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Abstract

We present a method that can evaluate a RANSAC hy-

pothesis in constant time, i.e. independent of the size of

the data. A key observation here is that correct hypotheses

are tightly clustered together in the latent parameter do-

main. In a manner similar to the generalized Hough trans-

form we seek to find this cluster, only that we need as few

as two votes for a successful detection. Rapidly locating

such pairs of similar hypotheses is made possible by adapt-

ing the recent ”Random Grids” range-search technique. We

only perform the usual (costly) hypothesis verification stage

upon the discovery of a close pair of hypotheses. We show

that this event rarely happens for incorrect hypotheses, en-

abling a significant speedup of the RANSAC pipeline.

The suggested approach is applied and tested on three

robust estimation problems: camera localization, 3D rigid

alignment and 2D-homography estimation. We perform rig-

orous testing on both synthetic and real datasets, demon-

strating an improvement in efficiency without a compro-

mise in accuracy. Furthermore, we achieve state-of-the-art

3D alignment results on the challenging “Redwood” loop-

closure challenge.

1. Introduction

Despite the recent success of (deep-) learning based

methods in computer vision, numerous applications still use

“old-fashioned” robust estimation methods for model fit-

ting, such as RANSAC [20]. This is especially true for

problems of a strong geometric nature such as image align-

ment, camera localization and 3D reconstruction. Robust

estimation methods of these types largely follow the “hy-

pothesize and test” paradigm which has strong roots in

statistics, and are highly attractive due to their ability to fit

a model to data that is highly corrupted with outliers. Addi-

tionally, they have been successfully applied to many prob-

lems in computer vision and robotics achieving real time

performance.

As an example, in the field of image (or shape) align-

ment, novel features and descriptors have been introduced

to facilitate matching, including ones that are learned. How-

Figure 1. 3D alignment result of two methods on a pair of frag-

ments from the “Redwood” dataset [12]. Our method (right) pro-

duces a correct alignment, even though the putative matches con-

tain a mere 2% of inliers, which is very challenging. On the left,

we see a failure case of the method from [45], even though it man-

ages to increase inlier rate up to 7%. Runtimes for this example

are 74ms for our method, and 163ms for [45]. Table 4 shows rep-

resentative examples for the other problems we handle - PnP and

2D-Homography estimation.

ever, once these features are matched, for a parametric

model to be fitted, robust estimation methods like RANSAC

are used to cope with corrupted sets of putative matches.

Geometric models that are commonly amenable to such

a robust estimation process include: 2D-homography, cam-

era localization, the essential and fundamental matrices that

describe epipolar constraints between images, rigid 3D mo-

tion and more.

1.1. Background and prior art

Consensus maximization has proven a useful robust es-

timation approach to solving a wide variety of fitting and

alignment problems in computer vision.

Research in this field can be broadly divided into global

and local optimization methods. Global methods [34, 44,

10, 8] use different strategies to explore the entire solu-

tion space enjoy the advantage of having a deterministic

nature. Our method, however, belongs to the family of lo-

cal methods which are typically extremely fast randomized

algorithms, potentially equipped with probabilistic success

guarantees.

While the proposed method is presented in the context

of RANSAC, it is closely related-to and inspired-by other

works in the field, such as Hough voting. We cover these

topics briefly.
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Figure 2. A flow chart of RANSAC compared to the suggested method. We propose an alternative flow (in blue), in which after a

hypothesis is generated it first undergoes a hash procedure, and only verified if a (valid) collision is detected. The stop criterion has to be

modified as well, to ensure a second good hypothesis is drawn with high probability.

RANdom SAmple Consensus (RANSAC) [20] is one of

the de-facto golden standards for solving robust estimation

problems in a practical manner. Under this paradigm, the

space of solutions is explored by repeatedly selecting ran-

dom minimal subsets of a set of given measurements (e.g.

putative matches), for which a model hypothesis is fitted.

These hypotheses are verified by counting the measure-

ments that agree with them up to a predefined tolerance.

This process is repeated until a desired probability to draw

at-least one pure set of inliers is achieved.

The RANSAC paradigm is a very studied topic, and

many methods were suggested to accelerate sampling [39,

13, 21, 22], improve stability [15, 30], or even estimate the

tolerance parameter [11, 36]. Some of these extensions are

covered in a recent comprehensive survey by Raguram et

al. [35]. This survey also suggests USAC – a framework

that combines some RANSAC extensions, yielding excel-

lent results on a variety of problems in terms of accuracy,

efficiency, and stability.

