
AdaDepth: Unsupervised Content Congruent Adaptation for Depth Estimation

Jogendra Nath Kundu∗ Phani Krishna Uppala∗ Anuj Pahuja R. Venkatesh Babu

Video Analytics Lab, Department of Computational and Data Sciences

Indian Institute of Science, Bangalore, India

jogendrak@iisc.ac.in, {krishnaphaniiitg, anujpahuja13}@gmail.com, venky@iisc.ac.in

Abstract

Supervised deep learning methods have shown promis-

ing results for the task of monocular depth estimation; but

acquiring ground truth is costly, and prone to noise as well

as inaccuracies. While synthetic datasets have been used

to circumvent above problems, the resultant models do not

generalize well to natural scenes due to the inherent domain

shift. Recent adversarial approaches for domain adap-

tion have performed well in mitigating the differences be-

tween the source and target domains. But these methods are

mostly limited to a classification setup and do not scale well

for fully-convolutional architectures. In this work, we pro-

pose AdaDepth - an unsupervised domain adaptation strat-

egy for the pixel-wise regression task of monocular depth

estimation. The proposed approach is devoid of above lim-

itations through a) adversarial learning and b) explicit im-

position of content consistency on the adapted target rep-

resentation. Our unsupervised approach performs compet-

itively with other established approaches on depth estima-

tion tasks and achieves state-of-the-art results in a semi-

supervised setting.

1. Introduction

Deep neural networks have brought a sudden sense of

optimism for solving challenging computer vision tasks, es-

pecially in a data-hungry supervised setup. However, the

generalizability of such models relies heavily on the avail-

ability of accurate annotations for massive amount of di-

verse training samples. To disentangle this dependency, re-

searchers have started focusing towards the effectiveness of

easily obtainable synthetic datasets in training deep neural

models. For problem domains like semantic scene under-

standing, which face difficulty due to insufficient ground-

truth for supervision, use of graphically rendered images

has been a primary alternative. Even though synthetic im-

ages look visually appealing, deep models trained on them
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Figure 1. Illustration of the proposed domain adaptation method

with input image domain discrepancy (red and blue background)

followed by depth-map prediction. Color coded arrows represent

corresponding RGB image and depth predictions for the synthetic-

trained encoder (red and pink bordered) and for the adapted en-

coder (blue bordered); indicating that synthetic-trained model

shows sub-optimal performance on natural images.

often perform sub-optimally when tested on real scenes,

showing lack of generalization [19, 35]. From a probabilis-

tic perspective, considering input samples for a network be-

ing drawn from a certain source distribution, the network

can perform sufficiently well on test set only if the test data

is also sampled from the same distribution. Hence, the gen-

eral approach has been to transfer learned representations

from synthetic to real datasets by fine-tuning the model on

a mixed set of samples [42].

For depth estimation tasks, the ground-truth acquired us-

ing devices like Kinect or other depth sensors exhibits noisy

artifacts [40] and hence severely limits the performance of

a supervised depth prediction network. In the widely used

NYU Depth Dataset [34], such cases are addressed by man-

ually inpainting the depth values in the distorted regions.

But the dataset has only a handful of such crafted samples,

mainly because the process is laborious and prone to pixel-

level annotation errors. These shortcomings show the need

for a framework that is minimally dependent on scarce clean
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ground truth data. AdaDepth addresses this need by adapt-

ing representations learned from graphically rendered syn-

thetic image and depth pairs to real natural scenes.

Monocular depth estimation is an ill-posed problem; yet

it has many applications in graphics [21], computational

photography [2] and robotics [26, 41]. To overcome the

lack of multi-view information, depth prediction models

need to exploit global semantic information to regress ac-

curate pixel-level depth. It is observed that an end-to-end

Fully Convolutional Network (FCN) [25] can extract use-

ful objectness features for efficient depth prediction with-

out explicit enforcement. Such objectness information is

exhibited by both synthetic and natural scenes as synthetic

scenes also adhere to the natural distribution of relative ob-

ject placement.

