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Abstract

In this paper, we study a nonconvex continuous relax-

ation of MAP inference in discrete Markov random fields

(MRFs). We show that for arbitrary MRFs, this relaxation

is tight, and a discrete stationary point of it can be eas-

ily reached by a simple block coordinate descent algorithm.

In addition, we study the resolution of this relaxation us-

ing popular gradient methods, and further propose a more

effective solution using a multilinear decomposition frame-

work based on the alternating direction method of multi-

pliers (ADMM). Experiments on many real-world problems

demonstrate that the proposed ADMM significantly outper-

forms other nonconvex relaxation based methods, and com-

pares favorably with state of the art MRF optimization al-

gorithms in different settings.

1. Introduction

Finding the maximum a posteriori (MAP) configuration

is a fundamental inference problem in undirected proba-

bilistic graphical models, also known as Markov random

fields (MRFs). This problem is described as follows.

Let s ∈ S = S1×· · ·×Sn denote an assignment to n dis-

crete random variables S1, . . . , Sn where each variable Si

takes values in a finite set of states (or labels) Si. Let G be a

graph of n nodes with the set of cliques C. Consider an MRF

representing a joint distribution p(S) := p(S1, . . . , Sn) that

factorizes over G, i.e. p(·) takes the form:

p(s) =
1

Z

∏

C∈C
ψC(sC) ∀s ∈ S, (1)

where sC is the joint configuration of the variables in the

clique C, ψC are positive functions called potentials, and

Z =
∑

s

∏

C∈C ψC(sC) is a normalization factor called

partition function.

The MAP inference problem consists of finding the most

likely assignment to the variables, i.e.:

s∗ ∈ argmax
s∈S

p(s) = argmax
s∈S

∏

C∈C
ψC(sC). (2)

For each clique C, let SC =
∏

i∈C Si be the set of its joint

configurations and define

fC(sC) = − logψC(sC) ∀sC ∈ SC . (3)

It is straightforward that the MAP inference problem (2) is

equivalent to minimizing the following function, called the

energy of the MRF:

e(s) =
∑

C∈C
fC(sC). (4)

MRF optimization has been constantly attracting a sig-

nificant amount of research over the last decades. Since

this problem is in general NP-hard [22], various approx-

imate methods have been proposed and can be roughly

grouped into two classes: (a) methods that stay in the dis-

crete domain, such as move-making and belief propaga-

tion [5, 7, 15, 27], or (b) methods that move into the continu-

ous domain by solving convex relaxations such as quadratic

programming (QP) relaxations [19] (for pairwise MRFs),

semi-definite programming (SDP) relaxations [18], or most

prominently linear programming (LP) relaxations [9, 11,

12, 13, 14, 17, 20, 23].

While convex relaxations allow us to benefit from the

tremendous convex optimization literature, and can be

solved exactly in polynomial time, they often only produce

real-valued solutions that need a further rounding step to be

converted into integer ones, which can reduce significantly

the accuracy if the relaxations are not tight. On the con-

trary, discrete methods tackle directly the original problem,

but due to its combinatorial nature, this is a very challeng-

ing task. We refer to [10] for a recent comparative study of

these methods on a wide variety of problems.

In this paper, we consider a different approach. We

present a nonconvex continuous relaxation to the MAP in-

ference problem for arbitrary (pairwise or higher-order)

MRFs. Based on a block coordinate descent (BCD) round-

ing scheme that is guaranteed not to increase the energy

over continuous solutions, we show that this nonconvex re-

laxation is tight and is actually equivalent to the original

discrete problem. It should be noted that the same relax-

ation was previously discussed in [19] but only for pairwise
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MRFs and, more importantly, was not directly solved. The

significance of this (QP) nonconvex relaxation has remained

purely theoretical since then. In this paper, we demonstrate

it to be of great practical significance as well. In addition

to establishing theoretical properties of this nonconvex re-

laxation for arbitrary MRFs based on BCD, we study pop-

ular generic optimization methods such as projected gradi-

ent descent [2] and Frank-Wolfe algorithm [8] for solving

it. These methods, however, are empirically shown to suf-

fer greatly from the trivial hardness of nonconvex optimiza-

tion: getting stuck in bad local minima. To overcome this

difficulty, we propose a multilinear decomposition solul-

tion based on the alternating direction method of multi-

pliers (ADMM). Experiments on different real-world prob-

lems show that the proposed nonconvex based approach can

outperform many of the previously mentioned methods in

different settings.

