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Abstract

To estimate the 6-DoF extrinsic pose of a pinhole cam-

era with partially unknown intrinsic parameters is a critical

sub-problem in structure-from-motion and camera localiza-

tion. In most of existing camera pose estimation solvers, the

principal point is assumed to be in the image center. Un-

fortunately, this assumption is not always true, especially

for asymmetrically cropped images. In this paper, we de-

velop the first exactly minimal solver for the case of un-

known principal point and focal length by using four and a

half point correspondences (P4.5Pfuv). We also present an

extremely fast solver for the case of unknown aspect ratio

(P5Pfuva). The new solvers outperform the previous state-

of-the-art in terms of stability and speed. Finally, we ex-

plore the extremely challenging case of both unknown prin-

cipal point and radial distortion, and develop the first prac-

tical non-minimal solver by using seven point correspon-

dences (P7Pfruv). Experimental results on both simulated

data and real Internet images demonstrate the usefulness of

our new solvers.

1. Introduction

To determine the 6-DoF rotation and translation param-

eters of a pinhole camera is proven indispensable for many

applications ranging from structure-from-motion, to aug-

mented reality and image based geo-localization. Given

fully known intrinsic parameters, the perspective-three-

point (P3P) problem arises, for which many solvers have

been developed [6, 10, 8, 14]. In terms of partially cali-

brated intrinsic parameters, the majority of existing work

assume that the principal point lies in the image center. Un-

fortunately, as noticed by Triggs [21], this assumption is not

always true, especially in the case of cropped images. When

the offset is trivial, it can be partially compensated by the

translation, without severely affecting the rotation. How-

ever, in the presence of significant offset such solvers with

centered principal point will give poor rotation and transla-

tion estimates.

In this paper we present the first exactly minimal solver

for the case of unknown principal point and focal length,

using four and a half point correspondences (P4.5Pfuv). In

addition to the classical constraints on the camera matrix

[5, 12], we derive novel polynomial constraints which allow

us to avoid solutions with rank deficient camera matrices.

We also consider unknown aspect ratio and construct

a minimal solver which uses five point correspondences

(P5Pfuva). In this case the equations reduce to a simple

quartic polynomial which allows for a closed form solver

that is both extremely fast and stable. In experiments we

show that the new solvers are superior in terms of stability

and efficiency compared to the previous state-of-the-art five

point solver from Triggs [21].

Later, we consider case of both unknown principal point

and radial distortion. This problem is very difficult and

highly non-linear due the radial distortion being centered on

the unknown principal point. We develop the first practical

non-minimal solver by using seven point correspondences

(P7Pfruv) instead of the minimum five.

Our major contributions are:

i. To derive new polynomial constraints on the camera

matrix for the case of unit aspect ratio and zero skew.

ii. To develop the first minimal P4.5Pfuv solver (unit as-

pect ratio and zero skew) as well as an extremely fast

P5Pfuva solver (zero skew).

iii. To explore the extremely challenging case of unknown

principal point and radial distortion, and develop the

first practical non-minimal solver using seven point

correspondences.

2. Background and Related Work

Given 2D-to-3D point correspondences, the camera pose

estimation problem aims to estimate the rotation matrix R

and the translation vector t, and possibly all or a subset of

the intrinsic parameters

K =





αf s u

0 f v

0 0 1



 , (1)
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where f denotes the focal length, (u, v) the principal point,

α the aspect ratio, and s the skew.

When all the intrinsic parameters are unknown, the direct

linear transform (DLT) [11] algorithm applies, which uses

at least five and a half point correspondences. In practice,

considering that a part of the intrinsic parameters are usu-

ally known a priori, the DLT algorithm suffers from over-

parametrization, and usually gives inaccurate estimate be-

cause of overfitting in the presence of noisy data.