Previous works on domain adaptation techniques either

attempt to learn an extra mapping layer to reduce domain

representation gap [33] or learn domain invariant represen-

tations by simultaneously adapting for both source and tar-

get domains [44]. In contrast to classification-based ap-

proaches, there are very few works focusing on spatially

structured prediction tasks [17]. Zhang et al. [50] show

the inefficiency of classification-based approaches on such

tasks, mostly because of the higher dimensional feature

space. To the best of our knowledge, we are the first to

explore unsupervised adversarial domain adaptation for a

spatially structured regression task of depth estimation. In

general, Mode collapse [37] is a common phenomenon ob-

served during adversarial training in absence of paired su-

pervision. Because of the complex embedded representa-

tion of FCN, preservation of spatial input structure in an

unsupervised adaptation process becomes challenging dur-

ing adversarial learning. Considering no access to target

depth-maps, we address this challenge using the proposed

content congruent regularization methods that preserve the

input structural content during adaptation. The proposed

adaptation paradigm results in improved depth-map estima-

tion when tested on the target natural scenes.

Our contributions in this paper are as follows:

• We propose an unsupervised adversarial adaptation

setup AdaDepth, that works on the high-dimensional

structured encoder representation in contrast to adap-

tation at task-specific output layer.

• We address the problem of mode collapse by enforc-

ing content consistency on the adapted representa-

tion using a novel feature reconstruction regularization

framework.

• We demonstrate AdaDepth’s effectiveness on the task

of monocular depth estimation by empirically evaluat-

ing on NYU Depth and KITTI datasets. With minimal

supervision, we also show state-of-the-art performance

on depth estimation for natural target scenes.

2. Related work

Supervised Monocular Depth Estimation There is a

cluster of previous works on the use of hand-crafted fea-

tures and probabilistic models to address the problem of

depth estimation from single image. Liu et al. [28] use pre-

dicted labels from semantic segmentation to explicitly use

the objectness cues for the depth estimation task. Ladicky

et al. [24] instead carry out a joint prediction of pixel-level

semantic class and depth. Recent spurt in deep learning

based methods has motivated researchers to use rich CNN

features for this task. Eigen et al. [6] were the first to use

CNNs for depth regression by integrating coarse and fine

scale features using a two-scale architecture. They also

combined the prediction of surface normals and semantic

labels with a deeper VGG inspired architecture with three-

scale refinement [5]. To further improve the prediction

quality, hierarchical graphical models like CRF have been

combined with the CNN based super-pixel depth estima-

tion [27]. For continuous depth prediction, Liu et al. [29]

use deep convolutional neural fields to learn the end-to-end

unary and pairwise potentials of CRF to facilitate the train-

ing process. Laina et al. [25] proposed a ResNet [16] based

encoder-decoder architecture with improved depth predic-

tion results.

Unsupervised/Semi-supervised Depth Estimation An-

other line of related work on depth estimation focuses on

unsupervised/semi-supervised approaches using geometry-

based cues. Garg et al. [10] proposed an encoder-decoder

architecture to predict depth maps from stereo pair images

using an image alignment loss. Extending this, Godard et

al. [13] proposed to minimize the left-right consistency of

estimated disparities in stereo image pair for the unsuper-

vised depth prediction task. On the other hand, Yevhen

et al. [23] follow a semi-supervised approach using sparse

ground-truth depth-map along with the image alignment

loss in a stereo matching setup. Zhou et al. [52] used video

sequences for depth prediction with view synthesis as a su-

pervisory signal.

Transfer learning using Synthetic Scenes Lately, graph-

ically rendered datasets are being used for various com-

puter vision tasks such as pose prediction of human and

objects [42, 47], optical flow prediction [4] and semantic

segmentation [35]. Zhang et al. [51] proposed a large-

scale physically-based rendering dataset for indoor scenes

to bridge the gap between the real and synthetic scene with

improved lighting setup. But training deep CNN models on

such diverse synthetic images does not generalize directly

for natural RGB scenes.

