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Abstract

Probabilistic methods for point set registration have

demonstrated competitive results in recent years. These

techniques estimate a probability distribution model of the

point clouds. While such a representation has shown

promise, it is highly sensitive to variations in the den-

sity of 3D points. This fundamental problem is primar-

ily caused by changes in the sensor location across point

sets. We revisit the foundations of the probabilistic regis-

tration paradigm. Contrary to previous works, we model

the underlying structure of the scene as a latent probabil-

ity distribution, and thereby induce invariance to point set

density changes. Both the probabilistic model of the scene

and the registration parameters are inferred by minimiz-

ing the Kullback-Leibler divergence in an Expectation Max-

imization based framework. Our density-adaptive regis-

tration successfully handles severe density variations com-

monly encountered in terrestrial Lidar applications. We

perform extensive experiments on several challenging real-

world Lidar datasets. The results demonstrate that our ap-

proach outperforms state-of-the-art probabilistic methods

for multi-view registration, without the need of re-sampling.

1. Introduction

3D-point set registration is a fundamental problem in

computer vision, with applications in 3D mapping and

scene understanding. Generally, the point sets are acquired

using a 3D sensor, e.g. a Lidar or an RGBD camera. The

task is then to align point sets acquired at different po-

sitions, by estimating their relative transformations. Re-

cently, probabilistic registration methods have shown com-

petitive performance in different scenarios, including pair-

wise [19, 14, 15] and multi-view registration [10, 6].

In this work, we revisit the foundations of the probabilis-

tic registration paradigm, leading to a reformulation of the

Expectation Maximization (EM) based approaches [10, 6].

In these approaches, a Maximum Likelihood (ML) formu-

lation is used to simultaneously infer the transformation

Figure 1. Two example Lidar scans (top row), with signifi-

cantly varying density of 3D-points. State-of-the-art probabilistic

method [6] (middle left) only aligns the regions with high density.

This is caused by the emphasis on dense regions, as visualized by

the Gaussian components in the model (black circles in bottom

left). Our method (right) successfully exploits essential informa-

tion available in sparse regions, resulting in accurate registration.

parameters, and a Gaussian mixture model (GMM) of the

point distribution. Our formulation instead minimizes the

Kullback-Leibler divergence between the mixture model

and a latent scene distribution.

Common acquisition sensors, including Lidar and

RGBD cameras, do not sample all surfaces in the scene

with a uniform density (figure 1, top row). The density of

3D-point observations is highly dependent on (1) the dis-

tance to the sensor, (2) the direction of the surface relative

to the sensor, and (3) inherent surface properties, such as

specularity. Despite recent advances, state-of-the art prob-
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abilistic methods [19, 10, 6, 15, 14] struggle under varying

sampling densities, in particular when the translational part

of the transformation is significant. The density variation is

problematic for standard ML-based approaches since each

3D-point corresponds to an observation with equal weight.

Thus, the registration focuses on regions with high point

densities, while neglecting sparse regions.

This negligence is clearly visible in figure 1 (bottom

left), where registration has been done using CPPSR [6].

Here the vast majority of Gaussian components (black cir-

cles) are located in regions with high point densities. A

common consequence of this is inaccurate or failed regis-

trations. Figure 1 (middle right) shows an example regis-

tration using our approach. Unlike the existing method [6],

our model exploits information available in both dense and

sparse regions of the scene, as shown by the distribution of

Gaussian components (figure 1, bottom right).

1.1. Contributions

We propose a probabilistic point set registration ap-

proach that counters the issues induced by sampling den-

sity variations. Our approach directly models the underly-

ing structure of the 3D scene using a novel density-adaptive

formulation. The probabilistic scene model and the trans-

formation parameters are jointly inferred by minimizing the

Kullback-Leibler (KL) divergence with respect to the latent

scene distribution. This is enabled by modeling the acqui-

sition process itself, explicitly taking the density variations

into account. To this end, we investigate two alternative

strategies for estimating the acquisition density: a model-

based and a direct empirical method. Experiments are per-

formed on several challenging Lidar datasets, demonstrat-

ing the effectiveness of our approach in difficult scenarios

with drastic variations in the sampling density.