When all intrinsic parameters except the focal length are

known, several nearly minimal solvers were developed by

using four point correspondences (P4Pf) [2, 24, 17]. These

solvers employed the distance related constraints in the 3D

camera framework, and ignored one constraint in the pro-

cess of solving polynomial systems. Later, Wu [23] pro-

posed the first exactly minimal solver by using three and a

half point correspondences (P3.5Pf) on the basis of a novel

(but occasionally degenerate) parametrization of the camera

projection matrix. Recently, Larsson et al. [18] proposed a

degenerate-free minimal solver from three and a half point

correspondences.

Since consumer photography is now dominated by

mobile-phone and wide-angle action cameras (e.g. GoPro-

type cameras), images with significant radial lens distortion

are quite common. Due to its compactness and expressive

power, the single-parameter division model [7] is widely

used to model radial lens distortion. In the division model

[

x, y, 1 + k(x2 + y2)
]⊤ ≃ PX, (2)

where (x, y) are the centered image coordinates of a pro-

jected 3D point X with a camera projection matrix P , and

k is the distortion parameter. Some researchers have studied

camera pose estimation in the presence of unknown radial

distortion. For example, Josephson and Byröd [13] simulta-

neously estimated the focal length and the distortion in the

absolute pose estimation setup by using four point corre-

spondences (P4Pfr). To reduce the size of the solver, Bujnak

et al. [3] split this P4Pfr problem into the planar and non-

planar case. Later, Kukelova et al. [15] used five point cor-

respondences to accelerate computations. Recently, Lars-

son et al. [18] was able to significantly reduce the elimina-

tion template size for the minimal P4Pfr problem.

All of the solvers above assume that the principal point

is given or centered in the image center. Triggs [21] was

the first to consider estimation of the camera pose with un-

known focal length and principal point. A non-minimal 5-

point solver was presented, although the minimal case is

with four and a half points only. As noted in [21], this

5-point solver is very sensitive to noise due to the non-

minimal parametrization.

In the following, we augment the classical camera ma-

trix constraints and develop the exactly minimal solvers for

P4.5Pfuv and P5Pfuva. In addition, we explore the extreme

non-linearity in the scenario of simultaneous unknown prin-

cipal point and unknown radial distortion, and develop the

first practical non-minimal P7Pfruv solver.

3. Unit Aspect Ratio and Zero Skew

In this section, we focus on the absolute pose problem

without radial distortion. We assume that the only con-

straints on the intrinsic parameters are zero skew (s = 0)

and unit aspect ratio (α = 1). These are natural constraints

which are satisfied by most consumer cameras with a mod-

ern CCD/CMOS sensor.

The constraints for a camera matrix P to admit the fol-

lowing factorization

P = K
[

R t
]

, K =





f u

f v

1



 (3)

are well known and summarized in the following theorem.

Theorem 1 (Faugeras [5], Heyden [12]) The matrix

P =





p
T
1

p14
p
T
2

p24
p
T
3

p34



 (4)

corresponds to a perspective camera with zero skew and

unit aspect ratio if and only if

det
[

p
1
, p

2
, p

3

]

6= 0 (5)

and

(p
1
× p

3
) · (p

2
× p

3
) = 0 (6)

‖p
1
× p

3
‖2 − ‖p

2
× p

3
‖2 = 0 (7)

If only (6) holds the camera has non-unit aspect ratio.

Although formulated differently, the constraints (6) and (7)

are equivalent to the ones used to create the solver from

Triggs [21].

3.1. New Camera Matrix Constraints

The non-zero determinant constraint in (5) is difficult to

incorporate in polynomial solvers. Ignoring this constraint

adds false solutions corresponding to rank deficient camera

matrices. In this section we use tools from algebraic geom-

etry (see e.g. [4]) to find additional polynomial constraints

which ensure that we only recover the true camera matrices.

Let I be the ideal generated by the original constraints,

I =
〈

(p
1
× p

3
) · (p

2
× p

3
), ‖p

1
× p

3
‖2 − ‖p

2
× p

3
‖2
〉

.

(8)
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Using Macaulay2 [9] we find that this ideal is of dimension

71 and degree 16. This means that if we add 7 linear con-

straints we will in general have 16 solutions. Now some of

these solutions might correspond to rank deficient camera

matrices. To remove these solutions we compute the satu-

ration of I w.r.t to the determinant, i.e.

