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Abstract

Images are not simply sets of objects: each image rep-

resents a web of interconnected relationships. These rela-

tionships between entities carry semantic meaning and help

a viewer differentiate between instances of an entity. For

example, in an image of a soccer match, there may be mul-

tiple persons present, but each participates in different

relationships: one is kicking the ball, and the other is

guarding the goal. In this paper, we formulate the task

of utilizing these “referring relationships” to disambiguate

between entities of the same category. We introduce an it-

erative model that localizes the two entities in the referring

relationship, conditioned on one another. We formulate the

cyclic condition between the entities in a relationship by

modelling predicates that connect the entities as shifts in

attention from one entity to another. We demonstrate that

our model can not only outperform existing approaches on

three datasets — CLEVR, VRD and Visual Genome — but

also that it produces visually meaningful predicate shifts,

as an instance of interpretable neural networks. Finally, we

show that by modelling predicates as attention shifts, we

can even localize entities in the absence of their category,

allowing our model to find completely unseen categories.

1. Introduction

Referring expressions in everyday discourse help iden-

tify and locate entities1 in our surroundings. For instance,

we might point to the “person kicking the ball” to dif-

ferentiate from the “person guarding the goal” (Figure 1).

In both these examples, we disambiguate between the two

persons by their respective relationships with other enti-

ties [23]. While one person is kicking the ball, the

other is guarding the goal. The eventual goal is to build

computational models that can identify which entities oth-

ers are referring to [34].

† = equal contribution
1We use the term “entities” for what is commonly referred to as

“objects” to differentiate from the term object in <subject-predicate-

object> relationships.

Figure 1: Referring relationships disambiguate between in-

stances of the same category by using their relative relation-

ships with other entities. Given the relationship <person
- kicking - ball>, the task requires our model to cor-

rectly identify which person in the image is kicking the

ball by understanding the predicate kicking.

To enable such interactions, we introduce referring re-

lationships — a task where, given a relationship, models

should know which entities in a scene are being referred

to by the relationship. Formally, the task expects an in-

put image along with a relationship, which is of the form

<subject - predicate - object>, and outputs lo-

calizations of both the subject and object. For ex-

ample, we can express the above examples as <person -

kicking - ball> and <person - guarding - goal>
(Figure 1). Previous work has attempted to disambiguate

entities of the same category in the context of referring ex-

pression comprehension [28, 24, 41, 42, 11]. Their task ex-

pects a natural language input, such as “a person guarding

the goal”, resulting in evaluations that require both natural

language as well as computer vision components. It can be

challenging to pinpoint whether errors made by these mod-

els occur from either the language or the visual components.

By interfacing with a structured relationship input, our task

is a special case of referring expressions that alleviates the

need to model language.
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Referring relationships retain and refine the algorithmic

challenges at the core of prior tasks. In the object localiza-

tion literature, some entities such as zebra and person

are highly discriminative and can be easily detected, while

others such as glass and ball tend to be harder to local-

ize [29]. These difficulties arise due to, for example, small

size and non-discriminative composition. This difference in

difficulty translates over to the referring relationships task.

To tackle this challenge, we use the intuition that detecting

one entity becomes easier if we know where the other one

is. In other words, we can find the ball conditioned on

the person who is kicking it and vice versa. We train

this cyclic dependency by rolling out our model and itera-

tively passing messages between the subject and the object

through an operator defined by the predicate. We de-

scribe this operator in more detail in Section 3.

However, modelling this predicate operator is not

straightforward, which leads us to our second challenge.

Traditionally, previous visual relationship papers have

learned an appearance-based model for each predicate [20,

23, 26]. Unfortunately, the drastic appearance variance

of predicates, depending on the entities involved, makes

learning predicate appearance models challenging. For

example, the appearance for the predicate carrying

can vary significantly between the following two relation-

ships: <person - carrying - phone> and <truck -

carrying - hay>. Instead, inspired by the moving spot-

light theory in psychology [18, 35], we bypass this chal-

lenge by using predicates as a visual attention shift oper-

ation from one entity to the other. While one shift oper-

ation learns to move attention from the subject to the

object, an inverse predicate shift similarly moves atten-

tion from the object back to the subject. Over multi-

ple iterations, we operationalize these asymmetric attention

shifts between the subject and the object as different

types of message operations for each predicate [37, 9].

