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Abstract

Unlike machines, humans learn through rapid, abstract

model-building. The role of a teacher is not simply to

hammer home right or wrong answers, but rather to pro-

vide intuitive comments, comparisons, and explanations to

a pupil. This is what the Learning Under Privileged Infor-

mation (LUPI) paradigm endeavors to model by utilizing

extra knowledge only available during training. We propose

a new LUPI algorithm specifically designed for Convolu-

tional Neural Networks (CNNs) and Recurrent Neural Net-

works (RNNs). We propose to use a heteroscedastic dropout

(i.e. dropout with a varying variance) and make the vari-

ance of the dropout a function of privileged information.

Intuitively, this corresponds to using the privileged infor-

mation to control the uncertainty of the model output. We

perform experiments using CNNs and RNNs for the tasks of

image classification and machine translation. Our method

significantly increases the sample efficiency during learn-

ing, resulting in higher accuracy with a large margin when

the number of training examples is limited. We also theo-

retically justify the gains in sample efficiency by providing

a generalization error bound decreasing with O( 1
n
), where

n is the number of training examples, in an oracle case.

1. Introduction

“Better than a thousand days of diligent study is one day with

a great teacher.”

— Japanese Proverb

It is a common belief that human students require far

fewer training examples than any learning machine [38]. No

doubt this has to do with the fact that effective teachers pro-

vide much more than the correct answer to their pupils; they

provide an explanation in addition to the result.

In a typical machine learning setup, we present tuples

{(xi, yi)}ni=1 to a machine learning model. One way to in-

troduce an “explanation” to a supervised learning system

would be to provide some sort of privileged information,
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Figure 1. In Learning Under Privileged Information (LUPI)

paradigm, a teacher provides additional information during train-

ing. In this work, we propose to utilize this information in order to

control the variance of the Dropout. Since the Dropout’s variance

is not constant, we call this a Heteroscedastic Dropout. Our empir-

ical and theoretical analysis suggests that Heteroscedastic Dropout

singificantly increses sample efficiency of both CNNs and RNNs

resulting in higher accuracy with much less data.

which we entitle x⋆. In practice, one can incorporate the

triplets {(xi, x
⋆
i , yi)}ni=1 into a learning system at training

time and the testing stage continues to make use of only x,

without any access to x⋆. In other words, the “Student” has

access to privileged information while interacting with the

“Teacher” during training, but in the test stage the “Student”

operates without the supervision of the “Teacher”. This

paradigm is called Learning Under Privileged Information

(LUPI) and was introduced by Vapnik and Vashist [38].

Vapnik and Vashist [38] provide a LUPI algorithm for

the Support Vector Machines (SVMs). From an algorithmic

perspective, the privileged information is utilized to esti-

mate slack values of the SVM constraints. From a theoreti-

cal perspective, this algorithm accelerates the rate at which

upper bound on error drops from O
(
√

1
n

)

to a far steeper

curve of O
(

1
n

)

, where n is the number of required samples.

Privileged information is ubiquitous: it usually exists for

almost any machine learning problem. However, we do not

see wide adoption of such methods in practice. The ma-

jor obstacle is the fact that the original LUPI framework
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proposed in [38] is only valid for SVM based methods. In-

deed, many have shown that the privileged information can

be introduced into the loss function under a multi-task or

a distillation loss in an algorithm-agnostic way. However,

we raise the question, could it and should it be fed in as an

input instead of an additional task? If so, how would we go

about doing so in an algorithm-agnostic way?

We define a new class of LUPI algorithms by making

a structural specification. We consider a hypothesis class

such that each hypothesis is a combination of two func-

tions – namely, a deterministic function taking x as an in-

put and a stochastic function taking x⋆ as an input. When

x⋆ is not available in the test stage, the “Student” simply

makes a Bayes optimal decision and marginalizes the model

over x⋆. Our structural specification makes this marginal-

ization straightforward while not compromising the expres-

siveness of the model. This structure is natural in the con-

text of Convolutional Neural Networks (CNNs) and Re-

current Neural Networks (RNNs) thanks to the dropout.

Dropout is a widely adopted tool to regularize neural net-

works by multiplying the activations of a neural network at

some layer with a random vector. We simply extend the

dropout to heteroscedastic dropout by making its variance

a function of the privileged information. In other words,

dropout becomes the stochastic function taking x⋆ as an in-

put and marginalizing the function corresponds to not utiliz-

ing dropout in the test phase. In order to be able to train the

heteroscedastic dropout, we use Gaussian dropout instead

of Bernoulli because the key technical tool we use is the re-

parameterization trick [21] which is only available for some

specific distributions, including the Gaussian.