J =

{

f(x)

∣

∣

∣

∣

∃N ≥ 0, det(
[

p
1
, p

2
, p

3

]

)Nf(x) ∈ I

}

.

(9)

The saturated ideal J contains additional polynomial con-

straints which should be satisfied by the correct camera ma-

trices. We find that this ideal is also of dimension 7 but only

of degree 10. This means that in general there are 6 false

solutions corresponding to rank deficient camera matrices

if you only use the constraints in (6) and (7).

The ideal J is generated by the two constraints from (6)

and (7), as well as 5 polynomials of degree 5. To save space

we only present one of these five constraints here,

p11p12p
2

32
p33+p11p12p

3

33
−p11p13p

3

32
−p11p13p32p

2

33
−

p2
12
p31p32p33 + p12p13p31p

2

32
− p12p13p31p

2

33
+

p2
13
p31p32p33 + p21p22p

2

32
p33 + p21p22p

3

33
− p21p23p

3

32
−

p21p23p32p
2

33
− p2

22
p31p32p33 + p22p23p31p

2

32
−

p22p23p31p
2

33
+ p2

23
p31p32p33 = 0.

The remaining constraints and Macaulay2 code for gen-

erating them can be found in the supplementary material.

3.2. Building a Polynomial Solver ­ P4.5Pfuv

Cameras with unit aspect ratio and zero skew have 9 de-

grees of freedom (3 intrinsic and 6 extrinsic), making the

pose estimation problem minimal with 4.5 points. Comput-

ing the three dimensional nullspace to the projection equa-

tions allow us to parametrize the camera matrix with three

unknowns

P = α1P1 + α2P2 + α3P3. (10)

The scale can be fixed by setting α3 = 1. Inserting the first

3× 3 block of (10) into the constraints from Section 3.1 we

get 2 equations of degrees 4 and 5 equations of degree 5 in

the two unknowns α1 and α2. Using the automatic gener-

ator from Larsson et al. [19] we constructed a polynomial

solver with template size 11× 21.

If we only use the two original constraints, (6) and (7),

the automatic generator from Larsson et al. [19] returns a

polynomial solver with template size 20× 36 and if we em-

ploy the automatic saturation technique from [20] to satu-

rate the determinant we get a template of size 34× 50.

3.3. Unknown Aspect Ratio ­ P5Pfuva

In the case of unknown aspect ratio and zero skew we

only have a single constraint (6) on the camera matrix. For

1Note that here we only consider the first 3 × 3 block of the camera

matrix. For the full camera matrix the dimension would be 10.

this ideal no additional constraints are yielded when we sat-

urate the determinant. Cameras with zero skew have 10 de-

grees of freedom (4 intrinsic and 6 extrinsic) and the pose

estimation problem becomes minimal with 5 point corre-

spondences. The linear constraints from 5 points have a

2 dimensional nullspace, allowing us to parameterize the

camera using only a single unknown,

P = α1P1 + P2. (11)

Inserting into the constraint (6) yields a single quartic equa-

tion in α1 that can be efficiently solved.

3.4. Implementation Details

For the 4.5 point solver from Section 3.2 we can get 9

linear constraints from 5 point correspondences by ignor-

ing a coordinates for one of the image points. The ignored

coordinate can then be used to filter solutions. Another ap-

proach is to consider all 5 points (10 linear constraints) and

compute an approximate 3 dimensional nullspace. In exper-

iments we found that this approach is less sensitive to noise,

however the runtime is slightly longer due to the need for

computing an SVD to find the approximate nullspace.

For the zero-skew 5 point solver from Section 3.3 we

need to find the roots to a quartic polynomial. This can be

done by either computing the eigenvalues of the compan-

ion matrix, or using the closed form solution for the quartic.

In experiments we found that these have similar accuracy if

some care is taken to avoid cancellation errors when imple-

menting the closed form solver.