2. Related work

The problem of 3D-point set registration is extensively

pursued in computer vision. Registration methods can be

coarsely categorized into local and global methods. Local

methods rely on an initial estimate of the relative transfor-

mation, which is then iteratively refined. The typical ex-

ample of a local method is the Iterative Closest Point (ICP)

algorithm. In ICP, registration is performed by iteratively

alternating between establishing point correspondences and

refining the relative transformation. While the standard ICP

[1] benefits from a low computational cost, it is limited by

a narrow region of convergence. Several works [23, 21, 4]

investigate how to improve the robustness of ICP.

Global methods instead aim at finding the global solu-

tion to the registration problem. Many global methods rely

on local ICP-based or probabilistic methods and use, e.g.,

multiple restarts [17], graph optimization [24], branch-and-

bound [3] techniques to search for a globally optimal regis-

tration. Another line of research is to use feature descriptors

to find point correspondences in a robust estimation frame-

work, such as RANSAC [20]. Zhou et al. [27] also use

feature correspondences, but minimize a Geman-McClure

robust loss. A drawback of such global methods is the re-

liance on accurate geometric feature extraction.

Probabilistic registration methods model the distribution

of points as a density function. These methods perform

alignment either by employing a correlation based approach

or using an EM based optimization framework. In cor-

relation based approaches [25, 15], the point sets are first

modeled separately as density functions. The relative trans-

formation between the points set is then obtained by mini-

mizing a metric or divergence between the densities. These

methods lead to nonlinear optimization problems with non-

convex constraints. Unlike correlation based methods, the

EM based approaches [19, 10] find an ML-estimate of the

density model and transformation parameters.

Most methods implicitly assume a uniform density of

the point clouds, which is hardly the case in most applica-

tions. The standard approach [22] to alleviate the problems

of varying point density is to re-sample the point clouds in

a separate preprocessing step. The aim of this strategy is to

achieve an approximately uniform distribution of 3D points

in the scene. A common method is to construct a voxel

grid and taking the mean point in each voxel. Compara-

ble uniformity is achieved using the Farthest Point Strategy

[8], were points are selected iteratively to maximize the dis-

tance to neighbors. Geometrically Stable Sampling (GSS)

[11] also incorporates surface normals in the sample selec-

tion process. However, such re-sampling methods have sev-

eral shortcomings. First, 3D scene information is discarded

as observations are grouped together or removed, leading to

sparsification of the point cloud. Second, the sampling rate,

e.g. voxel size, needs to be hand picked for each scenario

as it depends on the geometry and scale of the point cloud.

Third, a suitable trade-off between uniformity and sparsity

must be found. Thus, such preprocessing steps are compli-

cated and their efficacy is questionable. In this paper, we

instead explicitly model the density variations induced by

the sensor.

There exist probabilistic registration methods that tackle

the problem of non-uniform sampling density [2, 13]. In

[2], a one class support vector machine is trained for pre-

dicting the underlying density of partly occluded point sets.

The point sets are then registered by minimizing the L2 dis-

tance between the density models. In [16], an extended EM

framework for modeling noisy data points is derived, based

on minimizing the KL divergence. This framework was

later exploited for outlier handling in point set registration

[13]. Unlike these methods, we introduce a latent distribu-

tion of the scene and explicitly model the point sampling

density using either a sensor model or an empirical method.
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3. Method

In this work, we revisit probabilistic point cloud registra-

tion, with the aim of alleviating the problem of non-uniform

point density. To show the impact of our model, we employ

the Joint Registration of Multiple Point Clouds (JRMPC)

[10]. Compared to previous probabilistic methods, JRMPC

has the advantage of enabling joint registration of multiple

input point clouds. Furthermore, this framework was re-

cently extended to use color [6], geometric feature descrip-

tors [5] and incremental joint registration [9]. However, our

approach can be applied to a variety of other probabilistic

registration approaches. Next, we present an overview of

the baseline JRMPC method.

3.1. Probabilistic Point Set Registration

Point set registration is the problem of finding the rela-

tive geometric transformations between M different sets of

points. We directly consider the general case where M ≥ 2.

Each set Xi = {xij}Ni

j=1, i = 1, . . . ,M , consists of 3D-

point observations xij ∈ R
3 obtained from, e.g., a Lidar

scanner or an RGBD camera. We let capital letters Xij de-

note the associated random variables for each observation.

In general, probabilistic methods aim to model the probabil-

ity densities pXi
(x), for each point set i, using for instance

Gaussian Mixture Models (GMMs).