The rationale behind heteroscedastic dropout follows the

close relationship between Bayesian learning and dropout

presented by Gal and Gharamani[13]. Dropout can be con-

sidered a tool to approximate the uncertainty of the out-

put of a neural network. In our proposed heteroscedastic

dropout, the privileged information is used to estimate this

uncertainty so that hard examples and easy examples are

treated accordingly during training. Our theoretical study

suggests that the accurate computation of a model’s uncer-

tainty can accelerate the rate at which a CNN’s upper bound

on error drops, from the typical rate of O
(
√

1
N

)

to a faster

O( 1
n
), where n is the number of training examples. In an

oracle case for a dataset with 600K training examples, this

theoretical upper bound would allows us to learn a model

with the same generalization error with
√
6× 108 ≈ 775

samples instead of 600K and is thus hugely significant. Al-

though the practical gain we observe is nowhere close, it is

still very significant.

We evaluate our method in experiments with both CNNs

and RNNs, and show a significant accuracy improvement

over two canonical problems, image classification and

multi-modal machine translation. As privileged informa-

tion, we offer a bounding box for image classification and

an image of the scene described in a sentence for machine

translation. Our method is problem- and modality-agnostic

and can be incorporated as long as dropout can be utilized

in the original problem and the privileged information can

be encoded with an appropriate neural network.

2. Related Work

The key aspects that differentiate our work from the lit-

erature are: i) our method is applicable to any deep learn-

ing architecture which can utilize dropout, ii) we do not

use a multi-task or distillation loss, iii) we provide theo-

retical justification suggesting higher sample efficiency, iv)
we perform experiments for both CNNs and RNNs. A thor-

ough review of the related literature is provided below.

Learning Under Privileged Information: Learning under

Privileged Information (LUPI) is initially proposed by Vap-

nik and Vashist [38, 37]. It extends the Support Vector Ma-

chine (SVM) by empirically estimating the slack values via

privileged information. This method is further applied to

various computer vision problems [31, 29, 11] as well as

ranking [30], clustering [10] and metric learning [12] prob-

lems. These method are based on max-margin learning and

are not applicable to CNNs or RNNs.

One closely related work is [16], extending Gaussian

processes to the LUPI paradigm. Hernández-Lobato et al.

[16] use privileged information to estimate the variance of

the noise in their model. Similarly, we use the privileged

information to control the variance of the Dropout in CNN

and RNN models. However, their method only applies to

Gaussian processes, whereas we target neural networks.

Learning CNNs Under Privileged Information: The

LUPI paradigm has also been studied recently in the con-

text of CNNs. In contrast to max-margin methods, the liter-

ature on learning CNNs under privileged information heav-

ily uses the distillation framework, following the close rela-

tionship between distillation and LUPI studied in [25].

Hoffman et al. demonstrated a multi-modal distillation

approach to incorporating an additional modality as side in-

formation [18]. They start with a pre-trained network and

distill the information from the privileged network to a main

neural network in an end-to-end fashion.

Multi-task learning is a straightforward approach to in-

corporate privileged information. However, it does not nec-

essarily satisfy a no-harm guarantee (i.e. privileged infor-

mation can harm the learning). More importantly, the no-

harm guarantee will very likely be violated since estimating

the privileged information (i.e. solving the additional task)

might be even more challenging than the original problem.

When the privileged information is binary and shares the

same spatial structure as the original data, such as is the
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case with segmentation occupancy or bounding box infor-

mation, it can also directly be incorporated into the training

of CNNs by masking the activations. Group Orthogonal

neural networks [41] follow this approach. However, this

approach is limited to very specific class of problems.

The loss value of a CNN can be viewed as analogous to

the slack variables. Following this analogy, Yang et al. [40]

use two networks: one for the original task, and one for es-

timating the loss using the privileged information. Learning

occurs through parameter sharing between them.

Our method is different from aforementioned works

since we do not use either a distillation or a multi-task loss.

Learning Language under Privileged Visual Informa-

tion: Using images as privileged information to learn lan-

guage is not new. Chrupala et al.[5] used a multi-task loss

while learning word embeddings under privileged visual in-

formation. The embeddings are trained for the task of pre-

dicting the next word, as well the representation of the im-

age. Analysis of this model [5, 19] suggests that the embed-

dings learned by using vision as a privileged information

are significantly different than language only ones and cor-

relate better with human judgments. Recently, Elliott et al.