Implemented in C++ the runtimes on a standard desktop

computer are ≈ 120 µs (P4.5Pfuv) and 5 µs (P5Pfuva).

4. Radial Distortion with Unknown Center

Radial distortion adds an extra non-linearity to the pro-

jections which makes pose estimation more difficult. The

problem is further complicated if the center of distortion

(typically the principal point) is unknown. In this case the

projection equations can be written as




x− u

y − v

1 + kd(u, v)



 ≃ diag(f, f, 1)
[

R t
]

(

X

1

)

(12)

where d(u, v) = (x−u)2+(x−v)2. The problem contains

10 degrees of freedom and thus becomes minimal with 5

points. However the minimal problem is extremely difficult

and we have not found any tractable formulation.

4.1. Seven Point Relaxation ­ P7Pfruv

To tackle this problem we instead consider a non-

minimal relaxation using 7 points. The idea is to consider

only the first two equations of (12),
[

x− u

y − v

]

≃ f

[

R1X + t1
R2X + t2

]

(13)
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These equations constrain the projections to lie on the lines

passing through the distortion center (u, v) and the image

point (x, y). This constraint is independent of the focal

length and the radial distortion parameter, since they just

move the projections along these lines.

In (13) we can of course ignore the focal length since it

is non-zero for any interesting solution. Using 2 × 2 deter-

minants we can rewrite the equations as

(x− u)(R2X + t2)− (y − v)(R1X + t1) = 0 (14)

This relaxed problem has 7 degrees of freedom, and

since each point yields a single constraint the problem be-

comes minimal with 7 points. Of course solving (14) only

gives the orientation R, distortion center (u, v) and the first

two components of the translation t1 and t2. The remaining

unknowns in (12) can be solved for linearly, see Section 4.4.

This relaxation is similar to the one made in [15] where

they solved the P4Pfr problem using five points instead of

the minimal four. In [22] Tsai used a similar approach but

did not enforce the constraints on the rotation and simply

solved for the unknowns linearly using more points. How-

ever, in both these works the principal point is assumed to

be known.

4.2. Simplifying the Equations

To solve the equations in (13) we start by doing a change

of coordinate systems such that

x1 = y1 = 0, X1 = (0, 0, 0). (15)

The equations from the first point then reduce to
[

−u

−v

]

≃
[

t1
t2

]

(16)

If we let R be a scaled rotation, we can instead fix the scale

of the camera matrix by setting t1 = u and t2 = v. This

eliminates two unknowns and has the additional benefit that

when we insert this into the equations in (14), the mixed

quadratic terms in (u, v, t1, t2) cancel and we are left with

equations which only depend linearly on (u, v).
Using the hidden variable trick [4] we can eliminate the

distortion center (u, v) from our equations. Rewrite (14) as

M(R)





u

v

1



 = 0 (17)

where M(R) is a 6× 3 matrix depending on the rotation R.

Requiring all 3 × 3 determinants of this matrix to vanish,

we get 20 equations of degree 3 in the elements of R.

Finally using quaternions we parameterize the scaled ro-

tation matrix, i.e. R(q) =
[

q21 + q22 − q23 − q24 2q2q3 − 2q1q4 2q1q3 + 2q2q4

2q1q4 + 2q2q3 q21 − q22 + q23 − q24 2q3q4 − 2q1q2

2q2q4 − 2q1q3 2q1q2 + 2q3q4 q21 − q22 − q23 + q24

]

This yields 20 equations of degree 6 in q = (q1, q2, q3, q4).
Studying this equation system in Macaulay2 [9] we find

that it has 88 solutions. However 16 of these are false solu-

tion introduced in the hidden variable trick (17).

4.3. Removing Symmetries

Using the quaternion parametrization we introduce a 2-

fold symmetry into our problem since R(q) = R(−q). For

this problem there is another symmetry corresponding to

changing the sign of the first two rows of the rotation matrix.

Note that this symmetry is also present in the original (non-

relaxed) problem where the focal length also changes sign.