Different from previous approaches, JRMPC derives the

densities pXi
(x) from a global probability density model

pV (v|θ), which is defined in a reference coordinate frame

given parameters θ. The registration problem can then

be formulated as finding the relative transformations from

point set Xi to the reference frame. We let φ(·;ω) : R3 →
R

3 be a 3D transformation parametrized by ω ∈ R
D. The

goal is then to find the parameters ωi of the transformation

from Xi to the reference frame, such that φ(Xij ;ωi) ∼ pV .

Similarly to previous works [10, 6], we focus on the most

common case of rigid transformation φ(x;ω) = Rωx+ tω .

In this case, the density model of each point set is obtained

as pXi
(x|ωi, θ) = pV (φ(x;ωi)|θ).

The density pV (v|θ) is composed by a mixture of Gaus-

sian distributions,

pV (v|θ) =
K
∑

k=1

πkN (v;µk,Σk) . (1)

Here, N (v;µ,Σ) is a Gaussian density with mean µ and

covariance Σ. The number of components is denoted by K
and πk is the prior weight of component k. The set of all

mixture parameters is thus θ = {πk, µk,Σk}Kk=1.

Different from previous works, the mixture model pa-

rameters θ and transformation parameters ω are inferred

jointly in the JRMPC framework, assuming independent

observations. This is achieved by maximizing the log-

likelihood function,

L(Θ;X1, . . . ,XM ) =

M
∑

i

Ni
∑

j

log(pV (φ(xij ;ωi)|θ)) . (2)

Here, we denote the set of all parameters in the model

as Θ = {θ, ω1, . . . , ωM}. Inference is performed with

the Expectation Maximization (EM) algorithm, by first

introducing a latent variable Z ∈ {1, . . . ,K} that as-

signs a 3D-point V to a particular mixture component

Z = k. The complete data likelihood is then given by

pV,Z(v, k|θ) = pZ(k|θ)pV |Z(v|k, θ), where pZ(k|θ) = πk

and pV |Z(v|k, θ) = N (v;µk,Σk). The original mixture

model (1) is recovered by marginalizing the complete data

likelihood over the latent variable Z.

The E-step in the EM algorithm involves computing the

expected complete-data log likelihood,

Q(Θ;Θn)=

M
∑

i

Ni
∑

j

EZ|xij ,Θn[log(pV,Z(φ(xij ;ωi), Z|θ))] .

(3)

Here, the conditional expectation is taken over the latent

variable given the observed point xij and the current esti-

mate of the model parameters Θn. In the M-step, the model

parameters are updated as Θn+1 = argmaxΘ Q(Θ;Θn).
This process is then repeated until convergence.

3.2. Sampling Density Adaptive Model

To tackle the issues caused by non-uniform point den-

sities, we revise the underlying formulation and model as-

sumptions. Instead of modeling the density of 3D-points,

we aim to infer a model of the actual 3D-structure of the

scene. To this end, we introduce the latent probability dis-

tribution of the scene qV (v). Loosely defined, it is seen

as a uniform distribution on the observed surfaces in the

scene. Intuitively, qV (v) encodes all 3D-structure, i.e.

walls, ground, objects etc., that is measured by the sen-

sor. Different models of qV (v) are discussed is section 3.4.

Technically, qV might not be absolutely continuous and is

thus regarded a probability measure. However, we will de-

note it as a density function to simplify the presentation.

Our goal is to model qV (v) as a parametrized density

function pV (v|θ). We employ a GMM (1) and minimize

the Kullback-Leibler (KL) divergence from pV to qV ,

KL(qV ||pV ) =
∫

log

(

qV (v)

pV (v|θ)

)

qV (v) dv . (4)

Utilizing the decomposition of the KL-divergence

KL(qV ||pV ) = H(qV , pV )−H(qV ) into the cross entropy

H(qV , pV ) and entropy H(qV ) of qV , we can equivalently

maximize,

E(Θ) = −H(qV , pV ) =

∫

log (pV (v|θ)) qV (v)dv (5)
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In (5), the integration is performed in the reference frame

of the scene. On the other hand, the 3D points xij are ob-

served in the coordinate frames of the individual sensors.

As in section 3.1, we relate these coordinate frames with the

transformations φ(·;ωi). By applying the change of vari-

ables v = φ(x;ωi), we obtain

E(Θ) =
1

M

M
∑

i=1

∫

R3

log (pV (φ(x;ωi)|θ)) · (6)

qV (φ(x;ωi))|det(Dφ(x;ωi))| dx .