[8] collected a dataset of images with English captions as

well as German translations of captions. Using this dataset,

a neural machine translation under privileged information

model is developed following the multi-task setup [9].

Dropout and its Variants: Dropout is a well studied reg-

ularization technique for training deep networks. To-the-

best of our knowledge, we are the first to specifically utilize

privileged information to control the variance of a dropout

function. Here, we summarize the existing methods which

control the variance of the dropout using variational infer-

ence or information theoretical tools. Although these tools

have never been applied to the LUPI paradigm, we utilize

some of the technical tools developed in these works.

We use multiplicative Gaussian dropout instead of

Bernoulli dropout. Gaussian dropout is first introduced

in [33]. Its variational extension [22] uses local re-

parameterization to perform Bayesian learning.

The Information Bottleneck (IB) [34] is a powerful

framework which can enforce various structural assump-

tions. The IB framework has been applied to CNNs

and RNNs using stochastic gradient variational Bayes and

the re-parametrization trick [21]. Perhaps closest to our

method, Achille and Soatto [1] use the information bottle-

neck principle to learn disentangled representations when a

CNN with Gaussian Dropout is used. The authors introduce

many ideas upon which we build; specifically, our hypoth-

esis class (Eqn. 4) is very similar to the architecture they

proposed. The main architectural difference is their choice

to define the variance as a function of x, whereas we make

it function of x⋆ . We also use similar distributional pri-

ors and a similar training procedure. On the other hand, we

apply these ideas to a completely different problem with a

different theoretical analysis. The information bottleneck

has been applied to LUPI for SVMs [26]. However, this

method does not apply to neural networks.

Although we use IB [35], Gaussian dropout [33] and the

re-parametrization trick [21], we are the first to our knowl-

edge to apply any of these methods to the LUPI problem.

3. Method

Consider a machine learning problem defined over a

compact space X and a label space Y . We also consider

a loss function l(·, ·) which compares a prediction with a

ground truth label. In learning under privileged informa-

tion, we also have additional information for each data point

defined over a space X ⋆, which is only available during the

training. In other words, we have access to i.i.d. samples

from the data distribution as xi, x
⋆
i , yi ∼ p(x, x⋆, y) during

training. However, in test we will only be given x ∼ p(x).
Formally, given a function class h(·;w) parameterized by

w and data {xi, x
⋆
i , yi}i∈[n], a typical aim is to solve the

following optimization problem;

min
w

Ex,y∼p(x,y)[l(y, h(x;w))] (1)

We propose to do so by learning a multi-view model us-

ing both x and x⋆ and to use the marginalized model in test

when x⋆ is not available. Consider a parametric function

class for the multi-view data h+ : X × X ⋆ → Y . The

training problem becomes:

min
w

Ex,x⋆,y∼p(x,x⋆,y)[l(y, h
+(x, x⋆;w))] (2)

This is equivalent to a classical supervised learning problem

defined over a space X × X ⋆ and any existing method like

CNNs can be used. In order to solve the inference problem,

we consider the following marginalization

h(x;w) ≡ Ex⋆∼p(x⋆|x)[h
+(x, x⋆;w)] (3)

The major problem in this formulation is the intractabil-

ity of this expectation, as p(x⋆|x) is unknown. We propose

to restrict the class of functions in a way that the expecta-

tion is straightforward to compute. The form we propose

is a parametric family such that the privileged information

controls the variance, whereas the main information (i.e. in-

formation available in both training and test) controls the

mean. The specific form we use is:

h+(x, x⋆;w) = ho(x;wo)⊙N (1, h⋆(x⋆;w⋆)) (4)

where ⊙ represents the Hadamard product and the stochas-

tic function N (1, h⋆(x⋆;w⋆)) is a normal random variable

with a constant mean function and a covariance function

parametrized by x⋆ and w
⋆. We also decompose w as two
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Figure 2. The structure we propose. Privileged information is only

used for estimation of the variance of the heteroscedastic dropout.

disjoint vectors as w = [wo,w⋆]. Moreover, in this for-

mulation, the expectation defined in (3) becomes straight-

forward and can be shown to be h(x;w) = ho(x;wo). We

visualize this structural specification in Figure 2.