This type of symmetry also occurred in the WPnP prob-

lem from Larsson et al. [17] and in the P3.5Pf formulation

of [23]. In [17] they handled the symmetry by doing the

following linear change of variables in the quaternion,

q =









0 −i −i 0

−1 0 0 1

i 0 0 i

0 −1 1 0









q̂, (18)

which reduces the symmetry into two sign symmetries in

(q̂1, q̂2) and (q̂3, q̂4). Removing the symmetries collapses

the 88 solutions into 22.

Using the automatic generator from [19] (which auto-

matically handles these sign symmetries) we were able to

construct a polynomial solver with template size 124×162.

4.4. Recovering the Full Solutions

The solver we created only returns the rotation R. To

recover the remaining parameters we first solve linearly for

u, v, t1 and t2 from (14). Since these are part of the relaxed

problem we have an exact solution to this system.

To recover the remaining parameters f, k and t3 we

rewrite the equations in (12) as

(R3X+t3)

[

x− u

y − v

]

= f(1+kd(u, v))

[

R1X + t1
R2X + t2

]

(19)

where we can solve linearly for f, fk and t3. Note in gen-

eral there is no exact solution satisfying all 7 × 2 = 14
equations since we did not solve the true minimal problem.

So instead we solve the linear equations in a least squares

sense.

Since this does not minimize any meaningful geometric

error we can refine the solutions by performing a few itera-

tions of local optimization. Note that this can be done very

quickly since we have very few unknowns and residuals.

Since the division model’s inverse transform is quite messy,

we minimize

7
∑

i=1

∥

∥

∥

∥

[

xi − u

yi − v

]

− f(1 + kdi(u, v))

(R3Xi + t3)

[

R1Xi + t1
R2Xi + t2

]∥

∥

∥

∥

2

(20)

instead of the true reprojection error. Empirically we have

seen that this approximation works well.
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5. Experiments

We experimentally evaluate our new solvers on both syn-

thetic and real image data. For P4.5Pfuv we compare both

using the exact nullspace from 4.5 points (computed using

QR), as well as the approximate nullspace from 5 points

(computed using SVD). For P5Pfuva we compare solving

the quartic equation both using the closed form solution and

by computing the eigenvalues to the companion matrix. For

solvers returning multiple focal length estimates (i.e. non-

unit aspect ratio) we compute the focal length error using

the geometric mean f =
√
f1f2. For the P7Pfruv solver

the results are without the non-linear refinement proposed

in Section 4.4 unless otherwise noted.

For the solver from Triggs [21] we added some nor-

malization of the coordinate systems (scaling and shifting)

since it was not available in the original implementation

available from the author. Experimentally we have observed

that this improves the performance drastically in the pres-

ence of noise.

To save space we only show the errors in the focal length

for some experiments since the other errors are qualitatively

similar. More results are available in the supplementary ma-

terial.

5.1. Stability

In this section we evaluate the numerical stability of the

proposed polynomial solvers. We generated random but

feasible noise-free synthetic problem instances. To gener-

ate the scene we uniformly sample five 3D-points from the

box [−2, 2]×[−2, 2]×[2, 8] in the camera’s local coordinate

system. These are then transformed with a random rotation

and translation. The focal length was drawn uniformly from

the interval [200, 2000] and the principal point was placed

randomly 500 px from the origin.

Figure 1 shows the distribution of the log
10

relative fo-

cal length errors for 10,000 instances. We can see that all

solvers are quite stable.

We ran a similar experiment but where we added radial

distortion to the image points. The distortion parameter was

drawn uniformly from the interval [−0.4, 0]. The results

for the P7Pfruv solver with and without the non-linear re-

finement is shown in Figure 2. On a small number of in-

stances the P7Pfruv solver had issues with numerical sta-

bility. However, these solutions were still a good enough

starting guess for the non-linear refinement (Section 4.4).