Domain adaptation Csurka [3] published a comprehen-

sive survey on domain adaptation techniques for visual ap-

plications. Our work falls in the subarea of DeepDA (Deep

Domain Adaptation) architectures. Several such architec-
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tures incorporate a classification loss and a discrepancy

loss [12, 46, 31, 43], with Maximum Mean Discrepancy

(MMD) [15] being the commonly used discrepancy loss.

Long et al. [31] use MMD for the layers embedded in a

kernel Hilbert space to effectively learn the higher order

statistics between the source and target distribution. Sun

and Saenko [43] proposed a deep correlation alignment al-

gorithm (CORAL) which matches the mean and covariance

of the two distributions at the final feature level to align their

second-order statistics for adaptation.

Another line of work uses adversarial loss in conjunc-

tion with classification loss, with an objective to diminish

domain confusion [44, 8, 9, 45]. As opposed to prior works

that usually use a fully-connected layer at the end for class

adaptation, we employ a DeepDA architecture for a more

challenging pixel-wise regression task of depth estimation.

Our proposed method uses the concept of Generative Ad-

versarial Networks (GANs) [14] to address the domain dis-

crepancy at an intermediate feature level. In GAN frame-

work, the objective of generator is to produce data which

can fool the discriminator, whereas the discriminator im-

proves itself by discriminating the generated samples from

the given target distribution. Following this, Isola et al. [18]

proposed pix2pix, that uses a conditional discriminator to

enforce consistency in generated image for a given abstract

representation. Without such conditioning, the generator

can produce random samples that are inconsistent with the

given input representation, while minimizing the adversar-

ial loss. As an extension, Zhu et al. [53] introduced Cycle-

GAN, a cycle consistency framework to enforce consistency

of input representation at the generator output for unpaired

image-to-image translation task.

3. Approach

Consider synthetic images xs ∈ Xs and the correspond-

ing depth maps ys ∈ Ys as samples from a source distri-

bution, ps(x, y). Similarly, the real images xt ∈ Xt are

considered to be drawn from a target distribution pt(x, y),
where ps 6= pt. Under the assumption of unsupervised

adaptation, we do not have access to the real depth samples

yt ∈ Yt.

Considering a deep CNN model as a transfer function

from an input image to the corresponding depth, the base

model can be divided into two transformations: Ms, that

transforms an image to latent representation, and Ts, that

transforms latent representation to the final depth predic-

tion. The base CNN model is first trained with full super-

vision from the available synthetic image-depth pairs i.e.

ȳs = Ts(Ms(xs)). A separate depth prediction model for

the real images drawn from target distribution can be written

as ȳt = Tt(Mt(xt)). Due to domain shift, direct inference

on target samples xt through the network trained on Xs re-

sults in conflicting latent representation and predictions, i.e.

Ms(xt) 6= Mt(xt) and Ts(Ms(xt)) 6= Tt(Mt(xt)). For

effective domain adaptation, ideally both Ms and Ts have

to be adapted to get better performance for the target sam-

ples. Considering that Xs and Xt only exhibit perceptual

differences caused by the graphical rendering process, both

domains have many similarities in terms of objectness infor-

mation and relative object placement. Therefore, we only

adapt Mt for the target distribution pt(x). To generalize the

learned features for the new domain, we plan to match the

latent distributions of Ms(Xs) and Mt(Xt) so that the sub-

sequent transformation Ts can be used independent of the

domain as Ts = Tt = T .

We start the adaptation process by initializing Mt and

Tt with the supervisely trained weights from Ms and Ts

respectively. To adapt the parameters of Mt for the tar-

get samples xt, we introduce two different discriminators

DF and DY . The objective of DF is to discriminate be-

tween the source and target latent representations Ms(xs)
and Mt(xt), whereas the objective of DY is to discrimi-

nate between Ys and T (Mt(Xt)). Assuming similar depth

map distribution for both synthetic and real scenes (p(Ys =
ys) ≈ p(Yt = yt)), inferences through the corresponding

transformation functions T (Ms(xs)) and T (Mt(xt)) are

directed towards the same output density function.