We use neural networks to represent ho and h⋆ and learn

their parameters using the information bottleneck. Since the

output space is discrete (we address classification), we de-

note the representation of the data as h(x;w) and compute

the output as softmax(h(x;w)). We explain the details

of training in the following sections.

3.1. Information Bottleneck for Learning

We need to control the role of x⋆ in LUPI. And, the infor-

mation bottleneck has already been used for this [26]; how-

ever, we do not need this explicit specification because our

structural specification directly controls the role of x⋆. We

use information bottleneck for a rather different reason, its

original reason, learning a minimal and sufficient joint rep-

resentation of x, x⋆ which capture all the information about

y. This is similar to [1], and we use the same log-Normal

assumption. The Lagrangian of the information bottleneck

can be written as (see [35] for details);

L = H(y|z) + βI(x, x⋆; z) (5)

where z is the joint representation of x, x⋆ computed as
z = h+(x, x⋆;w). These terms can be computed as;

I(x⋆
, x; z) = Ex,x⋆∼p(x,x⋆)[KL(pw(z|x, x

⋆)||pw(z))]

H(y|z) ≃ Ex,x⋆,y∼p[Ez∼pw(z|x,x⋆)[−log pw(y|z)]]

(6)

where pw(·) represents the distributions computed over our

model with parameters w. In order to compute the KL di-

vergence, we need an assumption about the prior over repre-

sentations p(z). As suggested by [1], the log-Normal distri-

bution follows the empirical distribution p(z) when ReLu is

used. Hence, we use the log-Normal distribution and com-

pute the KL divergence as (see supplementary materials for

full derivation);

KL(pw(z|x, x⋆)||pw(z)) ∼ ‖ log h⋆(x⋆;w⋆)‖. (7)

Combining them, the final optimization problem is;

min
w

1

n

n
∑

i=1

Ez∼pw(z|x,x⋆)[log p(yi|z)]+β‖ log h⋆(x⋆
i ;w

⋆)‖

(8)

This minimization is simply the cross-entropy loss with reg-

ularization over the logarithm of the computed variances of

the heteroscedastic dropout, and can be performed via the

re-parametrization trick in practice when ho and h⋆ are de-

fined as neural networks. We further justify the choice of IB

regularization via experimental observation: without it, op-

timization leads to NaN loss values. We discuss the details

of the re-parametrization trick in the following sections.

3.2. Implementation

In this section, we discuss the practical implementation

details of our framework. We discuss it for image classifi-

cation with CNNs and machine translation with RNNs. For

the classification setup, we use the image as x, object lo-

calization information as x⋆, and image label as y. For the

translation setup, we use the sentence in the source language

as x, an image which is the realization of the sentence as x⋆,

and the sentence in the target language as y.

We make a sequence of architectural decisions in order

to design h◦ and h⋆. For the classification problem, we

design both of them as CNNs and share the convolutional

layers. The inputs are x, an image, and x⋆, an image with

a blacked-out background. We use the VGG-Network [32]

as an architecture and simply replace each dropout with our

form of heteroscedastic dropout. We show the details of the

architecture with the re-parameterization trick in Figure 4.

We also normalize images with the ImageNet pixel mean

and variance. As data augmentation, we horizontally flip

images from left to right and make random crops.

We use a two-layered LSTM architecture with 500 units

as our RNN cell and use the heteroscedastic dropout be-

tween layers of LSTMs. The main reason behind this choice

is the fact that dropout in general is only shown to be use-

ful for connections between LSTM layers. We use atten-

tion [2] and feed the image as a feature vector computed us-

ing the VGG[32] architecture pre-trained on ImageNet. We

give the details of the LSTM with re-parametrization trick

in Figure 3. For the inference, we use beam search over

12 hypotheses. Our LSTM implementation directly follows

the baseline implementation provided by OpenNMT [23].

Hyperparameter Settings We used a standard learning rate

across all image classification experiments, setting our ini-

tial learning rate to 1.0 × 10−3, and tolerating 5 epochs

of non-increasing validation set accuracy before decaying

the learning rate by 10x. For multi-modal machine transla-

tion, we use an initial learning rate of 1.0 × 10−3 and half

the learning rate every epoch after the 8th epoch. We used

the ADAM [20] optimizer in PyTorch for both image clas-

sification and multi-modal machine translation. All CNN

weights are initialized according to the method of He et al.