While the previous extensions can be seamlessly applied

along with the suggested method, the following extension

is similar in nature to ours in that it aims to speed up the

verification step, but it does so in a very different manner.

The Sequential Probability Ratio Test (SPRT) [14] exten-

sion was selected in USAC out of several similar methods

[9, 14] SPRT is based on Wald’s sequential test [41]. It

attempts to reject a “bad” model with high probability, af-

ter inspecting only a small fraction of the measurements.

While the test is theoretically solid, it relies on two param-

eters that are assumed to be known a priori, and in practice

need to be adaptively estimated at runtime. It is reported to

have achieved an improvement of 20% in evaluation time

compared to the simpler bail-out test [9].

Generalized Hough transform (GHT) originated from

an algorithm for line detection in images [24], which was

later generalized to handle arbitrary shapes [19, 7]. The key

idea behind this method is that partial observations of the

model are casted as votes into a (quantized) solution space,

in which the object can be detected as a mode (the location

with the most votes). In practice, GHT has not been shown

to scale well to solution spaces of high dimensionality (i.e.

higher than 3), and typically requires numerous votes for a

mode to be accurately detected.

Between RANSAC and GHT. Some works bare resem-

blance to both of the mentioned approaches. Our work can

be seen as one of these: While it fits naturally into the

RANSAC pipeline, it has some similarities to GHT in the

sense that it seeks to find the mode in the parameter domain,

only that it needs as few as two votes to detect it.

A method by Den-Hollander et al. [16] also lays some-

where between RANSAC and GHT: To increase the prob-

ability of obtaining a pure set of inlier matches, a sub-

minimal set is drawn. The remaining degrees of free-

dom (DoF) are resolved using a voting scheme in a low-

dimensional setting. As with all Hough-like methods,

an adequate parameterization of the remaining DoF is re-

quired. The authors of [16] provide such a parameterization

for the problem of fundamental matrix estimation.

Our method bares a strong resemblance to the “Random-

ized Hough Transform” (RHT) [42] of Xu et al. in that

a vote is casted into a single cell in the solution domain,

generated from a randomly selected minimal set. However,

unlike [42], we deal with a hypothesis in constant time and

space, rather than logarithmic, thanks to the Random Grid

hashing mechanism that we adapt. In addition, while RHT

deals with robust curve-fitting (of up to 3 dimensions), we

successfully apply our method on a variety of problem do-

mains of higher dimensionality (up to 8 dimensions).

1.2. Contributions

The main novelty of the presented method is its ability to

handle RANSAC hypotheses in constant time, regardless of

the number of measurements (e.g. matches). We show that

it is beneficial to handle hypotheses in the latent space, due

to an efficient parametrization and hashing scheme that we

devise, which can quickly filter candidate hypotheses until

a pair of correct ones are drawn. While this approach comes

at the expense of a small increase in the number of hypothe-

ses to be examined, it allows for a significant speedup of the

RANSAC pipeline.

The new proposed modifications to RANSAC are ac-

companied by a rigorous analysis which results in an up-
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dated stopping criterion and a well understood overall prob-

ability of success. Finally, we validate our method using

challenging data in the problems of 2D-homography es-

timation, 2D-3D based camera localization and rigid-3D

alignment, showing state-of-the-art results.

2. Method

The ‘vanilla’ RANSAC pipeline can be divided into

three main components: hypothesis generation, hypothesis

verification and the adaptive stopping mechanism. The pro-

posed Latent-RANSAC hypothesis handling fits naturally

into the aforementioned pipeline, as can be seen in Figure 2,

highlighted in blue. The additional modules we propose act

as a ‘filter’ that avoids the need to verify the vast major-

ity of generated hypotheses: Instead of verifying each hy-

pothesis by applying it on all of the matches (a costly pro-

cess that takes time linear in the number of matches), we

check in constant time if a previously generated hypothesis

‘collides’ with the current one, i.e. whether they are close

enough (in a sense that will be clarified below). Only the

very few hypotheses that pass this filtering stage progress to

the verification stage for further processing. As a result of

the proposed change, the RANSAC stopping criterion needs

to modified to guarantee a probability of encountering a sec-

ond good hypothesis rather than just one.

Outline We begin by covering the 3 key components of

our method: parametrization of the solution space (Sec-

tion 2.1), Random Grids hashing (Section 2.2) and the mod-

ified stopping criterion (Section 2.3). We conclude this part

of the paper in Section 2.4, with an analysis of our Random

Grids hashing process.