We use a ResNet-50 [16] based encoder-decoder archi-

tecture [25] for demonstrating our approach. Existing lit-

erature [49] reveals that in hierarchical deep networks, the

lower layers learn generic features related to the given data

distribution whereas the consequent layers learn more task

specific features. This implies that the transferability of

learned features for different data distributions (source and

target) decreases as we move from lower to higher lay-

ers with an increase in domain discrimination capability.

We experimentally evaluated this by varying the number of

shared layers between Ms and Mt, starting from the initial

layers to the final layers. From Figure 3, it is clear that to-

wards higher layers of Ms, features are more discriminable

for synthetic versus natural input distribution. Therefore,

we deduce that adaptation using only Res-5 blocks of Mt

(Res-5a, Res-5b and Res-5c) and fixed shared parameters of

other layers (Figure 2) is optimal for adversarial adaptation

as it requires minimal number of parameters to update.

In rest of this section, we describe the adversarial objec-

tives along with the proposed content consistent loss formu-

lations to update the parameters of Mt for depth estimation.

3.1. Adversarial Objectives

We define an adversarial objective LadvD at the predic-

tion level for DY and an adversarial objective LadvF at the

latent space feature level for DF . They can be defined as:

LadvD = Eys∼Ys
[logDY (ys)]

+ Ext∼Xt
[log (1− (DY (T (Mt(xt)))))] (1)

2658



C
on

v

P
oo

l

R
es

-2
 

bl
oc

k

R
es

-3
 

bl
oc

k

R
es

-4
 

bl
oc

k

R
es

-5
a

R
es

-5
b

R
es

-5
c

C
on

v

C
on

v

19x15x1024 10x8x2048

Ms(xs)

Mt(xt)

Synthetic images (xs)

Natural images (xt)

T
Prediction (ŷ)

Res-5 block

228 x 304 x 3 128 x 160 x 1

U
p-

pr
oj

ec
t 

la
ye

rs

C
on

v

P
oo

l

R
es

-2
 

bl
oc

k

R
es

-3
 

bl
oc

k

R
es

-4
 

bl
oc

k

R
es

-5
a

R
es

-5
b

R
es

-5
c

Synthetic / 
Natural

Real / 
Predicted

Discriminator 
(DF)

Discriminator 
(DY)

Synthetic depth 
ground-truth (y)
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Figure 3. Effect of various weight sharing strategies on adversarial

adaptation process with domain consistency regularization (Sec-

tion 3.2.1).

LadvF = Exs∼Xs
[logDF (Ms(xs))]

+ Ext∼Xt
[log (1− (DF (Mt(xt))))] (2)

Mt parameters are updated to minimize both the adver-

sarial losses, whereas the discriminators DY and DF are

updated to maximize the respective objective functions.

The final objective to update the parameters of Mt, DY

and DF can be expressed as minMt
maxDY

LadvD and

minMt
maxDF

LadvF .

3.2. Content Congruency

In practice, a deep CNN exhibits complex output and la-

tent feature distribution with multiple modes. Relying only

on adversarial objective for parameter update leads to mode

collapse. Theoretically, adversarial objective should work

for a stochastic transfer function. However, since we do

not use any randomness in our depth prediction model, it

is highly susceptible to this problem. At times, the output

prediction becomes inconsistent with the corresponding in-

put image even at optimum adversarial objective. To tackle

this, we enforce content congruent regularization methods

as discussed below.

3.2.1 Domain Consistency Regularization (DCR)

Since we start the adversarial learning after training on syn-

thetic images, the resultant adaptation via adversarial objec-

tive should not distort the rich learned representations from

the source domain. It is then reasonable to assume that Ms

and Mt differ by a small perturbation. We do so by enforc-

ing a constraint on the learned representation while adapting

the parameters for the new target domain. As per the pro-

posed constraint, the latent representation for the samples

from the target domain Mt(xt) must be regularized during

the adaptation process with respect to Ms(xt) and can be

represented as:

Ldomain = Ext∼Xt
[‖Ms(xt)−Mt(xt)‖1] (3)