[15] and a decay of 1 × 10−4 was used for image classifi-

cation. For multi-modal machine translation, we do not use

any weight decay and initialize weights according to [23].
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Figure 3. Multi-Modal Machine Translation We show the LSTM architecture we use, which incorporates the re-parameterization trick

and heteroscedastic dropout connections. We use dropout only between layers and share among cells following [14]. We do not use any

dropout in inference since the image is not available during test.
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Figure 4. Image Classification We show the CNN architecture

we used in our experiments, along with the re-parameterization

trick and heteroscedastic dropout connections. We do not use

any dropout in inference since localization bounding boxes are not

available during test.

4. Experimental Results

In order to evaluate our method, we perform various

experiments using both CNNs and LSTMs. We test our

method with CNNs for the task of image classification and

with LSTMs for the task of machine translation. We discuss

the baselines against which we compare our algorithm, the

datasets we use in the rest of this section.

Datasets: We perform our experiments using the following

datasets; ImageNet [6]: A dataset of 1.3 million images

labelled with a class over 1000 categories. We only use

the subset of 600 thousand images which include localiza-

tion information. Multi-30K[8]: A dataset of 30 thousand

Flickr images which are captioned in both English and Ger-

man. We use this dataset for multi-modal machine transla-

tion experiments. In Multi-30K, the English captions are

generated for images; whereas, German captions are di-

rectly translated from the English captions. Hence, during

the ground truth translation, the images were privileged in-

formation translators. This property makes this dataset a

perfect benchmark for LUPI.

Baselines: We compare our method against the follow-

ing baselines. No-x⋆: a baseline model not using any

privileged information Gaussian Dropout [33]: A multi-

plicative Gaussian dropout with a fixed variance. Multi-

Task: We perform multi-task learning as a tool to uti-

lize privileged information. We use regression to bound-

ing box coordinates and denote it as Multi-Task w/ B.Box

as well as direct estimation of the RGB mask and denote

it as Multi-Task w/ Mask. We use this self-baseline only

for CNNs since there are many published multi-task meth-

ods for machine translation with multi-modal information

and we compare with them all. In addition to these self-

baselines, we also compare with the following published

work. GoCNN[41]: a method for CNNs with segmenta-

tion as a privileged information which proposes to mask

convolutional weights with segmentation masks. Informa-

tion Dropout[1]: a regularization method that utilizes in-

jection of multiplicative noise in the activations of a deep

neural network (but as a function of the input x, not x⋆).

MIML-FCN[40]: a CNN-based LUPI framework designed

for multi-instance problems. Our problem is not multi-

ple instance; but, we still compare for the sake of com-

pleteness. Modality Hallucination[18]: Distillation-based

LUPI method designed for multi-modal CNNs. Imagi-

nation [9]: Distillation-based LUPI method designed for

multi-modal machine translation. (see supplementary ma-

terials for implementation details.)

4.1. Effectiveness of Our Method

We compare our method with the No-x⋆ baseline for im-

age classification using the ImageNet dataset. We perform

experiments by varying the number of training examples

logarithmically. This is key since the main motivation be-

hind our LUPI method is learning with less data rather than

having higher accuracy. We report several results in Table 1

and visualize additional data points in Figure 5.

Our method is quite effective for a training dataset size

of 75K images; however, it has no positive impact for the

200K and 600K cases. Even more importantly, the smaller

the training set, the larger the improvement. For 75K im-

ages, it results in 5% single crop top-1 accuracy improve-

ment; whereas, for 200K, it matches the performance. This

simply suggests that our algorithm is particularly effective

for low- and mid-scale datasets. This result is quite intu-

itive since with increasing dataset size, all algorithms can

effectively learn and reach an optimal accuracy which is

possible under the model class. Hence, the role of an “in-

telligent teacher” is providing the privileged information to
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Table 1. Classification Test Accuracy on 1000 ILSVRC Classes.

Because the ILSVRC server prohibits large numbers of test sub-

missions, which we required to evaluate at different sizes of sam-

ple data, we use a hold-out set of 50K images from ImageNet

CLS-LOC as our test set. The authors of [32] report a 7.4% Multi-

Crop, top-5 error rate when training on ∼ 1.3M images. Where we

report “No-x⋆,” we describe the results of a classical CNN learn-

ing method. All 1-crop evaluations below were carried out with a

center crop. All 25K models diverged.