In summary, we introduce the task of referring relation-

ships, whose structured relationship input allows us to eval-

uate how well we can unambiguously identify entities of

the same category in an image. We evaluate our model2

on three vision datasets that contain visual relationships:

CLEVR [12], VRD [23] and Visual Genome [17]. 33%,

60.3%, and 61% of relationships in these datasets refer to

ambiguous entities, i.e. entities that have multiple instances

of the same category. We extend our model to perform

attention saccades [36] using relationships belonging to a

scene graph [14]. Finally, we demonstrate that in the ab-

sence of a subject or the object, our model can still

disambiguate between entities while also localizing entities

from new categories that it has never seen before.

2Our model was coded using Keras with a Tensorflow back-

end and is available at https://github.com/StanfordVL/

ReferringRelationships.

2. Related Work

To properly situate the task of referring relationships, we

explore the evolution of visual relationships as a representa-

tion. Next, we survey the inception of referring expression

comprehension as a similar task, summarize how attention

has been used in the deep learning literature, and survey

other technical approaches that are similar to our approach.

There is a long history of vision papers moving be-

yond simple object detection and modelling the context

around the entities [27, 31] or even studying object co-

occurrences [8, 19, 25] to improve classification and detec-

tion itself. Our task on referring relationships was motivated

by such papers. Unlike these models, we utilize a formal

definition for context in the form of a visual relationship.

Pushing along this thread, visual relationships were ini-

tially limited to spatial relationships: above, below,

inside and around [8]. Relationships were then ex-

tended to include human interactions, such as holding

and carrying [40]. Extending the definition further, the

task of visual relationship detection was introduced along

with a dataset of spatial, comparative, action and verb pred-

icates [23]. More recently, relationships were formalized as

part of an explicit formal representation for images called

scene graphs [14, 17], along with a dataset of scene graphs

called Visual Genome [17]. These scene graphs encode the

entities in a scene as nodes in a graph that are connected

together with directed edges representing their relative re-

lationships. Scene graphs have shown to improve a num-

ber of computer vision tasks, including semantic image re-

trieval [33], image captioning [1] and object detection [30].

Newer work has extended models for relationship detection

to use co-occurrence statistics [26, 32, 37] and have even

formulated the problem in a reinforcement learning frame-

work [21]. These papers focused primarily on detecting vi-

sual relationships categorically — they output relationships

given an input image. In contrast, we focus on the inverse

problem of localizing the entities that take part in an input

relationship. We disambiguate entities in a query relation-

ship from other entities of the same category in the image.

Moreover, while all previous work has attempted to learn

visual features of predicates, we propose that the visual ap-

pearances of predicates are too varied and can be more ef-

fectively learnt as an attention shift, conditioned on the en-

tities in the relationship.

Such an inverse task of disambiguating between different

regions in an image has been studied under the task of re-

ferring expression comprehension [24]. This task uses an

input language description to find the referred entities. This

work has been motivated by human-robot interaction, where

the robot would have to disambiguate which entities the hu-

man user is referring to [34]. Models for their task have

been extended to include global image contrasts [41], visual

relationships [11] and reward-based reinforcement systems
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Figure 2: Referring relationships’ inference pipeline begins by extracting image features, which are then used to generate an

initial grounding of the subject and object independently. Next, these estimates are used to shift the attention using

the predicate from the subject to where we expect the object to be. We modify the image features by focusing our

attention to the shifted area when refining our new estimate of the object. Simultaneously, we learn an inverse shift from

the initial object to the subject. We iteratively pass messages between the subject and object through the two predicate

shift modules to finally localize the two entities.

that encourage the generation of unique expressions for dif-

ferent image regions [41]. Unfortunately, all these mod-

els require the ability to process both natural language as

well as visual constructs. This requirement makes it diffi-

cult to disentangle the mistakes as a result of poor language

modelling or visual understanding. In an effort to amelio-

rate these limitations, we propose the referring relationships

task — simplifying referring expressions by replacing the

language inputs with a structured relationship. We focus

solely on the visual component of the model, avoiding con-

founding errors from language processing.