5.2. Varying Noise

Next we evaluate the sensitivity to image noise. We use a

similar setup as in Section 5.1 but where we fixed the focal

length fgt = 1000 and added Gaussian noise with varying

standard deviation to the image points. Figure 3 shows the

median relative focal length error against the noise level and

Figure 4 shows the error distribution for σ = 2 px.
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0.4

0.6
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Rel. focal length error

P4.5Pfuv

P4.5Pfuv (SVD)

P5Pfuva (Eig)

P5Pfuva (Closed)

Triggs [21]

Triggs [21] (Norm.)

Figure 1. Relative focal length error
|f−fgt|

fgt
for 10,000 random

synthetic instances.

−16 −14 −12 −10 −8 −6 −4 −2 0
0

0.1

0.2

0.3

Rel. focal length error

P7Pfruv

P7Pfruv (bundle)

Figure 2. Relative focal length error
|f−fgt|

fgt
for 10,000 random

synthetic instances for image points with added radial distortion.

Our new solvers, especially P4.5Pfuv (SVD), performs

the best in the presence of image noise. For the solver from

Triggs [21], the accuracy degrades heavily for noisy image

points. Additionally we can see that normalization of the

image and 3D coordinate systems is essential.

Again we ran a similar experiment but with radial dis-

tortion added to the image points. The distortion parameter

was fixed at kgt = −0.2. The median relative focal length

errors are shown in Figure 5.
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Triggs [21]

Triggs [21] (Norm.)

Figure 3. Median relative focal length error for varying noise.

5.2.1 Comparison to 6p DLT

We also did a comparison with standard 6 point DLT [11].

To get a fair comparison we use 6 points to compute the

approximate nullspace in our P4.5Pfuv (SVD) solver. In

2988
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Figure 4. Distribution of relative focal length error for 2 px noise.
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Figure 5. Median relative focal length error for varying noise with

radial distortion.
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Figure 6. Comparison with 6 point DLT. The graph shows the me-

dian relative focal length error for varying noise levels. Note that

we use 6 points in our P4.5Pfuv solver as well.

Figure 6 we can see that we are able to get better results by

enforcing the correct constraints on the intrinsic parameters.

5.3. Varying Principal Point

In this section we study the effects of varying principal

point. We compare our new solvers to the state-of-the-art

P3.5Pf and P4Pfr solvers from Larsson et al. [18], which

assume that the principal point is in the center of the im-

age. We generate synthetic scenes where the distance from

the origin to the principal point is varied. The ground truth

focal length was fgt = 1000 and we added small Gaussian

noise (σ = 0.1 px) to the image coordinates. For the distor-

tion solvers we also add radial distortion to the image points

with kgt = −0.2. The median errors in the focal length

and rotation are shown in Figure 7. As expected ignoring

the principal point makes the pose estimation significantly

worse.
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Figure 7. Varying principal point. Top: Median relative focal

length error
|f−fgt|

fgt
. Bottom: Median rotation error in degrees.

5.4. Varying Radial Distortion

In this section we compare the performance of the new

solvers when we add varying degrees of radial distortion

to the image points. We generated synthetic scenes simi-

larly to Section 5.2 and added varying radial distortion. The

ground truth focal length was fgt = 1000 and the princi-

pal point was chosen randomly at distance 500 px from the

origin. We also added some small Gaussian noise (σ = 0.1
px) to the image coordinates. Figure 8 shows the median

relative focal length and rotation errors for different radial

distortion parameters. For the solvers which do not model

the radial distortion the error increases drastically when dis-

tortion is added. We can also see that the P7Pfruv solver has

slightly worse performance on image data with little or no

radial distortion.

5.5. Real Data

We evaluated all proposed solvers on real image data and

compared them with the current state-of-the-art solvers. We

downloaded 101 images of the Notre Dame cathedral from

the Internet. All downloaded images have a square resolu-

tion varying from 800 px × 800 px to 3000 px × 3000 px.

Since the images have a square resolution, there was a

higher probability that some of these images were edited or

cropped and that their principal points are not in the center

of the image. Some example images are shown in Figure 9.