3.2.2 Residual Transfer Framework (RTF)

Considering the adaptation process from Ms to Mt as a

feature perturbation, Long et al. [32] proposed a residual

transfer network to model Mt as Ms + ∆M . On simi-

lar lines, we implement an additional skip multi-layer CNN

block with additive feature fusion to model ∆M such that

Mt = Ms +∆M (Figure 4a). To maintain content consis-

tency, ∆M is constrained to be of low value so as to avoid

distortion of the base Ms activations. Also note that in this
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framework, the only trainable parameters for the adaptation

process are Θ∆M , i.e. the parameters of the residual branch

in Figure 4a. Considering Lt(xt) as the output feature ac-

tivation after Res-4 block, the regularization term can be

written as:

Lres = Ext∼Xt
[‖∆M(Lt(xt))‖2] (4)

3.2.3 Feature Consistency Framework (FCF)

As a new approach to preserve spatial structure and content

correspondence between the input image and the predicted

depth map, we propose to enforce content consistency us-

ing a self feature reconstruction loss. We formulate fea-

ture consistency of Res-5 block to regularize the adversar-

ial adaptation process which can respect the corresponding

depth prediction. We define Ct as a parameterized feature

reconstruction function (a multi-layer CNN) to reconstruct

the Res-4f features while updating the trainable parameters

of Mt using adversarial discriminator loss. Mathematically,

the regularization term is represented as:

Lfeature = Ext∼Xt
[‖Lt(xt)− Ct(Mt(xt))‖1] (5)

3.3. Full objective

The final loss function while training Mt is formulated as

Lfinal = LadvD + LadvF + λLcontent (6)

where λ is the weighting factor for the content regulariza-

tion term relative to the adversarial losses, with Lcontent

being one of the regularization methods (i.e. Ldomain, Lres

or Lfeature). A lower λ value increases the probability of

mode collapse, whereas a higher λ value enforces a limit to

the adaptation process.

For Residual Transfer Framework, the search for appro-

priate hyperparameter λ is even more difficult because of

the uninitialized parameters introduced by ∆M . Whereas

for Feature Consistency Framework, Ct is initialized with

parameters trained to reconstruct Lt(xt) which significantly

stabilizes the adversarial learning process. Algorithm 1 ex-

plains the adversarial learning strategy with the proposed

Feature Consistency Framework.

We refer to the regularization frameworks mentioned in

Section 3.2.1, Section 3.2.2 and Section 3.2.3 as DCR, RTF

and FCF respectively for the rest of the paper.

/*Initialization of parameters */

ΘMt
: parameters of pretrained source encoder Ms

ΘCt
: parameters of fully trained Ct branch by

minimizing Lfeature, where Mt = Ms

ΘDF
: Randomly initialized weights

for k iterations do

for m steps do
xt: minibatch sample of target images

xs: minibatch sample of source images

/* Update parameters for DF , DY and Ct */

Θ∗

DF
:= argmax

ΘDF

LadvF

Θ∗

DY
:= argmax

ΘDY

LadvD

Θ∗

Ct
:= argmin

ΘCt

Lfeature

end

xt: minibatch sample of target images

xs: minibatch sample of source images

/* update trainable parameters of Mt i.e. ΘMt
*/

Θ∗

Mt
:= argmin

ΘMt

(LadvF + LadvD + λLfeature)

end

Algorithm 1: Adversarial adaptation training algorithm

for the proposed Feature Consistency Framework (FCF).

The optimization steps are implemented using stochastic

gradient updates of each minibatch.
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Method
Error metrics ↓ Accuracy metrics ↑

rel rms log10 δ1 δ2 δ3

Baseline 0.305 1.094 0.114 0.540 0.827 0.937

Ours-DCR 0.146 0.669 0.062 0.766 0.932 0.979

Ours-RTF 0.141 0.658 0.059 0.793 0.942 0.980

Ours-FCF 0.136 0.603 0.057 0.805 0.948 0.982

FCF w/o DY 0.145 0.662 0.061 0.771 0.936 0.979

Table 1. AdaDepth-U results using different content consistency

frameworks on NYU Depth [34] Test Set. For accuracy metrics,

δi denotes δi < 1.25i and higher is better.