One key observations about predicates is their large vari-

ance in visual appearance [23]. For example, consider these

two relationships: <person - carrying - phone> and

<truck - carrying - hay>. We use an insight from

psychology [18, 35], specifically the moving spotlight the-

ory, which suggests that visual attention can be modelled

as a spotlight that can be conditioned on and directed to-

wards specific targets. The use of attention has been ex-

plored to improve image captioning [38, 2] and even stacked

to improve question answering [13, 39]. In comparison, we

model two discriminative attention shifting operations for

each unique predicate, one conditioned on the subject to

localize the object and an inverse predicate shift condi-

tioned on the object to find the subject. Each predi-

cate utilizes both the current estimate of the entities as well

as image features to learn how to shift, allowing it to utilize

both spatial and semantic features.

Our work also has similarities to knowledge bases,

where predicates are often projections in a defined semantic

space [3, 6, 22]. Such a method was recently used for visual

relationship detection [43]. While these methods have seen

success in knowledge base completion tasks, they have only

led to a marginal gain for modelling visual relationships.

However, unlike these methods, we do not model predicates

as a projection in semantic space but as a shift in attention

conditioned on an entity in a relationship. Our method can

be thought of as a special case of deformable parts model [7]

with two deformable parts, one for each entity. Finally, our

messaging passing algorithm can be thought of as a domain-

specific specialized version to the message passing in graph

convolution approximation methods [9, 15].

3. Referring relationships model

Recall that our aim is to use the input referring relation-

ship to disambiguate entities in an image by localizing the

entities involved in the relationship. Formally, the input is

an image I with a referring relationship, R =<S - P - O>,

which are the subject, predicate and object cate-

gories, respectively. The model is expected to localize both

the subject and the object.

3.1. Problem formulation

We begin by using a pre-trained convolutional neural

network (CNN) to extract a L×L×C dimensional feature

map from the image µ = CNN(I). That is, for each im-

age, we extract a 3-dimensional tensor of shape L×L×C,

where L is the spatial size of the feature map while C is the

number of feature channels. Our goal is to decide if each

L× L image region belongs to the subject or object or nei-

ther. We can model this problem by representing the image

by two binary random variables X,Y. For i = 1 . . . L×L,
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Xi > τ implies that the subject occupies the region i and

Yi > τ implies that the object occupies that region, for

some hyperparameter threshold τ . We now define a graph

G = (VX ∪ VY , E), where VX = {xi}, VY = {yi} are the

nodes of the graph represented by the image regions and

E = (xi, yj) represents an edge from every xi to yj . Given

the image and relationship, we want to assign x∗ and y∗

with x∗,y∗ = argmaxx,y Pr(X = x,Y = y|µ, R).

This optimization problem can be reduced to inference

on a densely connected graph which can be very expensive.

As shown in previous work [44, 16], dense graph inference

can be approximated by mean field in Conditional Random

Fields (CRF). Such papers allow fully differential inference

assuming weighted gaussians as pairwise potentials [44].

To achieve greater flexibility in a more principled training

framework, we design a general model where the messaging

passing during inference is a series of learnt convolutions.

More specifically, we design our model with two types of

modules: attention and predicate shift modules. While at-

tention models attempt to locate a specific category in an

image, the predicate shift modules learn to move attention

from one entity to another.

3.2. Symmetric stacked attention shifting (SSAS)
model

Before we specify our attention and shift operators, let’s

revisit the challenges in referring relationships to motivate

our design decisions. The two challenges are (1) the dif-

ference in difficulty in object detection and (2) the dras-

tic appearance variance of predicates. First, the difference

in difficulty arises because some objects like zebra and

person are highly discriminative and can be easily de-

tected while others like glass and ball tend to be harder

to localize. We can overcome this problem by conditioning

the localization of one entity on the other. If we know where

the person is, we should be able to estimate the location

of the ball that they are kicking.