Preliminary definitions In our setup, the goal is to ro-

bustly fit a geometric model (transform) to a set of matches

(correspondences), w.l.o.g. in Euclidean space, where a

match m = (p, q) is an ordered pair of points p ∈ R
d and

q ∈ R
d′

. For a geometric transform f : Rd → R
d′

and

match m = (p, q) the residual error of the match m with

respect to f is the Euclidean distance in R
d′

given by:

err(f,m) = ‖q − f(p)‖. (1)

Given a set of matches M = {mi} and a tolerance t, the in-

lier rate achieved by a transform f is defined as the fraction

of matches mi ∈ M for which err(f,mi) ≤ t. We denote

the maximal inlier rate for a match-set M by ω.

2.1. Parametrization of the solution domain

In the RANSAC pipeline, matches are used both for the

generation of hypothesis candidates, as well as for their

screening. Since our approach performs the majority of

the screening according to some ’similarity’ in the space of

transformations, we seek a parametrization of the transfor-

mation space in which distances between transformations

can be defined explicitly. More formally, we define such a

parametrization by an embedding hypotheses into some λ-

dimensional space R
λ, which we call the latent space1. We

consider the distance between transformations to be given

by the ℓ∞ metric between the embedded (or latent) vectors

(λ-tuples). Our goal is to use an embedding in which the

distance between any pair of hypotheses f1 and f2 is tightly

related to the difference in the way these hypotheses act on

matches in the source domain, i.e. to the difference in mag-

nitudes of their residual errors on the matches. Ideally, for

any set of matches M ,

‖f1 − f2‖∞ ∝ max
m∈M

|err(f1,m)− err(f2,m)|. (2)

2D homography. We describe here the parameterization

we use for the space of 2D homographies, which are given

by projective matrices in R
3×3. Following previous works

(e.g. [31, 17]), we use the 4pt parameterization [6] that rep-

resents a 2D-homography H ∈ R
3×3 by an 8-tuple vH ,

defined by the coordinates in the target image that are the

result of applying H on the four corners of the source im-

age, as illustrated in Figure 3.

source image target image

h

w

H

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

(0, 0)

(h, 0) (h,w)

(0, w)

Figure 3. Illustration of the 4pt homography parametrization

[6]. A homography H is represented in the latent space by map-

ping the location of the four corners of the source image onto the

target image, resulting in the 8-tuple vH = (x1, y1, . . . , x4, y4).

As was noted in [31], this parametrization has the key

property that the difference between match errors of two

well-behaved homographies is bounded by the ℓ∞ distance

between their 4pt representations.

The special Euclidean group SE(3), used to describe

rigid motion in R
3, will be used here to solve the prob-

lems of Perspective-n-Point (PnP) estimation and Rigid 3D

alignment. We follow a parametrization that was suggested

and used in a line of works of Li et al. [43, 8]. The group

SE(3) can be described as the product between two sub-

groups SE(3) = SO(3)× R
3, namely 3D translations and

the special orthogonal group (3D rotations). Each of these

1the latent space dimension λ typically being the number of degrees of

freedom of the transformation space.
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3-dimensional sub-groups is parameterized as a 3-tuple, re-

sulting in a 6-tuple representation (r, t) defined as follows:

The axis-angle vector (3-tuple) r represents the 3D rotation

matrix given by Rr = exp([r]x), where exp(·) is the ma-

trix exponential and [·]x denotes the skew-symmetric matrix

representation. Such vectors r reside in the radius-π ball

that is contained in the 3D cube [−π, π]3. The translation

3-tuple t is a vector in the cube [−ξ, ξ]3 that contains the

relevant bounded range of translations for a large enough ξ.

Similar to the case of the 2D-homography parametriza-

tion, it is proved in [43] that the difference between match

errors of two rigid motions is bounded by the ℓ2 distance

between their parametrization.

2.2. Random Grids hashing

Given such a embedding of a generated hypotheses, the

heart of our method boils down to a nearest neighbor query

search of the current vector through all vectors representing

previously generated hypotheses. More precisely, the task

needed to be performed is a range search query for vectors

that are at a distance of up to a certain tolerance t.

