman. Click carving: Segmenting objects

in video with point clicks. In Proceedings of the Fourth

AAAI Conference on Human Computation and Crowdsourc-

ing, 2016. 2
[18] S. D. Jain and K. Grauman. Predicting sufficient annotation

strength for interactive foreground segmentation. In ICCV,

2013. 2
[19] D. Jayaraman and K. Grauman. Learning to look around.

arXiv preprint arXiv:1709.00507, 2017. 2
[20] A. J. Joshi, F. Porikli, and N. Papanikolopoulos. Multi-class

active learning for image classification. In CVPR, 2009. 2
[21] V. Kantorov, M. Oquab, M. Cho, and I. Laptev. Contextlocnet:

Context-aware deep network models for weakly supervised

localization. In ECCV, 2016. 1, 2
[22] A. Kovashka, S. Vijayanarasimhan, and K. Grauman. Actively

selecting annotations among objects and attributes. In ICCV,

2011. 2
[23] I. Krasin, T. Duerig, N. Alldrin, V. Ferrari, S. Abu-El-Haija,

A. Kuznetsova, H. Rom, J. Uijlings, S. Popov, A. Veit,

S. Belongie, V. Gomes, A. Gupta, C. Sun, G. Chechik,

D. Cai, Z. Feng, D. Narayanan, and K. Murphy. Openim-

ages: A public dataset for large-scale multi-label and multi-

class image classification. Dataset available from https:

//github.com/openimages/dataset, 2017. 2
[24] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end

training of deep visuomotor policies. JMLR, 17:1–40, 2016.

2
[25] D. Lin, J. Dai, J. Jia, K. He, and J. Sun. ScribbleSup: Scribble-

supervised convolutional networks for semantic segmentation.

In CVPR, 2016. 2
[26] S. Mathe and C. Sminchisescu. Dynamic eye movement

datasets and learnt saliency models for visual action recogni-

tion. In ECCV, 2012. 2
[27] P. Mettes, J. C. van Gemert, and C. G. Snoek. Spot on:

Action localization from pointly-supervised proposals. In

ECCV, 2016. 1, 2
[28] J. Michels, A. Saxena, and A. Ng. High speed obstacle

avoidance using monocular vision and reinforcement learning.

In ICML, 2005. 2
[29] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,

I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing atari

with deep reinforcement learning. In NIPS Deep Learning

Workshop. 2013. 6
[30] N. S. Nagaraja, F. R. Schmidt, and T. Brox. Video segmenta-

tion with just a few strokes. In ICCV, 2015. 2
[31] D. P. Papadopoulos, A. D. F. Clarke, F. Keller, and V. Ferrari.

Training object class detectors from eye tracking data. In

ECCV, 2014. 1, 2
[32] D. P. Papadopoulos, J. R. Uijlings, F. Keller, and V. Ferrari.

Extreme clicking for efficient object annotation. In ICCV,

2017. 1, 2, 3, 6
[33] D. P. Papadopoulos, J. R. Uijlings, F. Keller, and V. Ferrari.

Training object class detectors with click supervision. In

CVPR, 2017. 1, 2
[34] D. P. Papadopoulos, J. R. R. Uijlings, F. Keller, and V. Ferrari.

We don’t need no bounding-boxes: Training object class

detectors using only human verification. In CVPR, 2016. 1,

2, 3, 6, 7, 8
[35] A. Parkash and D. Parikh. Attributes for classifier feedback.

In ECCV, 2012. 2
[36] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN:

Towards real-time object detection with region proposal net-

works. In NIPS, 2015. 6
[37] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: interactive

foreground extraction using iterated graph cuts. SIGGRAPH,

23(3):309–314, 2004. 2
[38] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,

Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. Berg, and

L. Fei-Fei. ImageNet large scale visual recognition challenge.

IJCV, 2015. 1, 2
[39] O. Russakovsky, L.-J. Li, and L. Fei-Fei. Best of both worlds:

human-machine collaboration for object annotation. In CVPR,

2015. 2

9183

https://github.com/openimages/dataset
https://github.com/openimages/dataset


[40] B. Settles. Active learning literature survey. University of

Wisconsin, Madison, 2010. 7
[41] B. Siddiquie and A. Gupta. Beyond active noun tagging: Mod-

eling contextual interactions for multi-class active learning.

In CVPR, 2010. 2
[42] P. Siva and T. Xiang. Weakly supervised object detector

learning with model drift detection. In ICCV, 2011. 6
[43] H. Su, J. Deng, and L. Fei-Fei. Crowdsourcing annotations

for visual object detection. In AAAI Human Computation

Workshop, 2012. 1, 2, 3, 6
[44] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the inception architecture for computer vision. In

CVPR, 2016. 6
[45] S. Vijayanarasimhan and K. Grauman. Multi-level active

prediction of useful image annotations for recognition. In

NIPS, 2008. 2
[46] S. Vijayanarasimhan and K. Grauman. What’s it going to cost

you?: Predicting effort vs. informativeness for multi-label

image annotations. In CVPR, 2009. 2
[47] S. Vijayanarasimhan and K. Grauman. Large-scale live active

learning: Training object detectors with crawled data and

crowds. IJCV, 108(1-2):97–114, 2014. 2
[48] C. Vondrick, D. Patterson, and D. Ramanan. Efficiently scal-

ing up crowdsourced video annotation. IJCV, 2013. 2
[49] C. Wah, G. Van Horn, S. Branson, S. Maji, P. Perona, and

S. Belongie. Similarity comparisons for interactive fine-

grained categorization. In CVPR, 2014. 2
[50] T. Wang, B. Han, and J. Collomosse. Touchcut: Fast image

and video segmentation using single-touch interaction. CVIU,

2014. 2
[51] J. Xu, A. G. Schwing, and R. Urtasun. Learning to segment

under various forms of weak supervision. In CVPR, 2015. 2
[52] A. Yao, J. Gall, C. Leistner, and L. Van Gool. Interactive

object detection. In CVPR, 2012. 2
[53] Y. Zhu, Y. Zhou, Q. Ye, Q. Qiu, and X. Jiao. Soft proposal

networks for weakly supervised object localization. In ICCV,

2017. 1, 2

9184