Method
Error metrics ↓ Accuracy metrics ↑

rel rms log(rms) δ1 δ2 δ3

Baseline 0.330 8.245 0.382 0.545 0.801 0.905

Ours-DCR 0.302 8.095 0.359 0.582 0.821 0.926

Ours-RTF 0.296 7.832 0.332 0.593 0.837 0.939

Ours-FCF 0.214 7.157 0.295 0.665 0.882 0.950

Table 2. AdaDepth-U results using different content consistency

frameworks on Eigen Test Split of KITTI. [6] For accuracy met-

rics, δi denotes δi < 1.25i and higher is better.

4. Experiments

In this section, we describe our implementation details

and experiments on NYU Depth v2 [34] and KITTI [11]

Datasets. We hereafter refer to our unsupervised and semi-

supervised domain adaptation approaches as AdaDepth-U

and AdaDepth-S respectively.

4.1. Network Architecture

For our base depth prediction network, we follow the

architecture used by Laina et al. [25]. The network uses

ResNet-50 [16] as the base encoder model followed by up-

projection layers as shown in Figure 2. Similar to [25], we

use BerHu (reverse Huber) loss to train the base network on

synthetic images.

The extra convolutional branch Ct and ∆M (Figure 4),

used in feature reconstruction (FCF) and residual adaptation

framework (RTF) respectively, constitutes residual blocks

with batch-normalization layers similar to Res-5 block. For

the base network architecture, the output of Ms(xs) trans-

formation is of spatial size 8×10, with 2048 activation

channels. In contrast to fully-connected feature [45], we use

spatial feature block (convolutional) as the latent represen-

tation during unsupervised adaptation. Hence, we imple-

ment DF as a standard convolutional discriminator archi-

tecture. For discriminator network DY , we follow Patch-

GAN’s [18] convolutional architecture with an input recep-

tive field of size 80×80.

4.2. NYU Depth

Dataset NYU Depth v2 indoor scene dataset contains raw

and clean RGB-D samples. The raw dataset consists of

464 scenes with a [249, 215] train-test split. The clean

dataset comprises of 1449 RGB-D samples, where the depth

maps are inpainted and aligned with RGB images. We

use the commonly used test set of 654 images from these

1449 samples for final evaluation. Note that we do not use

ground truth depth samples from the NYU Depth dataset

for AdaDepth-U. For AdaDepth-S, we use 795 ground truth

samples (6.5%) from the 1449 clean pairs. Both raw and

clean samples have a spatial resolution of 480×640.

Pre-Training For pre-training our base network, we use

100,000 random samples ([80, 20] train-val split) out of

568,793 synthetic RGB-D pairs from the Physically-Based

Rendering Dataset proposed by Zhang et al. [51]. Follow-

ing [25], the input images of size 480×640 are first down-

sampled by a factor of 2, and then center-cropped to size

228×304. Final prediction depth map is of spatial resolu-

tion 128×160.

Evaluation For comparison with ground truth, predictions

up-sampled to the original size using bi-linear interpolation.

We evaluate our final results by computing standard error

and accuracy metrics used by [6, 25].

4.3. KITTI

Dataset KITTI dataset consists of more than 40,000 stereo

pairs along with corresponding LIDAR data. We use the

split proposed by [6] that contains 22,600 images for train-

ing and 697 images for testing. Note that we do not use any

ground truth depth from the KITTI dataset for AdaDepth-U.

For AdaDepth-S, we use 1000 random ground truth samples

(4.4%) from the 22,600 images. All images have a spatial

resolution of 375×1242.

Pre-Training For pre-training the base network, we use

21,260 synthetic RGB-D pairs provided in the Virtual

KITTI Dataset [7]. We perform data augmentation on-the-

fly similar to [13] during training. The input images of size

375×1242 are down-sampled to 256×512 before passing to

the network. Final prediction depth map is of spatial reso-

lution 128×256.

Evaluation In line with [13], we convert LIDAR data to

depth images for comparison. We evaluate our final results

by computing standard error and accuracy metrics used

by [13, 52], with errors only being computed for depths less

than 80 meters. We also evaluate our results with a cap of

50 meters for a fair comparison with [10].