A recent work of Aiger et al. [2] turns out to be ex-

tremely suitable for this task. They propose Random Grids

- a randomized hashing method based on a very simple idea

of imposing randomly shifted ‘grids’ over the vector space,

checking for vectors that ‘collide’ in a common cell. The

Random Grids algorithm is very fast, and simple to imple-

ment - even in comparison with the closely related LSH-

based algorithms [4], since the grid is axis aligned and it

is uniform (consists of cells in R
d with equal side length).

Most important, and essential for the speed of our method,

is that the range search is done in constant time (i.e. it does

not depend on the number of vectors searched against), as

opposed to the RANSAC hypothesis validation that requires

applying the model and measuring errors on (typically hun-

dreds of) point matches or even the logarithmic-time solu-

tion proposed in RHT [42].

Hashing scheme. We are given a representation of the

transform f as a vector v ∈ R
λ (for a λ-dimensional pa-

rameterization). In the Random Grids [2] setting, we hash

v into L hash tables {Ti}
L
i=1, each associated with an inde-

pendent random grid, which is defined by a uniform random

shift Oi ∼ U([0, c]λ), where c is the cell side length and λ
is the dimension of the latent vector v. The cell index for

v in the table Ti is obtained by concatenating the integer

vector zi =
⌊

v+Oi

c

⌋

into a single scalar (where ⌊·⌋ means

“floor” operation). The entire hashing process - initializa-

tion, insertion and collision checking, is given in detail in

Algorithm 1.

input: (incremental) A candidate transform (matrix)f
parameters: number of tables L; tolerance t; cell

dim. c; parametrization dim. λ;

initialization:

foreach i = 1, . . . , L do

1. Initialize an empty hash table Ti.

2. Randomize offset Oi ∼ U([0, c]λ)
end

insertion and collision check for hypothesis f :

foreach i = 1, . . . , L do

1. Let v be the embedding of f

2. The hash index for v is: τv = hash
(⌊

v+Oi

c

⌋)

3. If the cell Ti[τv] is occupied by a vector u, report

a collision of f if ‖v − u‖∞ < t

4. Store v in Ti[τv]

end

Algorithm 1: Latent-RANSAC hypothesis handling.

2.3. Latent­RANSAC stopping criterion

The classical analysis of RANSAC provides a simple

formula for the number of iterations n required to reach a

certain success probability p0 (e.g. 0.99). It is based on the

assumption that it is sufficient to have a single ‘good’ iter-

ation in which a pure set of inliers is drawn. Note that this

assumption is made for the simplicity of the analysis and is

only theoretical, since it ignores e.g. the presence of inlier

noise and several possible degeneracies in the data.

Formally, let Gn be the random variable that counts the

number of such good iterations out of n attempts. For a

minimal set of size γ and data with inlier rate of ω, it holds

that
p0 = 1− P [Gn = 0] = 1− (1− p)n (3)

where p = ωγ . The number of iterations n required to guar-

antee a desired success probability p0 is therefore:

n =
log(1− p0)

log(1− p)
(4)

A similar simplified analysis can be applied to the

Latent-RANSAC scheme. Ignoring the presence of inlier

noise, the existence of (at least) two ‘good’ iterations is

needed for a collision to be detected and the algorithm to

succeed. Therefore, by the binomial distribution we have

that

p0 = P [Gn ≥ 2] = 1− (1− p)n − n·p·(1− p)n−1. (5)

Based on equations (4) and (5), we plot in Figure 4 the ra-

tio between the number of required iterations n in the case
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Figure 4. The ratio between stopping criterions of Latent-

RANSAC (5) and of RANSAC (4). Ratios are shown as a function

of inlier rate ω for several success probabilities (color coded) and

for γ (minimal sample size) values of 3 (dashed) and 4 (solid). See

text for details.

of Latent-RANSAC versus the case of RANSAC. The ra-

tio is given as a function of the inlier rate ω, at 3 different

success rates p0 (color coded), for the two different cases

γ = 3 (e.g. in Rigid 3D motion estimation) and γ = 4 (e.g.

in homography estimation). Interestingly, the ratio attains

a small value (less than 2) for inlier rates below ω = 0.95,

and converges to small constant values as the inlier rate de-

creases. The very high inlier rates for which the ratio is

large are of no concern, since the absolute number n is ex-

tremely low in this range.

In the next section, as part of an analysis of the Random

Grid hashing, we derive a more realistic stopping criterion

that depends also on the success probability of the Random

Grid based collision detection, which clearly depends on the

inlier noise level.