Number of Training Images

Model 25K 75K 200K 600K

Single Crop top-1

No-x⋆ - 37.85 55.99 66.66
Our LUPI - 42.30 55.51 66.77

Single Crop top-5

No-x⋆ - 62.76 79.21 86.90
Our LUPI - 67.13 78.89 86.88

Multi-Crop top-1

No-x⋆ - 39.99 58.7 69.20
Our LUPI - 44.95 58.41 69.10

Multi-Crop top-5

No-x⋆ - 64.49 81.0 88.60
Our LUPI - 69.19 81.15 88.64

Figure 5. Accuracy vs. training set size for ImageNet classifica-

tion. Each data point denotes a VGG-16 network trained with

batch normalization. The accuracies of models trained with x⋆ are

depicted in green; those trained without are depicted in red (via an

adaptive learning rate decay schedule) and blue (via a fixed learn-

ing rate decay schedule). Furthermore, adaptively modifying

the learning rate according to performance on a hold-out set

yields massive gains in low- and mid-scale data regimes, when

compared with decaying the learning rate at fixed intervals, e.g.

every 30 training epochs.

learn with less data. In other words, LUPI is not a way to

gain extra accuracy regardless of the dataset; rather, it is a

way to significantly increase the data efficiency. We do not

perform a similar experiment for machine translation since

the available dataset is a mid-scale and our LUPI method

demonstrates asymptotic accuracy increases at full dataset.

4.2. Data Efficiency of Our Method and Baselines

In order to compare the data efficiency gain of our

method against baselines, we perform image classification

and multi-modal machine translation experiments. We use

75K ImageNet images since our main goal is identify in-

sights regarding data sample efficiency gains and using

a smaller training set makes this analysis possible. We

summarize the image classification experiments in Table 2

and multi-modal machine translation experiments in Table

3.Our method outperforms all baselines for both tasks, for

image classification with a significant margin.

Table 2. We compare our method’s performance with several

baselines. We train with 75 Images per each of the 1000 ImageNet

classes, leaving us with 75 ×103 images in total. We outperform

each model and are competitive with GoCNN, a model specifically

designed for the problem of learning with segmentation data using

various architectural decisions. Evaluation is carried out on the

held-out set of images from our holdout test set.

Single Crop Multi-Crop

Model top-1 top-5 top-1 top-5

No-x⋆ [32] 37.85 62.76 39.99 64.49

MIML-FCN [40]/ResNet 35.61 59.66 38.3 62.3

Modal. Hallucination [18] 37.66 63.15 40.45 65.95

Info. Dropout [1] 38.09 63.52 41.84 67.47

Gaussian Dropout [33] 38.80 63.64 41.0 65.3

MIML-FCN [40]/VGG 39.54 64.43 42.0 66.4

Multi-Task w/ Bbox 39.96 64.79 42.4 66.6

Multi-Task w/ Mask [27] 40.48 65.62 43.18 67.68

GoCNN 41.43 66.78 44.5 69.3
Our LUPI 42.30 67.13 44.95 69.19

Table 3. We compare our method for multi-modal machine

translation with several baselines. We report BLEU[28,

24] and METEOR[7] metrics. Some baselines only report

English(en)→German(de) results, and exclude de→en.

en→de de→en

Model BLEU Meteor BLEU Meteor

No x⋆ (following [23]) 35.5 54.0 40.19 55.8

Multi-Modal

Toyama et al. [36] 36.5 56.0 − −
Hitschler et al. [17] 34.3 56.1 − −
Calixto et al. [3] 36.5 55.0 − −
Calixto et al. [4] 37.3 55.1 − −
LUPI

Imagination [9] 36.8 55.8 40.5 56.0
Ours 38.4 56.9 42.4 57.1

Image Classification with Privileged Localization

One interesting result is that our network h⋆ is clearly

learning much more than to predict random constant for
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its output Σ, the covariance matrix used for reparameteri-

zation; in fact, our network outperforms the network that

produces a Σ whose entries are drawn from pure Gaus-

sian noise by > 3.8%. We analyze our method for CNNs

both theoretically and qualitatively in Section 5 and con-

clude that our method learns to control the uncertainty of

the model and results in an order of magnitude higher data

efficiency, explaining this large margin.

Furthermore, GoCNN [41], an architecture specifically

designed for the problem of learning with segmentation data

using various architectural decisions, results in a significant

accuracy improvement competitive with our method in a

small dataset regime. However, GoCNN’s performance rel-

ative to other baselines begins to degrade at a dataset size

of 200K images, leading to a top-1 accuracy decrease of

−5.26% in comparison with Bernoulli dropout and −4.47%
with our heteroscedastic dropout method. This is an intu-

itive result because GoCNN’s rigid architectural decisions

inject significant bias into the model.