Second, predicates tend to vary in appearance depend-

ing on the objects involved in the relationship. To deal

with the wide appearance variance of predicates, we move

away from how previous work [23] attempted to learn ap-

pearance features of predicates and instead treat predicates

as a mechanism for shifting the attention from one object

to another. Relationships like above should learn to fo-

cus attention down from the subject when locating the

object, and the predicate left of should focus the at-

tention to the right of the subject. Inversely, once we

locate the object, the model should use left of to fo-

cus attention to the left to confirm its initial estimate of the

subject. Note that not all predicates are spatial, so we

also ensure that we can model their visual appearances by

conditioning the shifts on the image features as well.

Attention modules. With these design goals in mind, we

formulate the attention module as an initial estimate of the

subject and object localizations by approximating the

maximizers x∗, y∗ with the soft attention Att(·):

x̂0 = Att(µ, S) = ReLU(µ · Emb(S)) (1)

ŷ0 = Att(µ, O) = ReLU(µ · Emb(O)) (2)

where Emb(·) embeds the entity into a C dimensional se-

mantic space. Note that ReLU(·) is the Rectified Linear

Unit operator. x̂0, ŷ0 denote the initial attention over the

subject and object, which are not conditioned on the

predicate at all and only use the entities.

Predicate shift modules. Inspired by the message pass-

ing protocol in CRF’s [44], we design a more general mes-

sage passing function to transfer information between the

two entities. Each message is passed from the subject’s

estimate to localize the object and vice versa. In prac-

tice, we want the message passed from the subject to

the object to be different from the one passed from the

object back to the subject. So, we learn two asym-

metric attention shifts, one that shifts the location from the

subject to its estimate of where it thinks the object

is and another one that does the inverse from the object

to the subject. We denote these shift operations as Sh(·)
and Sh−1(·), respectively and define them as n convolutions

applied in series to the initial estimated assignments:

x̂0

shift = Sh−1(ŷ0, P ) = ©n
l ReLU(ŷ0 ∗ F−1

l (P )) (3)

ŷ0

shift = Sh(x̂0, P ) = ©n
l ReLU(x̂0 ∗ Fl(P )). (4)

where the ©n
l implies that we perform the operation n

times, each parametrized by F−1

l (P ) and Fl(P ) which cor-

respond to learned convolution filters for the inverse predi-

cate and the predicate operations respectively. The ∗ opera-

tor indicates a convolution with kernels F−1

l (P ) and Fl(P )
of size kl = k with cl channels. We set cn = 1 for the

last convolution to ensure that x̂0

shift and ŷ0

shift have di-

mension LxLx1. While we do not enforce the two shift

operators to be inverses of one another, for most predicates,

we empirically find that Sh−1(·) in fact learns the inverse

attention shift of Sh(·). Note that we do not provide any

supervision to our shifts and the model is tasked to learn

these shifts to improve its entity localizations. The outputs

of these two predicate shift operators is a new estimate at-

tention mask over where the our model expects to find the

object, ŷ0

shift, conditioned on its initial estimate of the

subject, x̂0 and vice versa from ŷ0 to x̂0

shift.

Each predicate learns its own set of shift and inverse shift

functions. And by allowing multiple channels cl for each set

of kernels, our model can formulate shifts as a mixture. For

example, carrying might want to focus on the top of the

object when the relationship is <person - carrying -

phone> while focusing towards the bottom when the rela-

tionship is <person - carrying - bag>.
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Since we want every image region Xi to pass a message

to all other regions Yj , we enforce that n > L/k, i.e. we

need a minimum of L/k number of convolutions in series.

We arrive at this restriction because the maximum spatial

distance that a message needs to travel is
√
2L and the fur-

therest image region it can send a message to in each itera-

tion is
√
2k, where L is the image feature size and k is the

kernel size of each predicate shift convolution.

Running iterative inference. Once we have these esti-

mates, we can modify our image features with using a

element-wise multiplication across the C channels in the

feature map. We can then pass it back to the subject and

object attention modules to update their locations:

x̂1 = Att(x̂0

shift × µ, S) (5)

ŷ1 = Att(ŷ0

shift × µ, O) (6)

We can continuously update these locations, conditioned on

one another. This amounts to running a maximum a poste-

riori inference on one entity while using the other entity’s

previous location. We finally output x̂t and ŷt where t is

a hyper-parameter that determines the number of iterations

for which we run inference.