2.4. Random Grid analysis

We cover two aspects of Random Grids. First, we ex-

tend the stopping criterion from Section 2.3 to consider the

probability that a colliding pair of good hypotheses will be

detected. Next, we discuss causes of false collision detec-

tion, which can have an affect on the algorithm runtime.

stopping criterion. Let R(i) be the event that the random

grid component succeeds (detects a collision), given i good

iterations out of a total of n. We can now update Equa-

tion (5), taking this success probability into account:

p0 =
∑

i≥2

P [Gn = i]·P [R(i)] ≥ P [Gn ≥ 2]·P [R(2)] (6)

where the inequality holds due to the fact that P [R(i)]
monotonically increases with i.

A final lower bound on p0 (from which the stopping cri-

terion is determined) can be obtained by substituting the

expression for P [Gn ≥ 2] from (5) into (6) together with

a lower bound on P [R(2)] which we provide next.

Recall that R(2) is the event that the random grid hashing

succeeds given that two successful hypotheses were gener-

ated. We will, more explicitly, denote this event by RL(2),
for a random grid that uses L hash tables.

The analysis in [2] is rather involved since it deals with

the Euclidean ℓ2 distance. Using ℓ∞ distances we are able

to derive the success probability of finding a true collision

in our setup, as a function of the random grid parameters,

in a simpler manner. Assuming a tolerance t in the latent

space, determined by (inlier) noise level of the data, using a

random grid with cell dimension c and a single table results

in

P [R1(2)] ≥

(

1−
t

c

)γ

(7)

since a pair of pure-inlier transformations (which differ by

at most t) must share the same independently offsetted bin

indices in each of the γ dimensions.

Finally, using L hash tables, randomly and indepen-

dently generated, we obtain:

P [R(2)] = P [RL(2)] ≥ 1− (1− P [R1(2)])
L

(8)

False collisions. We now discuss the expected number of

false collisions that are found by the hashing scheme. It is

important to understand why false collision might happen,

as they have an effect on the overall runtime of our pipeline.

Recall that n is the overall number of iterations of the

pipeline, and hence it is also the total number of samples

inserted into each hash table. There are two kinds of false

collisions to consider. The first kind happens due to the

fact that the random grid cell size c might be larger than

the tolerance t. Following the recommendation in [1] we

set the cell size c to be not much larger than the tolerance

t, resulting in a small number of such false collisions. In

any case, this kind of collision has a small impact on the

runtime, since it will be filtered by the tolerance test (step 3

in Algorithm 1) at constant time cost.

The second kind of false collision is one that passes the

tolerance test (step 3). Since it is not the true model, it is

associated with some inlier rate ζ. If ζ ≪ ω, the probability

of this collision appearing before we have reached the stop-

ping criterion is negligible. Empirically, we observe very

few (typically less than 15) collisions that pass the toler-

ance test up to the stopping of the algorithm. These are the

only kind of collisions that incur a non-negligible penalty

(in runtime only) since they invoke the verification process

that every “vanilla” RANSAC hypothesis goes through.

3. Results

In order to evaluate our method, we performed extensive

tests on both real and synthetic data. The Latent-Ransac al-

gorithm is applied to the problems of 2D-homography esti-

mation (Section 3.1), Perspective-n-Point (PnP) estimation

(Section 3.2) and Rigid 3D alignment (Section 3.3). It

is compared with USAC, with or without the well known
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Figure 5. Inlier rate cumulative distribution (CDF) of the three

real data sets we use. The dashed curve was taken only over Red-

wood pairs with provided ground truth.

SPRT [14] extension, which is a very different technique

for accelerating RANSAC’s model verification phase.

Implementation details. Our method naturally extends

the standard RANSAC pipeline, according to the changes

highlighted in Figure 2. Our implementation (for which

we use the shorthand LR) extends the excellent C++ im-

plementation USAC [35], with the noted changes in the

specific modules. This enables an easy way to compare

with a state-of-the-art RANSAC implementation, and al-

lows our method to enjoy the same extensions used by

USAC (such as its local optimization component LO-

RANSAC [15]). In addition, their implementation includes

the SPRT [14] extension, the most commonly used acceler-

ation of RANSAC’s model verification phase. We use the

shorthand SPRT to refer to USAC using this extension, and

RANSAC when not using it.

In addition, we use the OpenGV library [27] for PnP

model fitting (Kneip’s P3P algorithm [28]) and for Rigid 3D

model fitting (Arun’s algorithm [5]). We make our modifi-

cations to the code publicly available2.