4.4. Training Details

Base Network The base prediction model is trained from

scratch for pre-training using TensorFlow [1]. During train-

ing, we use a mini-batch size of 10 and optimize with

Adam [22]. We start with a high learning rate of 0.01, which
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Method Ground-truth Supervision
Error metrics ↓ Accuracy metrics ↑

rel rms log10 δ < 1.25 δ < 1.252 δ < 1.253

Li et al. [27] Yes 0.232 0.821 0.094 0.621 0.886 0.968

Liu et al. [30] Yes 0.230 0.824 0.095 0.614 0.883 0.971

Wang et al. [48] Yes 0.220 0.745 0.094 0.605 0.890 0.970

Eigen et al. [6] Yes 0.215 0.907 - 0.611 0.887 0.971

Roy and Todorovic [36] Yes 0.187 0.744 0.078 - - -

Eigen and Fergus [5] Yes 0.158 0.641 - 0.769 0.950 0.988

Laina et al. [25] Yes 0.127 0.573 0.055 0.811 0.953 0.988

DAN [31] No 0.281 0.859 0.095 0.583 0.848 0.946

Ours AdaDepth-U(FCF) No 0.136 0.603 0.057 0.805 0.948 0.982

Ours AdaDepth-S Semi 0.114 0.506 0.046 0.856 0.966 0.991

Table 3. Results on NYU Depth v2 Test Dataset. Baseline numbers have been taken from [25]. AdaDepth-U performs competitively with

other methods while AdaDepth-S outperforms all of them. Note that all other methods use full ground truth supervision.

RGB Image Baseline AdaDepth-U (FCF) AdaDepth-SLaina et al. Ground truth

Figure 5. Qualitative comparison of AdaDepth-U and AdaDepth-S with Laina et al. [25]. Please refer to the supplementary material for

additional results.

is gradually reduced by a factor of 10 depending on the val-

idation set performance.

Adaptation Network During adaptation stage we use Mo-

mentum optimizer for updating the discriminator and gen-

erator parameters with a λ value of 10. As mentioned in

Algorithm 1, the parameters of Ct are updated first to re-

construct the convolutional feature map of the penultimate

Res-4f block before the adaptation process. Later, Ct is up-

dated along with DF and Dy during the adversarial training

to adapt Mt for the new target domain. We also replace

the adversarial binary-cross entropy formulation with least

square loss in the adversarial objective, which further stabi-

lizes the optimization process with better adaptation results.

The training of AdaDepth-S starts from the initializa-

tion of AdaDepth-U along with a very small set of target

labeled data (Sections 4.2, 4.3). To avoid over-fitting, alter-

nate batches of labeled (with ground-truth depth map) and

unlabeled target samples are shown. For labeled batch iter-

ation, we modify the final objective (Eq. 6) by replacing

Lcontent by BerHu loss computed between the predicted

and ground-truth depth-map.

5. Results

In this section, we present a thorough evaluation of

our proposed content consistency losses along with the

adversarial objective functions as defined in Section 3.2

with a baseline approach. We also present compara-

tive results of AdaDepth-U and AdaDepth-S with other

depth prediction networks on NYU Depth V2 and KITTI

datasets. Due to differences in scales between data do-

mains, we scale our final predictions with a scalar s =
median(Dgt)/median(Dpred) for final evaluation, simi-

lar to Zhou et al. [52].

Evaluation of content consistency methods In Tables

1 and 2, we compare various design choices for our ad-

versarial adaptation architecture by evaluating performance

metrics using each of the regularization methods described

in Section 3.2. As a baseline, we report the results on

target (real) samples with direct inference on the network

trained on source (synthetic) images. The metrics clearly

demonstrate the advantage of adversarial domain adaptation

with respect to baseline. Evidently, Feature Consistency

Framework shows better performance as compared to other
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Method
Supervision Error metrics ↓ Accuracy metrics ↑

Depth Pose rel sq. rel rms rms(log) δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. [6] Yes No 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Godard et al. [13] No Yes 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Zhou et al. [52] No No 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Ours AdaDepth-U(FCF) No No 0.214 1.932 7.157 0.295 0.665 0.882 0.950