Image Encoding. We extract image features using an Ima-

geNet pre-trained [29] ResNet50’s [10] last activation layer

of conv4 which outputs a 14× 14× 512 dimensional repre-

sentation and finetune the features. We find that our model

performs best with predicate convolution filters with kernel

size 5× 5 and 10 channels.

Training details. We use RMSProp as our optimization

function with an initial learning rate of 0.0001 decaying by

30% when the validation loss does not decrease for 3 con-

secutive epochs. We train for a total of 30 epochs and embed

all of our objects and predicates in a 512 dimensional space.

4. Experiments

We start our experiments by evaluating our model’s per-

formance on referring relationships across three datasets,

where each dataset provides a unique set of characteristics

that complement our experiments. Next, we evaluate how

to improve our model in the absence of one of the entities

in the input referring relationship. Finally, we conclude by

demonstrating how our model can be modularized and used

to perform attention saccades through a scene graph.

4.1. Datasets and Baselines

CLEVR. CLEVR is a synthetic dataset generated from

scene graphs [12], where the relationships between objects

are limited to 4 spatial predicates (left, right, front,

behind) and 48 distinct entity categories. With over 5M
relationships where 30% are ambiguous, along with the

ease of localizing object categories, this dataset also allows

us to explicitly test the effects of our predicate attention

shifts without confounding errors from poor image features

or noise in real world datasets.

VRD. Visual relationship detection (VRD) is the most

widely benchmarked dataset for relationship detection in

real world images [23]. It consists of 100 object and 70
predicate categories in 5k images, with 60% ambiguous re-

lationships out of a total of 38k. With a few examples per

object and predicate category, this dataset allows us to eval-

uate how our model performs when starved for data.

Visual Genome. Visual Genome is the largest dataset for

visual relationships in real images that is publicly avail-

able [17]. It contains 100k images with over 2.3M rela-

tionship instances. We use version 1.4, which focuses on

the 100 most common objects with the 70 most common

predicate categories. Our experiments on Visual Genome

represent a large scale evaluation of our method where 61%
of relationships refer to ambiguous entities.

Evaluation Metrics. Recall that the output of our model

is localizing the subject and the object of the referring re-

lationship. To evaluate how our model performs, we report

the Mean Intersection over Union (IoU), a common metric

used in localizing salient parts of an image [4, 5]. This met-

ric measures the average intersection over union between

the predicted image regions to those in the ground truth

bounding boxes. Next, we report the KL-divergence, which

measures the dissimilarity between the two saliency maps

and heavily penalizes false positives.

Baseline models. We create three competitive baseline

models inspired by related work in entity co-occurrence [8],

spatial attention shifts [18] and visual relationship detec-

tion [23]. The first model tests how much we can leverage

only the entities’ co-occurrence, without using the pred-

icate. This model simply embeds the subject and the

object and combines them to collectively attend over the

image features. The next baseline embeds the entities along

with the predicate using a series of dense layers, similar to

the vision component in relationship embeddings used in vi-

sual relationship detection (VRD) [23, 11]. This model has

access to the entire relationship when finding the two enti-

ties. Finally, the third baseline replaces our learnt predicate

shifts with a spatial shift that we statistically learn for each

predicate in the dataset (see supplementary for details). This

final model tests whether our model utilizes both semantic

information from images and not just the spatial informa-

tion from the entities to make predictions.

4.2. Results

Quantitative results. Across all the datasets, we find that

the co-occurrence model is unable to disambiguate be-

tween instances of the same category and only performs

well when there is only one instance of that category in an

image. The spatial shift model does better than the other

baselines on CLEVR, where the predicates are spatial and
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Mean IoU ↑ KL divergence ↓
CLEVR VRD Visual Genome CLEVR VRD Visual Genome

S O S O S O S O S O S O

Co-occurence [8] 0.691 0.691 0.347 0.389 0.414 0.490 0.839 0.839 2.598 2.307 1.501 1.271

Spatial shift [18] 0.740 0.740 0.320 0.371 0.399 0.469 0.643 0.643 2.612 2.318 1.512 1.293