Here, |det(Dφ(x;ωi))| is the determinant of the Jacobian

of the transformation. From now on, we assume rigid trans-

formations, which implies |det(Dφ(x;ωi))| = 1.

We note that if {xij}Ni

i=1 are independent samples from

qV (φ(x;ωi)), the original maximum likelihood formulation

(2) is recovered as a Monte Carlo sampling of the objective

(6). Therefore, the conventional ML formulation (2) relies

on the assumption that the observed points xij follow the

underlying uniform distribution of the scene qV . However,

this assumption completely neglects the effects of the acqui-

sition sensor. Next, we address this problem by explicitly

modeling the sampling process.

In our formulation, we consider the points in set i to be

independent samples xij ∼ qXi
of a distribution qXi

(x). In

addition to the 3D structure qV of the scene, qXi
can also

depend on the position and properties of the sensor, and the

inherent properties of the observed surfaces. This enables

more realistic models of the sampling process to be em-

ployed. By assuming that the distribution qV is absolutely

continuous [7] w.r.t. qXi
, eq. (6) can be written,

E(Θ)=
M
∑

i=1

∫

R3

log (pV (φ(x;ωi)|θ))
qV (φ(x;ωi))

qXi
(x)

qXi
(x) dx.

(7)

Here, we have also ignored the factor 1/M . The frac-

tion fi(x) = qV (φ(x;ωi))
qXi

(x) is known as the Radon-Nikodym

derivative [7] of the probability distribution qV (φ(x;ωi))
with respect to qXi

(x). Intuitively, fi(x) is the ratio be-

tween the density in the latent scene distribution and the

density of points in point cloud Xi. Since it weights the ob-

served 3D-points based on the local density, we term it the

observation weighting function. In section 3.4, we later in-

troduce two different approximations of fi(x) to model the

sampling process itself.

3.3. Inference

In this section, we describe the inference algorithm used

to minimize (7). We show that the EM-based frame-

work used in [10, 6] also generalizes to our model. As

in section 3.1, we apply the latent variable Z and the

complete-data likelihood pV,Z(v, k|θ). We define the ex-

pected complete-data cross entropy as,

Q(Θ,Θn) = (8)

M
∑

i=1

∫

R3

EZ|x,Θn [log (pV,Z(φ(x;ωi), Z|θ))] fi(x)qXi
(x) dx.

Here, Θn is the current estimate of the parameters. The E-

step involves evaluating the expectation in (8), taken over

the probability distribution of the latent variable,

pZ|Xi
(k|x,Θ) =

pXi,Z(x, k|Θ)
∑K

k=1 pXi,Z(x, k|Θ)

=
πkN (φ(x;ωk);µk,Σk)

∑K
l=1 πlN (φ(x;ωl);µl,Σl)

. (9)

To maximize (8) in the M-step, we first perform a

Monte Carlo sampling of (8). Here we use the assump-

tion that the observations are independent samples drawn

from xij ∼ qXi
. To simplify notation, we define αn

ijk =
pZ|Xi

(k|xij ,Θ
n). Then (8) is approximated as,

Q(Θ,Θn) ≈ Q(Θ,Θn) = (10)

M
∑

i=1

1

Ni

Ni
∑

j=1

K
∑

k=1

αn
ijkfi(xij) log (pV,Z(φ(xij ;ωi), k|θ)) .

Please refer to the supplementary material for a detailed

derivation of the EM procedure.

The key difference of (10) compared to the ML case

(3), is the weight factor fi(xij). This factor effectively

weights each observation xij based on the local density

of 3D points. Since the M-step has a form similar to (3),

we can apply the optimization procedure proposed in [10].

Specifically, we employ two conditional maximization steps

[18], to optimize over the mixture parameters θ and trans-

formation parameters ωi respectively. Furthermore, our ap-

proach can be extended to incorporate color information us-

ing the approach proposed in [6].

3.4. Observation Weights

We present two approaches of modeling the observation

weight function fi(x). The first is based on a sensor model,

while the second is an empirical estimation of the density.