Using the RealityCapture software [1] we built a 3D re-

construction of the scene. Since the dataset is quite chal-

lenging and it contains many manually edited images, im-

ages taken at different conditions, or images with a small

overlap, the RealityCapture was only able to register 81 of

the 101 images. The Notre Dame reconstruction contains
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Figure 8. Varying radial distortion. Top: Relative focal length error
|f−fgt|

fgt
. Bottom: Rotation error in degrees.

24762 3D points, the average reprojection error was 0.6277

pixels and the maximum 1.997 pixels over 73543 image

points. According to the principal point estimates returned

by RealityCapture, 32 from 81 images have the principal

point shifted by more than 6% of the image size.

We used the 3D model and 2D-to-3D correspondences

returned by RealityCapture to estimate the pose of each im-

age using the solvers in a simple RANSAC framework with

the number of RANSAC iterations fixed to 1000. We used

the camera intrinsic and extrinsic parameters obtained from

RealityCapture as the ground truth for the experiment. Ta-

ble 1 shows the errors for the focal length, the radial distor-

tion, the camera pose, as well as the ratio of inliers obtained

by different solvers for all 81 registered images. Table 2

shows the same errors for 32 images with the principal point

shift larger than 6% of the image size. The full results, in-

cluding medians of errors, errors for the principal point, the

results for images with small principal point shifts and the

results of the new P7Pfruv solver with non-linear refinement

can be found in the supplementary material.

Overall, the errors are quite small and the new solvers

(marked bold) perform the best. It is visible that solvers

which assume the principal point in the center of the im-

age (P3.5Pf, P4Pfr) perform significantly worse than the

solvers with unknown principal point, especially on images

with larger principal point shift (Table 2). Even though the

images from Notre Dame dataset do not have a significant

radial distortion, the new radial distortion solver helps to

improve the results.

5.6. Real Images with Radial Distortion

Finally, we evaluate our solvers on real images which

have both a shifted principal point and significant radial dis-

tortion. Since it is difficult to generate reliable ground truth

for this problem we took the following approach. We started

with the Rotunda dataset which was used in [16, 18]. The

dataset contains images captured with a wide-angle cam-

eras with large radial distortion and a 3D reconstruction

with cameras’ intrinsic and extrinsic parameters (see [18]

for more details). We used these camera parameters as a

ground truth data. For each image in the dataset we cropped

out 80% of the image, starting from each of the four corners.

See Figure 9 for an example. This gave us a new dataset

with 4×62 = 248 images which have both radial distortion

and shifted principal points.

The results for running 1000 iterations of RANSAC are

shown in Table 3. We can see that the best results are ob-

tained using the new P7Pfruv solver which can model both

radial distortion and shifted principal point. Note that these

are the results without any non-linear refinement. For more

results see the supplementary material.

6. Conclusions

In this paper, we have revisited the camera pose esti-

mation problem with unknown principal point. We pro-

posed effective polynomial constraints to avoid trivial rank-

deficient solutions, and successfully developed the first ex-

actly minimal solver for the case of unknown principal

point and focal length by using four and a half point cor-

respondences (P4.5Pfuv), as well as an extremely efficient

variant using five point correspondences in the presence

of unknown aspect ratio (P5Pfuva). We have also ex-

plored the extremely challenging case of unknown principal

point and radial distortion, and developed the first practical

non-minimal solver by using seven point correspondences

(P7Pfruv). The applicability of these new solvers has been

verified on both synthetic data and real images.

The high non-linearity in the case of both unknown prin-

cipal point and radial distortion prevents us from developing

an exactly minimal solver. We will continue to explore the

feasibility of the exactly minimal problem in the future.
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Figure 9. Example images. Left: Images from the NotreDame internet dataset. Middle: Image from the original Rotunda dataset [16].

Right: Cropped images from the Rotunda dataset used for the experiment in Section 5.6.