Ours AdaDepth-S Semi No 0.167 1.257 5.578 0.237 0.771 0.922 0.971

Garg et al. [10] cap 50m No Yes 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Ours AdaDepth-U cap 50m No No 0.203 1.734 6.251 0.284 0.687 0.899 0.958

Ours AdaDepth-S cap 50m Semi No 0.162 1.041 4.344 0.225 0.784 0.930 0.974

Table 4. Results on KITTI Dataset using the Eigen test split [6]. Baseline numbers have been taken from [52]. With the exception of

[52], all methods use either depth or pose ground truth supervision. AdaDepth-U shows comparable metrics to existing methods while

AdaDepth-S outperforms existing state-of-the art in 4 out of 7 metrics.

Method
Error metrics ↓

sq. rel rel rms

Karsch et al. [20]* 4.894 0.417 8.172

Laina et al. [25]* 1.665 0.198 5.461

Ours AdaDepth-S* 5.71 0.452 9.559

Godard et al. [13] 11.990 0.535 11.513

Ours AdaDepth-U 12.341 0.647 11.567

Table 5. Results on Make3D Dataset. We follow the evaluation

scheme used by [13] and compute errors only for depths less than

70 meters. * denotes ground truth supervision.

two techniques for unsupervised adaptation of both NYUD

and KITTI natural datasets. During mode collapse, Res-

5 block learns a (non-invertible) many-to-one function and

hence loses content information. The effectiveness of FCF

over other two techniques can be attributed to explicit con-

tent preservation by learning the inverse function Ct which

makes it learn a one-to-one mapping during the unpaired

adaptation process. We also do an ablation study without

DY (Table 1). It is evident from the experiment that DY

helps to preserve the continuous valued depth-like struc-

ture (ground-truth synthetic depth distribution) in the final

prediction. Hence, DF along with DY helps to bridge the

domain discrepancy underlying both marginal (P (M(xs)))
and conditional distribution (P (ŷ|M(xs))), which is crucial

for domain adaptation [32].

Comparison with existing approaches Interestingly, our

unsupervised model AdaDepth-U is able to deliver com-

parable results against previous state-of-the-arts for both

NYUD and KITTI natural scenes as shown in Table 3

and Table 4 respectively. Additionally, AdaDepth-S out-

performs all the previous fully-supervised depth-prediction

methods. For a fair comparison with previous adaptation

techniques, we also formulated ADDA [45] and DAN [31]

(MK-MMD on vectorised convolutional feature) setups for

depth adaptation. Training ADDA was very unstable with-

out regularization and we could not get it to converge. Re-

sults with DAN are shown in Table 3.

Generalization to Make3D To evaluate generalizabil-

ity of our proposed adaptation method, we adapt the base

model trained on Virtual KITTI dataset for the natural

scenes of Make3D [38, 39] in both unsupervised and semi-

supervised fashion. Apart from the apparent domain shift

from synthetic to real, there are semantic and physical dif-

ferences of objects between Virtual KITTI and Make3D

datasets. Table 5 shows a quantitative comparison of both

AdaDepth-U and AdaDepth-S on Make3D test set. Evi-

dently, our models generalize and perform reasonably well

against the previous arts.

6. Conclusion

We present a novel unsupervised domain adaptation

method AdaDepth, for adapting depth predictions from syn-

thetic RGB-D pairs to natural scenes. We demonstrate

AdaDepth’s efficiency in adapting learned representations

from synthetic to real scenes through empirical evaluation

on challenging datasets. With the proposed Feature Con-

sistency Framework, AdaDepth delivers impressive adapta-

tion results by maintaining spatial content information in-

tact during adversarial learning. While the benchmark re-

sults illustrate AdaDepth’s effectiveness, they also pave way

for exploring adjacent problem paradigms. Could a multi-

task setting aid in generating richer latent representations

for AdaDepth? Could we exploit global geometric cues

from synthetic images in an efficient way to complement

our unsupervised approach? We would like to answer these

questions in our future work.
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