3.4.1 Sensor Model Based

Here, we estimate the sampling distribution qXi
by model-

ing the acquisition sensor itself. For this method we there-

fore assume that the type of sensor (e.g. Lidar) is known

and that each point set Xi consists of a single scan. The

latent scene distribution qV is modeled as a uniform dis-

tribution on the observed surfaces S. That is, S is a 2-

dimensional manifold consisting of all observable surfaces.
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Thus, we define qV (A) = 1
|S|

∫

S∩A
dS for any measur-

able set A ⊂ R
3. For simplicity, we use the same notation

qV (A) = P(V ∈ A) for the probability measure qV of V .

We use |S| =
∫

S
dS to denote the total area of S.

We model the sampling distribution qXi
based on the

properties of a terrestrial Lidar. It can however be extended

to other sensor geometries, such as time-of-flight cameras.

We can without loss of generality assume that the Lidar is

positioned in the origin x = 0 of the sensor-based refer-

ence frame in Xi. Further, let Si = φ−1
i (S) be the scene

transformed to the reference frame of the sensor. Here, we

use φi(x) = φ(x, ωi) to simplify notation. We note that the

density of Lidar rays is decreasing quadratically with dis-

tance. For this purpose, we model the Lidar as light source

emitting uniformly in all directions of its field of view. The

sampling probability density at a visible point x ∈ Si is then

proportional to the absorbed intensity, calculated as
n̂T
xx̂

‖x‖2 .

Here, n̂x is the unit normal vector of Si at x, ‖ · ‖ is the

Euclidean norm and x̂ = x/‖x‖.

The sampling distribution is defined as the probability of

observing a point in a subset A ⊂ R
3. It is obtained by

integrating the point density over the part of the surface S
intersecting A,

qXi
(A)=

∫

Si∩A

gi
|S| dSi, gi(x)=

{

a
n̂T
xx̂

‖x‖2 , x ∈ Si ∩ Fi

ε , otherwise

(11)

Here, Fi ⊂ R
3 is the observed subset of the scene, ε is

the outlier density and a is a constant such that the prob-

ability integrates to 1. Using the properties of qV , we can

rewrite (11) as qXi
(A) =

∫

A
gi d(qV ◦ φi). Here, qV ◦ φi

is the composed measure qV (φi(A)). From the proper-

ties of the Radon-Nikodym derivative [7], we obtain that

fi = d(qV ◦φi)
dqXi

= 1
gi

. In practice, surface normal esti-

mates can be noisy, thus promoting the use of a regular-

ized quotient fi(x) = a ‖x‖2

γn̂T
xx̂+1−γ

, for some fix parameter

γ ∈ [0, 1]. Note that the calculation of fi(x) only requires

information about the distance ‖x‖ to the sensor and the

normal n̂x of the point cloud at x. For details and deriva-

tions, see the supplementary material.

3.4.2 Empirical Sample Model

As an alternative approach, we propose an empirical model

of the sampling density. Unlike the sensor-based model in

section 3.4.1, our empirical approach does not require any

information about the sensor. It can thus be applied to arbi-

trary point clouds, without any prior knowledge. We mod-

ify the latent scene model qV from sec. 3.4.1 to include a 1-

dimensional Gaussian distribution in the normal direction of

the surface S. This uncertainty in the normal direction mod-

els the coarseness or evenness of the surface, which leads to

1 2 3 4 5 6

Figure 2. Visualization of the observation weight computed using

our sensor based model (left) and empirical method (right). The

3D-points in the densely sampled regions in the vicinity of the Li-

dar are assigned low weights, while the impact of points in the

sparser regions are increased. The two approaches produce visu-

ally similar results. The main differences are seen in the transitions

from dense to sparser regions.

variations orthogonal to the underlying surface. In the local

neighborhood of a point v̄ ∈ S, we can then approximate

the latent scene distribution as a 1-dimensional Gaussian in

the normal direction qV (v) ≈ 1
|S|N (n̂T

v̄(v − v̄); 0, σ2
n̂(v̄)).

It is motivated by a locally planar approximation of the sur-

face S at v̄, where qV (v) is constant in the tangent directions

of S. Here, σ2
n̂(v̄) is the variance in the normal direction.