The parameters of the proposed method were selected

empirically based on synthetic data (disjoint from other ex-

periments), and kept fixed throughout (for details, see [29]).

Parameters common to all settings: probability of success

p0 = 0.99, number of hash tables L = 4; Random Grid cell

size c = 1.8t, where the LR tolerance t (and the RANSAC

threshold used) are specified separately for each experi-

ment; Maximal number of iterations n = 5 × 106; Hash

table size of n/10, resulting in addressing indices of 19 bits

and less than 4ms initialization time (see [29] for hash table

implementation details).

3.1. 2D­homography estimation

We create a large body of 2D-homography estimation in-

stances using the Zurich buildings data-set [38]. The data-

2github.com/rlit/LatentRANSAC

set consists of sequences of 5 snapshots taken from different

street-level viewpoints for 201 buildings. The images are

typically dominated by planar facade structures and hence

each pair of images in a sequence is related by a 2D ho-

mography (or perhaps more than one in the case of several

planes).

We computed SIFT [32] features for each image and cre-

ated sets of corresponding features for each of the 10 (or-

dered) pairs of images in a sequence using the VLFeat li-

brary [40]. Following [35], we generated ground-truth by

running 107 iterations of both RANSAC and LR on each

pair, and saved the highest inlier rate detected (along with

the resulting homography) as the ’optimal’ inlier rate for

the image pair. A small set of image pairs (132 out of 2010)

with very low inlier-rate was manually removed from the

evaluation, since the inlier feature locations did not reside

on an actual single plane in the scene, and were very noisy.

The 1878 resulting matching instances are challenging:

many pairs have low inlier rates, that result from (i) the

planar area of interest typically covering only part of each

image; (ii) large viewpoint changes; (iii) large presence of

repetitive patterns (e.g. windows or pillars). See Figure 5

for the distribution of inlier rates for this data-set.

We ran RANSAC and SPRT with a threshold of 8 pixels

to capture the hard cases, and following [29] LR tolerance

t was set to 70 pixels in the latent domain. We ran 100 in-

dependent trials of each method and summarize the results

in Table 1. We arrange the image pairs into four groups

according to their ’optimal’ inlier rate (defined above), and

the size of each group is shown at the bottom of the table.

For each group we report the average, and 95-percentile of

runtimes for each method. We also report each method’s

success rate (averaged over all pairs in the group), which is

the ratio between the detected inlier-rate and the ’optimal’

inlier rate.

inlier rate range (in %)

measure method 0-10 10-20 20-40 40-100

runtime
avg. (95%)

(millisecs)

RANSAC 1,490 (6,594) 35 (97) 5 (10) 6 (9)

SPRT 1,129 (4,659) 23 (62) 4 (7) 6 (9)

LR 1,209 (4,626) 32 (85) 7 (11) 9 (12)

success

RANSAC 93.39% 95.53% 96.28% 97.33%

SPRT 88.57% 95.71% 96.27% 97.48%

LR 93.07% 95.88% 96.55% 97.59%

# of instances 234 378 655 611

Table 1. 2D Homography fitting on Zurich Buildings [38]. Best

results are shown in bold. See text for further details.

As can be seen, SPRT and LR (modestly) accelerate

RANSAC at the harder inlier rate ranges, where the overall

runtime is longer. LR achieves this with no loss in accuracy,

while SPRT fails on some cases in the 0-10 range.

The detailed runtime breakdowns shown in Figure 6

(left) reveals two important points that should be made here.

First, in homography estimation, methods that accelerate

6698

github.com/rlit/LatentRANSAC


initialization matchCdrawing modelCfitting hashing modelCverification localCoptimization

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

RANSAC

SPRT

LR

0 0.1 0.2 0.3 0.4 0.5 7.2 7.3

Figure 6. Runtime breakdown per pipeline module comparing LR to SPRT and RANSAC. These are average per-instance runtimes

(in seconds) for 2D-homography estimation (left) and PnP estimation (right) taken over each of the entire data-sets used for the evaluation.

the RANSAC evaluation stage (i.e. LR and SPRT) have

a relatively small potential improvement gap since the run-

time of RANSAC-based homography estimation is domi-

nated by the model fitting stage (this is not the case for the

other problems we deal with, as will be seen later). Sec-

ond, the improved acceleration in the lower ranges is sig-

nificant when considering the overall time taken to fit the

entire data-set, since the majority of time is spent on these

difficult cases which are surprisingly not rare (12% and 20%

of all pairs are in the 0-10 and 10-20 ranges respectively).