VRD [23, 11] 0.734 0.732 0.345 0.387 0.417 0.480 1.024 1.014 2.492 2.171 1.483 1.255

SSAS(iter1) 0.742 0.748 0.358 0.398 0.426 0.491 0.623 0.640 1.936 1.710 1.483 1.235

SSAS(iter2) 0.777 0.779 0.365 0.404 0.422 0.487 0.597 0.595 1.783 1.549 1.458 1.212

SSAS(iter3) 0.778 0.778 0.369 0.410 0.421 0.482 0.595 0.596 1.741 1.576 1.457 1.205

Table 1: Results for referring relationships on CLEVR [12], VRD [23] and Visual Genome [17]. We report Mean IoU and

KL divergence for the subject and object localizations individually.

(a)

(b)

Figure 3: (a) Relative to a subject in the middle of an image,

the predicate left will shift the attention to the right when

using the relationship <subject - left of - object>
to find the object. Inversely, when using the object to find

the subject, the inverse predicate left will shift the at-

tention to the left. We visualize all 70 VRD, 6 CLEVR and

70 Visual Genome predicate and inverse predicate shifts in

our supplementary material. (b) We also show that these

shifts are intuitive when looking at the dataset that was used

to learn them. For example, we find that ride usually cor-

responds to an object below the subject.

worse on the real world datasets, implying that it is insuffi-

cient to model predicates only as spatial shifts. Surprisingly,

when evaluating on the CLEVR dataset, we find that VRD

model does not properly utilize the predicate and leads to

marginal gains over the co-occurrence models. In compar-

ison, we find that our SSAS variants perform better across

all metrics. We gain over a 0.32 Mean IoU on CLEVR.

This gain however, is smaller on Visual Genome and VRD

as these datasets are noisy and incomplete, penalizing our

model for making predictions that are not annotated in the

datasets. KL, which only penalizes false predictions high-

lights that our models are more precise than our baselines.

Across the different ablations of SSAS, we notice that hav-

ing more iterations is better; but the performance saturates

after 3 iterations because the predicate shifts and the inverse

predicate shifts learn near inverse operations of one another.

Interpreting our results. We can interpret the predicate

shifts by synthetically initializing the subject to be at the

center of an image, as shown in Figure 3(a). When ap-

plying the left predicate shift, we see that the model has

learnt to focus its attention to the right, expecting to find

the object to the right of the subject. Similarly, the

inverse predicate shift learns to do nearly the opposite by

focusing attention in the other direction. When visualizing

these shifts next to the dataset examples in Visual Genome,

we see that the shifts represent the biases that exist in the

dataset (Figure 3(b)). For example, since most entities that

can be ridden are below the subject, the shifts learn

to focus attention down to find the object and up to find

the subject. We also find that that our model learns to

encode dataset bias in these shifts. Since the perspective of

most images in the training set for hit are of people play-

ing tennis or baseball facing left, our model also captures

this bias by learning that hit should focus attention to the

bottom left to find the entity being hit.

Figure 4 shows numerous examples of how our model

shifts attention over multiple iterations. We see that gener-

ally across all our test cases the subject and object attention

modules learn to use the image features to localize all in-

stances initially on iteration 0. For example, in Figure 4(a),

all the regions that contain person are initially activated.

But after the predicate and the inverse predicate shifts, we

see that the model learns to move the attention in opposite

directions for the predicate left. In the second iteration,

both the people are uniquely localized in the image. Fig-

ure 4(b) clearly shows that we can easily locate all instances

of purple metal cylinders in the image since it is
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 4: Example visualizations of how attention shifts across multiple iterations from the CLEVR and Visual Genome

datasets. On the first iteration the model receives information only about the entities that it is trying to find and hence

attempts to localize all instances of those categories. In later iterations, we see that the predicate shifts the attention, allowing

our model to disambiguate between different instances of the same category.

easy to detect entities in CLEVR. Our model learns to iden-

tify which purple metal cylinders we are actually

referring to on successive iterations while suppressing the

other instance.

In Figure 4(c), even though both the subject and object

have multiple instances of person and cup, we can dis-

ambiguate which person is actually holding the cup.