To estimate the observation weight function f(x) =
qV (φ(x))
qX(x) , we also find a local approximation of the sam-

pling density qX(x). For simplicity, we drop the point set

index i in this section and assume a rigid transformation

φ(x) = Rx + t. First, we extract the L nearest neigh-

bors x1, . . . , xL of the 3D point x in the point cloud. We

then find the local mean x̄ = 1
L

∑

l xl and covariance

C = 1
L−1

∑

l(xl − x̄)T(xl − x̄). This yields the local

sampling density estimate qX(x) ≈ L
N
N (x; x̄, C). Let

C = BDBT be the eigenvalue decomposition of C with

B = (b̂1, b̂2, b̂3) and D = diag(σ2
1 , σ

2
2 , σ

2
3), and eigenval-

ues sorted in descending order. Since we assume the points

to originate from a locally planar region, we deduce that

σ2
1 , σ

2
2 ≫ σ2

3 . Furthermore, b̂3 and σ2
3 approximate the nor-

mal direction of the surface and the variance in this direc-

tion. We utilize this information for estimating the local

latent scene distribution, by setting v̄ = φ(x̄), n̂v̄ = Rb̂3
and σ2

n̂(v̄) = σ2
3 . We then obtain,

f(x) =
qV (φ(x))

qX(x)
∝ σ1σ2e

1

2
(x − x̄)TB

(

σ
−2

1
0 0

0 σ
−2

2
0

0 0 0

)

BT(x − x̄)
.

(12)

Here, we have omitted proportionality constants indepen-

dent of the point location x in f(x), since they do not

influence the objective (7). A detailed derivation is pro-

vided in the supplementary material. In practice, we found

f(x) ∝ σ1σ2 to be a sufficiently good approximation since
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σ−2
1 , σ−2

2 ≈ 0 and x̄ ≈ x.

Note that the observation weights fi(xij) in (10) can be

precomputed once for every registration. The added com-

putational cost of the density adaptive registration method

is therefore minimal and in our experiments we only ob-

served an increase in computational time of 2% compared

to JRMPC. In figure 2, the observation weights fi(xij) are

visualized for both the sensor based model (left) and empir-

ical method (right).

4. Experiments

We integrate our sampling density adaptive model in

the probabilistic framework JRMPC [10]. Furthermore,

we evaluate our approach, when using feature information,

by integrating the model in the color based probabilistic

method CPPSR [6].

First we perform a synthetic experiment to highlight the

impact of sampling density variations on point set registra-

tion. Second, we perform quantitative and qualitative evalu-

ations on two challenging Lidar scan datasets: Virtual Photo

Sets [26] and the ETH TLS [24]. Further detailed results are

presented in the supplementary material.

4.1. Experimental Details

Throughout the experiments we randomly generate

ground-truth rotations and translations for all point sets.

The point sets are initially transformed using this ground-

truth. The resulting point sets are then used as input for

all compared registration methods. For efficiency reasons

we construct a random subset of 10k points for each scan

in all the datasets. The experiments on the point sets from

VPS and ETH TLS are conducted in two settings. First,

we perform direct registration on the constructed point sets.

Second, we evaluate all compared registration methods, ex-

cept for our density adaptive model, on re-sampled point

sets. The registration methods without density adaptation,

however, are sensitive to the choice of re-sampling tech-

nique and sampling rate. In the supplementary material we

provide an exhaustive evaluation of FPS [8], GSS [11] and

voxel grid re-sampling at different sampling rates. We then

extract the best performing re-sampling settings for each

registration method and use it in the comparison as an em-

pirical upper bound in performance.

Method naming: We evaluate two main variants of the

density adaptive model. In the subsequent performance

plots and tables, we denote our approach using the sensor

model based observation weights in section 3.4.1 by DARS,

and the empirical observation weights in section 3.4.2 by

DARE.

Parameter settings: We use the same values for all the

parameters that are shared between our methods and the

two baselines: the JRMPC and CPPSR. As in [10], we

use a uniform mixture component to model the outliers.

Figure 3. The synthetic 3D scene. Left: Rendering of the scene.

Right: Top view of re-sampled point set with varying density.

In our experiments, we set the outlier ratio 0.005 and fix

the spatial component weights πk to uniform. In case of

pairwise registration, we set the number of spatial compo-

nents K = 200. In the joint registration scenario, we set

K = 300 for all methods to increase the capacity of the

model for larger scenes. We use 50 EM iterations for both

the pairwise and joint registration scenarios. In case of color

features, we use 64 components as proposed in [6].