3.2. Perspective­n­Point (PnP) estimation

We chose to use the P3P algorithm [28] for minimal sam-

ple model fitting (for all methods) due to its good accuracy-

efficiency trade off compared to other alternatives.

Putative 2D-3D matches were generated following

image-to-SfM localization pipeline from [25]. We used im-

ages from [26], where vocabulary trees and queries were

generated based on the train-test split therein. Even though

we tested on all scenes from [26], result are presented only

for the “Old Hospital” scene as it contains the best balance

of moderate and challenging cases in terms of inlier rates

(see Figure 5). More result are presented in [29]

We ran RANSAC and SPRT with a threshold of 2.9◦, and

following [29] LR with a tolerance t of 5◦ (in the latent do-

main), and the translation-to-angle ratio of the embedding

was 2.1 cm
rad

.

The results are summarized in table 2. We grouped the

182 query images (PnP instances) by increasing level of dif-

ficulty, using the ground truth inlier rates. For each of the

182 query images we ran 10 independent trials and report

average and 95th percentile of the detected inlier rates. It

can be seen that LR achieves more than an order of magni-

tude acceleration compared to RANSAC, at a comparable

accuracy (as before, the success rate is the ratio between the

detected and optimal inlier rates). SPRT achieves similar

acceleration factors and accuracy at the higher inlier rates

(above 10%). It is not as efficient or as accurate the lower

range (below 10%).

In the PnP problem, the existence of fast fitting algo-

rithms (e.g. [28]), make the verification stage the main time

consumer in RANSAC. As can be seen in the time break-

down in Figure 6 (right), the costly verification time (over

95% of RANSAC time) is practically eliminated by LR.

inlier rate range (in %)

measure method 0-10 10-20 20-40 40-100

runtime
avg. (95%)

(millisecs)

RANSAC 4.2e4 (1.7e5) 2,336 (5,347) 190 (471) 41 (71)

SPRT 2,760 (1.7e4) 40 (71) 15 (20) 12 (16)

LR 913 (4,403) 39 (72) 14 (18) 12 (15)

success

RANSAC 95.54% 98.13% 99.38% 99.12%

SPRT 91.94% 98.23% 99.40% 99.17%

LR 94.73% 98.14% 99.39% 99.11%

# of instances 29 27 91 35

Table 2. PnP fitting on the OldHospital scene from PoseNet

[26]. Best results are shown in bold. See text for further details.

3.3. Rigid 3D alignment

To evaluate the Rigid 3D alignment application of

Latent-RANSAC, we use the registration challenge of the

recent “Redwood” benchmark proposed by Choi et al. [12].

This dataset was generated from four synthetic 3D scenes,

each divided into 52 point-cloud fragments on average.

While from synthetic origin, these fragments contain high-

frequency noise and low-frequency distortion that simulate

scans created by consumer depth cameras.

The challenge is to perform global 3D registration be-

tween every pair of fragments of a given scene, in order to

provide candidate pairs for trajectory loop closure. A cor-

rectly ‘detected’ pair is one for which the point clouds over-

lap by at least 30% and the reported transformation is suffi-

ciently accurate (see [12] for details). The main goal in this

benchmark, as stated by [12], is to achieve high recall while

relying on a post-process to later remove false-matches.

Aside from the benchmark, Choi et al. [12] present a

simple extension (CZK) to the Point-Cloud-Library (PCL)

[23] implementation of [37]. The method of CZK showed

state-of-the-art performance, while comparing to previous

methods like OpenCV [18], 4PCS [3] and its extension su-

per4PCS [33]. Fast Global Registration (FGR) [45] is a re-

cent novel optimization process presented by Zhou et al.,

which achieves an order of magnitude runtime accelera-

tion on this dataset, at a competitive recall-precision per-

formance. They perform the costly nearest-neighbor (NN)

search only once (unlike previous methods which use them

in their inner loop), while introducing several fast and sim-

ple methods to filter false matches.
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Figure 7. Performance on the “redwood” benchmark [12].

Our method achieves state-of-the-art recall in the standard setting

(marked by a red ‘x’), while using a stricter threshold (marked

by a red ‘+’) dominates all previous result in both precision and

recall. See description in the text for further details.