Because Information Dropout relies upon sampling from

a log-normal distribution with varying variance, it is het-

eroscedastic. However, compounded Information Dropout

layers which exponentiate samples from a normal distribu-

tion lead to unbounded activations; thus, a suitable squash-

ing function like the sigmoid must be employed to bound

the activations. We find its performance can actually de-

crease accuracy when compared with a ReLU nonlinearity.

Multi-modal Machine Translation Our method results

in a significant accuracy improvement measure by both

BLEU and METEOR scores. One interesting observation

is that our method outperforms various multi-modal meth-

ods which use image information in both training and test.

This counterintuitive result is due to the way in which the

dataset is collected. Multi-30k[8] dataset is collected by

simply translating the English captions of 30K images into

German. A LUPI model [9] was already shown to perform

better than multi-modal translation models which can use

both images and sentences in test time [3, 4, 17, 36]. This

surprising result is largely due to the fact that the transla-

tors did not see the images while providing ground truth

translations. More importantly, the effectiveness of visual

information in machine translation in a privileged setting is

also intuitive following the results of [5]. Chrupala et al.[5]

show that when image information is used as privileged in-

formation in the learning of word representations, the qual-

ity of such representations increases. Hence, a multi-modal

paradigm for learning language (e.g. with privileged visual

information) and vice versa is a fruitful direction for both

natural language processing and computer vision communi-

ties and our method performs quite effectively on this task.

In summary, our results overperform all baselines for

both multi-modal machine translation and image classifica-

tion experiments using both CNNs and RNNs. These results
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Figure 6. Accuracy vs. x⋆% for multi-modal machine translation.

An identical experiment on image classification is shown in sup-

plementary material due to limited space.

suggest that our method is effective and generic.

4.3. Learning under Partial Privileged Information

Although privileged information naturally exists for

many problems, it is typically not available for all points.

Thus, it is common to encounter a scenario in which the en-

tire training data is labelled; however, only a small portion

includes privileged information. In other words, we typi-

cally have dataset which is the union of {xi, yi}i∈[n] and

{xj , x
⋆
j , yj}j∈[m] where m ≪ n. In order to experiment

with this setting, we vary the amount of x⋆ available. We

present the result in Figure 6 for machine translation and in

supplementary material for image classification.

The results in Figure 6 suggest that even when only a

small portion (2% for machine translation, 4% for image

classification) of the data has privileged information, our

method is effective resulting in a significant accuracy in-

crease very similar to the one we obtained with 100% of

privileged information.

5. Analysis of the Algorithm

Our empirical analysis suggests a strong data-efficiency

increase when privileged information is incorporated using

our method. It is interesting to quantify this increase in

terms of the theoretical learning rate. For the case of SVMs,

Vapnik et al. [38] showed that utilizing the privileged infor-

mation can result in a generalization error bound with rate

O( 1
n
) instead of O(

√

1
n
) where n is the dataset size. Our

experimental results suggests a similar story for CNNs, but

the theoretical justification can not be extended from [38]

since their analysis is specific to SVMs. In this section,

we try to answer this question for our algorithm. We show

that our method is capable of converting an O(
√

1
n
) error

rate (derived in Proposition 1) into O( 1
n
) in an oracle set-

ting for CNNs. We rigorously prove that it is possible to

reach O( 1
n
) rate using our structural assumptions; however,

we do not provide any argument for the optimization land-

scape. In other words, our results are only valid with an

oracle optimizer which can find the solution satisfying our

assumptions. The study of the loss function and the op-

timization remains an open problem; however, we give a

strong empirical evidence that using SGD with information

bottleneck regularization is enabling faster learning.