In addition to the above mentioned parameters, we use

the L = 10 nearest neighbors to estimate σ1 and σ2 in sec-

tion 3.4.2. To regularize the observation weights fi(xij)
(section 3.4) and remove outlier values, we first perform

a median filtering using the same neighborhood size of

L = 10 points. We then clip all the observation weights that

exceed a certain threshold. We fix this threshold to 8 times

the mean value of all observation weights within a point

set. In the supplementary material we provide an analysis

of these parameters and found our method not to be sensi-

tive to the parameter values. For the sensor model approach

(section 3.4.1) we set γ = 0.9. We keep all parameters fix

in all experiments and datasets.

Evaluation Criteria: The evaluation is performed by com-

puting the angular error (i.e. the geodesic distance) be-

tween the found rotation, R, and the ground-truth rota-

tion, Rgt. This distance is computed via the Frobenius

distance dF (R,Rgt), using the relation dG(R1, R2) =

2 sin−1(dF (R1, R2)/
√
8), which is derived in [12]. To

evaluate the performance in terms of robustness, we report

the failure rate as the percentage of registrations with an an-

gular error greater than 4 degrees. Further, we present the

accuracy in terms of the mean angular error among inlier

registrations. In the supplementary material we also pro-

vide the translation error.

4.2. Synthetic Data

We first validate our approach on a synthetic dataset to

isolate the impact of sampling density variations on pair-

wise registration. We construct synthetic point clouds by

performing point sampling on a polygon mesh that simu-

lates an indoor 3D scene (see figure 3 left). We first sample

uniformly, and densely. We then randomly select a virtual
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Figure 4. Recall curves with respect to the angular error. (a) Re-

sults on the synthetic dataset. Our DARE approach closely fol-

lows the upper bound, DAR-ideal. (b) Results on the combined

VPS and TLS ETH datasets. In all cases, our DARE approach

significantly improves over the baseline JRMPC [10].

Avg. inlier error (◦) Failure rate (%)

JRMPC 2.44±0.87 90.4

JRMPC-eub 1.67±0.92 46.0

ICP 1.73±1.04 62.6

ICP-eub 1.81±0.99 55.7

CPD 1.88±1.25 90.0

CPD-eub 1.30±0.95 40.8

DARE 1.45±0.89 43.3

Table 1. A comparison of our approach with existing methods in

terms of average inlier angular error and failure rate for pairwise

registration on the combined VPS and TLS ETH dataset. The

methods with the additional -eub in the name are the empirical

upper bounds using re-sampling. Our DARE method improves

over the baseline JRMPC, regardless of re-sampling settings, both

in terms of accuracy and robustness.

sensor location. Finally, we simulate Lidar sampling den-

sity variations by randomly removing points according to

their distances to the sensor position (see figure 3 right). In

total the synthetic dataset contains 500 point set pairs.

Figure 4a shows the recall curves, plotting the ratio of

registrations with an angular error smaller than a threshold.

We report results for the baseline JRMPC and our DARE

method. We also report the results when using the ideal

sensor sample model to compute the observation weights

fi(xij), called DAR-ideal. Note that the same sampling

function was employed in the construction of the virtual

scans. This method therefore corresponds to an upper per-

formance bound of our DARE approach.

The baseline JRMPC model struggles in the presence of

sampling density variations, providing inferior registration

results with a failure rate of 85 %. Note that the JRMPC

corresponds to setting the observation weights to uniform

fi(xij) = 1 in our approach. The proposed DARE, signifi-

cantly improves the registration results by reducing the fail-

ure rate from 85 % to 2 %. Further, the registration perfor-

mance of DARE closely follows the ideal sampling density

model, demonstrating the ability of our approach to adapt

to sampling density variations.

4.3. Pairwise Registration

We perform pairwise registration experiments on the

joint Virtual Photo Set (VPS) [26] and the TLS ETH [24]

datasets. The VPS dataset consists of Lidar scans from two

separate scenes, each containing four scans. The TLS ETH

dataset consists of two separate scenes, with seven and five

scans respectively. We randomly select pairs of different

scans within each scene, resulting in total 3720 point set

pairs. The ground-truth for each pair is generated by first

randomly selecting a rotation axis. We then rotate one of

the point sets with a rotation angle (within 0-90 degrees)

around the rotation axis and apply a random translation,

drawn from a multivariate normal distribution with standard

deviation 1.0 meters in all directions.