P3.5Pf [18] P6P [11] P5Pfuv [21] P4.5Pfuv P4.5Pfuv (SVD) P4.5Pfuv (6pt) P5Pfuva P4Pfr [18] P7Pfruv

mean 0.1256 0.0242 0.0234 0.0209 0.0189 0.0142 0.0243 0.1012 0.0211
Focal length

max 1.3042 0.1342 0.1123 0.1449 0.0962 0.0535 0.1176 0.9307 0.0807

mean 2.9495 1.2067 1.2559 1.2544 1.2564 1.1228 1.2322 3.0043 0.9005
Rotation

max 19.5789 5.1510 4.1978 3.9726 3.8889 4.0754 4.5883 21.7933 2.7497

mean 0.6196 0.1163 0.1249 0.0894 0.0849 0.0714 0.1200 0.4941 0.1016
Translation

max 5.4442 0.6711 1.6183 0.5100 0.5809 0.7289 0.7050 4.1039 0.5929

mean - - - - - - - 0.0868 0.0474
Distortion

max - - - - - - - 1.0509 1.9341

Inlier (%) mean 74.9315 88.0265 86.8770 87.8971 88.6420 89.4039 87.5297 82.1422 93.2453

Table 1. NotreDame dataset: Comparison of different solvers on 81 images with 1000 RANSAC iterations. The table shows the relative

errors except for the rotation errors which are in degrees. The best results are marked bold.

P3.5Pf [18] P6P [11] P5Pfuv [21] P4.5Pfuv P4.5Pfuv (SVD) P4.5Pfuv (6pt) P5Pfuva P4Pfr [18] P7Pfruv

mean 0.2615 0.0295 0.0228 0.0185 0.0186 0.0123 0.0286 0.2177 0.0192
Focal length

max 1.3042 0.1342 0.0809 0.0572 0.0762 0.0437 0.1176 0.9307 0.0807

mean 5.6991 1.6485 1.5334 1.3566 1.3602 1.3361 1.5225 5.9204 0.8759
Rotation

max 19.5789 5.1510 4.1978 3.9726 3.8889 4.0754 4.5883 21.7933 2.7497

mean 1.2483 0.1679 0.1528 0.1004 0.0978 0.0699 0.1646 1.0641 0.1140
Translation

max 5.4442 0.6711 1.6183 0.3328 0.3557 0.2896 0.6612 4.1039 0.4998

mean - - - - - - - 0.1647 0.0240
Distortion

max - - - - - - - 1.0509 0.1082

Inlier (%) mean 61.7820 89.4821 87.9500 89.3505 90.0521 90.8913 88.6629 66.8490 93.0248

Table 2. NotreDame dataset: Comparison of different solvers on 32 images with principal point shift > 6% and 1000 RANSAC iterations.

The table shows the relative errors except for the rotation errors which are in degrees. The best results are marked bold.

P3.5Pf [18] P6P [11] P5Pfuv [21] P4.5Pfuv P4.5Pfuv (SVD) P4.5Pfuv (6pt) P5Pfuva P4Pfr [18] P7Pfruv

mean 0.3696 0.2199 0.1667 0.1699 0.1666 0.1696 0.1928 0.0845 0.0012
Focal length

max 4.1083 0.5135 0.5066 0.4187 0.4461 0.4217 0.5450 0.5896 0.0040

mean 14.6800 10.7499 8.4318 8.4168 8.3194 8.2880 9.7119 13.6371 0.2558
Rotation

max 176.5515 24.4273 22.8580 20.9626 22.7519 22.4078 27.0481 21.1274 0.7516

mean 0.4538 0.1687 0.1446 0.1436 0.1434 0.1450 0.1535 0.2181 0.0043
Translation

max 5.9461 0.8867 0.6083 0.6217 0.6804 0.7358 0.6327 0.7070 0.0138

mean - - - - - - - 0.2042 0.0067
Distortion

max - - - - - - - 2.9758 0.0334

Inlier (%) mean 21.26 40.46 34.73 36.04 36.81 36.93 37.45 33.18 96.78

Table 3. Cropped Rotunda dataset: Comparison of different solvers on 248 images with radial distortion and shifted principal point. The

table shows the relative errors except for the rotation errors which are in degrees. The best results are marked bold.
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