We start by presenting a bound over the generalization

error of CNNs with no privileged information. This result

8892



directly follows from [39], and we include it here for the

sake of completeness. Loss functions of CNNs based on

l2 distance are Lipschitz continuous when the non-linearity

is the rectified linear unit, the pooling operation is max-

pooling and softmax function is used to convert activations

into logits. Moreover, any learning algorithm with a Lips-

chitz loss function admits the following result [39];

Proposition 1 ([39, Example 4]). Given n i.i.d. samples

drawn from p(x, y) as {xi, yi}i∈[n], if a loss function

l(y, h(x;w)) is λl-Lipschitz continuous function of x for all

y,w, bounded by L and X × Y has a covering number

Nǫ(X , | · |2) = K, then with probability at least 1− δ,
∣

∣

∣

∣

∣

∣

E
x,y∼p(x,y)[l(y, h(x;w))]−

1

n

∑

i∈[n]

l(yi, h(xi;w))

∣

∣

∣

∣

∣

∣

≤ λlǫ+ L

√

2K log 2 + 2 log(1/δ)

n
.

This proposition simply details the baseline O(
√

1
n
) er-

ror rate under no privileged information. In order to intu-

itively explain how our algorithm can accelerate this learn-

ing to O( 1
n
), consider the following oracle algorithm. Us-

ing the privileged information, one can estimate the uncer-

tainty (variance) of the neural network and can use the in-

verse of this estimate as a the variance of the heteroscedastic

dropout. Since the heteroscedastic dropout is multiplicative,

this results in unit variance regardless of the input. In a sim-

ilar fashion, this oracle algorithm can bound the variance

with an arbitrary constant. Following this oracle algorithm,

we show that when the variance is properly controlled, our

method can reach an O( 1
n
) rate. Consider the population

distribution of number images per class versus the empiri-

cal distribution as ǫy = E[y⊺y] − 1
n

∑

i y
⊺

i yi. The value

ǫy is purely a property of the way in which a was dataset

collected and must be treated independently of the learning.

Hence, we do not study the rate at it vanishes. We present

the following proposition and defer its proof to the supple-

mentary material:

Proposition 2. Given n i.i.d. samples drawn from p(x, y)
as {xi, yi}i∈[n] and a loss function defined as ‖h(x;w) −
y‖22 where h(·;w) is a CNN, assume that any path between

input and output has maximum weight Mw, total number of

paths between input and output is P , and for all training

points xi, h(xi;w) ≤ Mz and V ar(h(xi;w)) ≤ ξ2. With

probability at least 1− δ,
∣

∣

∣

∣

∣

∣

E
x,y∼p(x,y)[l(y, h(x;w))]−

1

n

∑

i∈[n]

l(yi, h(xi;w))

∣

∣

∣

∣

∣

∣

≤2C
(

(ξ + 1) log 1
δ
+Mw (3ξ +Mz) log

P
δ

)

3n
+ (2C + 1) ǫy.

where ξ ≤ δ.

This proposition means that learning with sample efficiency

O( 1
n
) is indeed possible as long as one can bound the vari-

ance of the output(ξ) with an arbitrary number δ. Hence,

the full control of the output variance, makes learning with

higher sample efficiency possible. One remaining question

is whether using SGD with information bottleneck regular-

ization can learn this oracle solution or not? Unfortunately,

we have no theoretical answer for this question and leave it

as an open problem. However, we study this problem em-

pirically and show that there is a strong empirical evidence

suggesting that the answer is affirmative.

Figure 7. For 8000 random samples from the validation set that our

heteroscedastic dropout algorithm mis-classifies, as well as 8000

random samples it correctly classifies, we plot the average of ac-

tivations per dimension (we sort the 4096 dimensions in terms of

average energy over full dataset for clarity).

A realistic estimate of variance is typically not possible

without a strong parametric assumption; however, we can

use the simple heuristic that the samples from validation set

that our algorithm mis-classifies should have higher vari-

ance than the samples which are correctly classified. We

plot the average energy of computed dropout variances per

fully connected neuron for mis-classified and correctly clas-

sified examples in Figure 7. Interestingly, our method con-

sistently assigns larger multiplier (dropout) values for cor-

rectly classified samples and significantly smaller values for

mis-classified samples. This strongly supports our hypothe-

sis since when the low heteroscedastic dropout is multiplied

with the high-variance mis-classified examples, their final

variance will be low, possibly bounded by the σ0.

6. Conclusion

We described a learning under privileged information

framework for CNNs and RNNs. We proposed a het-

eroscedastic dropout formulation by making the variance of

the dropout a function of privileged information.

Our experiments on image classification and machine

translation suggest that our method significantly increases

the sample efficiency of both CNNs and LSTMs. We fur-

ther provide an upper bound over the generalization error

of CNNs suggesting a sample efficient learning (with rate

O( 1
n
)) in the oracle case when privileged information is

available. We make our learned models as well as the source

code available 12.
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