We chose to follow [12, 23, 45] and feed our framework

with putative matches based on FPFH features [37]. Fol-

lowing [29], we use LE tolerance t of 24cm in the latent

space, and angle-to-translation ratio of 3.6 rad
cm

for the em-

bedding. Inspired by FGR we perform the NN search only

once. We then only apply one single filter (also used in

[12, 45]), an approximate congruency validation on each

minimal sample drawn.

Figure 7 shows a comparison of Latent RANSAC to

other results reported in [45]. Our method clearly achieves

the highest recall value (the main goal), at a precision

slightly below that of CZK. Furthermore, we are able to

dominate all previous results in precision and recall simul-

taneously by using a slightly stricter setting, when reporting

only pairs with overlap of over 40% rather than 30%.

We attribute our high performance mainly to the fact

that we perform almost no filtering to the putative matches,

such as the bidirectional search and tuple filtering done in

[45], normal-agreement in [12, 23] or the drawing of a non-

minimal set of 4 matches in [12]. Using this “naive” near-

est neighbor FPFH feature matching avoids filtering of true

correspondences (enabling higher recall), but this comes at

the cost of some very low inlier-rates, as can be seen in Fig-

ure 5. Our algorithm is able to deal with such inlier rates

successfully (and efficiently), as was shown in the other ex-

periments of this section and in Figure 1.

Another attractive property of our method in this bench-

mark is its runtime, presented in Table 3. Our runtime is

close to that of FGR, which we outperform significantly in

terms of recall. Note, however, that our method is actually

faster than FGR whenever the inlier rate is above 5%, as the

number of iterations given by (5) is very low. Verification

consumes a considerable part of the runtime of methods like

[12, 23], while we perform the costly overlap verification

only upon the detection of a collision (13.3 times per run

on average). Additionally, we perform overlap calculation

only once as done in FGR.

method PCL [23] CZK [12] FGR [45] LR

avg. time (sec) 3.8 7.5 0.21 0.40

Table 3. Average runtimes on the “redwood dataset”, exclud-

ing normals and FPFH [37] calculation time which are 24ms and

300ms on average, respectively. A breakdown of our method’s

timing includes 84ms for feature matching, 305ms for the latent

RANSAC pipeline, and 13ms for overlap calculation.

4. Future work

In this work we presented Latent-RANSAC: a novel

speed-up of the hypothesis handling stage of the RANSAC

pipeline. We have shown its advantages on challenging

matching problems, that include very low inlier rates, in

the domains of homography estimation, camera localization

and rigid 3D motion estimation.

Latent-RANSAC has the potential to be extended to ad-

ditional domains. Of particular interest is finding an ap-

propriate parametrization of the more challenging funda-

mental matrix domain, which is classically tackled using

RANSAC.

The good results that Latent-RANSAC achieves on the

”Redwood” benchmark come to show the advantage of be-

ing able to handle highly corrupted ”raw”s data (over 60%

of the fragment pairs have under 10% inlier rate). This is

since the alternative of filtering the data to reduce the rate

of outliers comes at the risk of loss of informative data. The

challenge, however, remains to do so efficiently, especially

for search spaces of high dimensionality.

instance measure USAC SPRT LR

‘Old Hospital’ inlier rate (%) 2.9±0.1 0.0±0.0 2.9±0.1

seq 8 frame 12 Sampson err. 0.27±0.16 failed 0.025±0.12

#matches: 9,917 #samples .19±.012 5.0±0 .25±.034

#fitting .19±.011 5.0±0 .26±.034

#verification .62±.037 16.4±.002 .011±.002

runtime [sec] 271.0±20.8 49.8±2.3 6.9±1.3

‘building 187’ inlier rate (%) 4.2±0.1 4.2±1.3 4.2±0.1

views 3,5 Sampson err. 0.4±0.2 1.8±1.9 0.6±0.0

#matches: 622 #samples 1.9±.31 2.7±.93 2.7±.21

#fitting .19±.030 .27±.092 .26±.021

#verification .19±.30 .27±.092 .025±.003

runtime [sec] 2.83±0.65 2.29±0.88 2.24±0.23

Table 4. Detailed example results. All measures are reported in

terms of median ± std. Numbers of samples as well as fitting and

verification invocations are in millions (106). Top: 10 iterations of

PnP estimation in the PoseNet data [26], error in radians. Bottom:

100 iterations of Homography estimation in the Zurich Buildings

(ZuBuD) [38] data. See Figure 1 for a detailed rigid-3d estimation

example.
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