Table 4b shows pairwise registration comparisons in

terms of angular error on the joint dataset. We compare

the baseline JRMPC [10] with both of our sampling den-

sity models: DARE and DARS. We also show the results

for DARS without using normals, i.e. setting γ = 0 in sec-

tion 3.4.1, in the DARS-g0 curve. All the three variants

of our density adaptive approach significantly improve over

the baseline JRMPC [10]. Further, our DARE model pro-

vides the best results. It significantly reduces the failure rate

from 90.4% to 43.3%, compared to the JRMPC method.

We also compare our empirical density adaptive model

with several existing methods in the literature. Table 1

shows the comparison of our approach with the JRMPC

[10], ICP1 [1], and CPD [19] methods. We present numeri-

cal values for the methods in terms of average inlier angular

error and the failure rate.

Additionally, we evaluate the existing methods using re-

sampling. In the supplementary material we provide an

evaluation of different re-sampling approaches at different

sampling rates. For each of the methods JRMPC [10],

ICP [1], and CPD [19], we select the best performing re-

sampling approach and sampling rate. In practical applica-

tions however, such comprehensive exploration of the re-

sampling parameters is not feasible. In this experiment,

the selected re-sampling settings serve as empirical upper

bounds, denoted by -eub in the method names in table 1.

From table 1 we conclude that regardless of re-sampling

approach, our DARE still outperforms JRMPC, both in

terms of robustness and accuracy. The best performing

method overall was the empirical upper bound for CPD

with re-sampling. However, CPD is specifically designed

for pairwise registration, while JRMPC and our approach

also generalize to multi-view registration.

4.4. Multi­view registration

We evaluate our approach in a multi-view setting, by

jointly registering all four point sets in the VPS indoor

1We use the built-in Matlab implementation of ICP.

3835



(a) CPPSR (b) DARE-color

Figure 5. Joint registration of the four point sets in the VPS indoor dataset. (a) CPPSR [6] only aligns the high density regions and neglects

sparsely sampled 3D-structure. (b) Corresponding registration using our density adaptive model incorporating color information.
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Figure 6. A multi-view registration comparison of our density

adaptive model and existing methods, in terms of angular error

on the VPS indoor dataset. Our model provides lower failure rate

compared to the baseline methods JRMPC and CPPSR, also in

comparison to the empirical upper bound.

dataset. We follow a similar protocol as in the pairwise reg-

istration case (see supplementary material). In addition to

the JRMPC, we also compare our color extension with the

CPPSR approach of [6]. Table 2 and figure 6 shows the

multi-view registration results on the VPS indoor dataset.

As in the pairwise scenario, the selected re-sampled ver-

sions are denoted by -eub in the method name. We use

the same re-sampling settings for JRMPC and CPPSR as

for JRMPC in the pairwise case. Both JRMPC and CPPSR

have a significantly lower accuracy and a higher failure rate

compared to our sampling density adaptive models. We fur-

ther observe that re-sampling improves both JRMPC and

CPPSR, however, not to the same extent as our density

adaptive approach. Figure 5 shows a qualitative comparison

between our color based approach and the CPPSR method

[6]. In agreement with the pairwise scenario (see figure 1)

Avg. inlier error (◦) Failure rate (%)

CPPSR 2.57±0.837 87.4

CPPSR-eub 1.63±0.807 20.9

JRMPC 2.38±1.01 92.1

JRMPC-eub 2.13±0.83 38.6

DARE-color 1.26±0.61 14.5

DARE 1.84±0.80 36.0

Table 2. A multi-view registration comparison of our density adap-

tive model with existing methods in terms of average inlier angular

error and failure rate on the VPS indoor dataset. Methods with -

eub in the name are empirical upper bounds. Our model provides

improved results, both in terms of robustness and accuracy.

CPPSR locks on to the high density regions, while our den-

sity adaptive approach successfully registers all scans, pro-

ducing an accurate reconstruction of the scene. Further, we

provide additional results on the VPS outdoor dataset in the

supplementary material.

5. Conclusions

We investigate the problem of sampling density varia-

tions in probabilistic point set registration. Unlike previous

works, we model both the underlying structure of the 3D

scene and the acquisition process to obtain robustness to

density variations. Further, we jointly infer the scene model

and the transformation parameters by minimizing the KL

divergence in an EM based framework. Experiments are

performed on several challenging Lidar datasets. Our pro-

posed approach successfully handles severe density vari-

ations commonly encountered in real-world applications.
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