For the same image in Figure 4(d), our model is able to

distinguish the cup being held in the previous referring

relationship from the one that is on top of the table.

In cases where a referring relationship is not unique, like

the example in Figure 4(e), we manage to find all instances

that satisfy the relationship we care about. Here, we re-

turn both persons riding the skateboards. Hav-

ing learnt from the dataset, that most relationships with

stand next to annotate the subject to the left of the

object, our model emulates this behaviour in Figure 4(f).

However, our model does make a fair share of mistakes -

for example, in Figure 4(g), it finds both the persons and

isn’t able to distinguish which one is wearing the skis.

4.3. Localizing unseen categories

Now that we have evaluated our model, one natural ques-

tion to ask is how important is it for the model to receive

both the entities of the relationship as input? Can it localize

the person from Figure 1 if we only use < - kicking

- ball> as input? Or can we localize both the subject

and the object with only < - kicking - >? We are

also interested in taking this task a step further and studying

whether we can localize categories that we have never seen

before. Previous work has shown that we can localize seen

categories in novel relationship combinations [23] but we

want to know if it is possible to localize unseen categories.

We remove all instances of categories like pants,

6873



Figure 5: We can decompose our model into its attention and shift modules and stack them to attend over the nodes of a

scene graph. Here we demonstrate how our model can be used to start at one node (phone) and traverse a scene graph us-

ing the relationships to connect the nodes and localize all the entities in the phrase <phone on the person next

to another person wearing a jacket>. A second examples attends over the entities in <hat worn by

person to the right of another person above the table>.

No subject No object Only predicate

S-IoU O-IoU S-IoU O–IoU

VRD [23] 0.208 0.008 0.024 0.026

SSAS (iter 1) 0.331 0.359 0.332 0.361

SSAS (iter 2) 0.333 0.360 0.334 0.361

SSAS (iter 3) 0.335 0.363 0.334 0.365

Table 2: Referring relationships results in the absence of the

entities under three test conditions: no subject where the

input is < - predicate - object>, no object where

the input is <subject - predicate - > and only

predicate where the input is < - predicate - >

hydrant, etc. that are not in ImageNet (CNN(·) was pre-

trained on ImageNet) from our training set and attempt to

localize these novel categories using their relationships. We

do not make any changes to our model but alter the training

script to randomly (we use a drop rate of 0.3) mask out the

subject or object or both in the referring relationships

during each iteration. The model learns to attend over gen-

eral object categories when the entities are masked out. We

find that we can in fact localize these missing entities, even

if they are from unseen categories. We report results for this

experiment on the VRD dataset in Table 2.

4.4. Attention saccades through a scene graph

A ramification of our model design results in its modu-

larity — the attention and shift modules expect inputs and

produce outputs that are image features of shape L×L×C.

We can decompose these modules and stack them like Lego

blocks, allowing us to perform more complicated tasks.

One particularly interesting extension to referring relation-

ships is attention saccades [36]. Instead of using a single

relationship as input, we can extend our model to take an

entire scene graph as input. Figure 5 demonstrates how we

can iterate between the attention and shift modules to tra-

verse a scene graph. We can start from the phone and can

localize the jacket worn by the “woman on the right of

the man using the phone”. A scene graph traversal can be

evaluated by decomposing the graph into a series of rela-

tionships. We do not quantitatively evaluate these saccades

here, as its evaluations are already captured by the referring

relationships in the graph.

5. Conclusion

We introduced the task of referring relationships, where

our model utilizes visual relationships to disambiguate be-

tween instances of the same category. Our model learns to

iteratively use predicates as an attention shift between the

two entities in a relationship. It updates its belief of where

the subject and object are by conditioning its pre-

dictions on the previous location estimate of the object

and subject, respectively. We show improvements on

CLEVR, VRD and Visual Genome datasets. We also

demonstrate that our model produces interpretable predicate

shifts, allowing us to verify that the model is in fact learning

to shift attention. We even showcase how our model can be

used to localize completely unseen categories by relying on

partial referring relationships and how it can be extended to

perform attention saccades on scene graphs. Improvements

in referring relationships could pave the way for vision al-

gorithms to detect unseen entities and learn to grow its un-

derstanding of the visual world.
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