The remainder of this paper is organized as follows. Sec-

tion 2 presents necessary notation and formulation for our

approach. In Section 3, the nonconvex relaxation is intro-

duced and its properties are studied, while its resolution is

presented in Section 4 together with a convergence analysis

in Section 5. Section 6 presents experimental validation and

comparison with state of the art methods. The last section

concludes the paper.

2. Notation and problem reformulation

It is often convenient to rewrite the MRF energy e(s) (4)

using the indicator functions of labels assigned to each

node. Let V ⊂ C denote the set of nodes of the graph G.

For each i ∈ V , let xi : Si → {0, 1} be a function de-

fined by xi(s) = 1 if the node i takes the label s ∈ Si,
and xi(s) = 0 otherwise. It is easily seen that minimizing

e(s) over S is equivalent to the following problem, where

we have rewritten e(s) as a function of {xi(·)}i∈V
1:

min E(x) =
∑

C∈C

∑

sC∈SC

fC(sC)
∏

j∈C

xj(sj)

s.t.
∑

s∈Si

xi(s) = 1 ∀i ∈ V,

xi(s) ∈ {0, 1} ∀s ∈ Si, ∀i ∈ V.

(5)

For later convenience, a further reformulation using tensor

notation is needed. Let us first give a brief review of tensor.

A real-valued Dth-order tensor F is a multidimensional

array belonging to R
n1×n2×···×nD (where n1, n2, . . . , nD

are positive integers). Each dimension of a tensor is called

a mode. The elements of F are denoted by Fi1i2...iD where

id is the index along the mode d.

1In the standard LP relaxation, the product
∏

j∈C xj(sj) in (5) is re-

placed with new variables xC(sC), seen as the indicator function of the

joint label assigned to the clique C, and the following local consistency

constraints are added: ∀j ∈ C :
∑

lC\j
xC(sC) = xj(sj) ∀sj ∈ Sj .

A tensor can be multiplied by a vector at a specific mode.

Let v = (v1, v2, . . . , vnd
) be an nd dimensional vector. The

mode-d product of F and v, denoted by F
⊗

d v, is a (D −
1)th-order tensor G of dimensions n1×· · ·×nd−1×nd+1×
· · · × nD defined by

Gi1...id−1id+1...iD =

nd
∑

id=1

Fi1...id...iDvid ∀i[1,D]\d. (6)

Note that the multiplication is only valid if v has the same

dimension as the mode d of F.

The product of a tensor and multiple vectors (at mul-

tiple modes) is defined as the consecutive product of the

tensor and each vector (at the corresponding mode). The

order of the multiplied vectors does not matter. For exam-

ple, the product of a 4th-order tensor F ∈ R
n1×n2×n3×n4

and two vectors u ∈ R
n2 ,v ∈ R

n4 at the modes 2 and 4
(respectively) is an n1 × n3 tensor G = F

⊗

2 u
⊗

4 v =
F
⊗

4 v
⊗

2 u, where

Gi1i3 =

n2
∑

i2=1

n4
∑

i4=1

Fi1i2i3i4ui2vi4 ∀i1, i3. (7)

Let us consider for convenience the notation F
⊗

IM to

denote the product of F with the set of vectors M, at the

modes specified by the set of indices I with |I| = |M|.
Since the order of the vectors and the modes must agree,

M and I are supposed to be ordered sets. By convention,

F
⊗

IM = F ifM = ∅. Using this notation, the product

in the previous example becomes

G = F
⊗

{2,4}
{u,v} = F

⊗

{4,2}
{v,u} . (8)

Now back to our problem (5). For any node i, let xi =
(xi(s))s∈Si

be the vector composed of all possible values

of xi(s). For a clique C = (i1, i2, . . . , iα), the potential

function fC(s1, s2, . . . , sα), where sd ∈ Sid∀1 ≤ d ≤ α,

has α indices and thus can be seen as an αth-order tensor

of dimensions |Si1 | × |Si2 | × · · · × |Siα |. Let FC denote

this tensor. Recall that the energy term corresponding to C
in (5) is

∑

s1,s2,...,sα

fC(s1, s2, . . . , sα)xi1(s1)xi2(s2) · · ·xiα(sα),

(9)

which is clearly FC

⊗

{1,2,...,α} {xi1 ,xi2 , . . . ,xiα}. For

clarity purpose, we omit the index set and write simply

FC

⊗

{xi1 ,xi2 , . . . ,xiα}, or equivalently FC

⊗

{xi}i∈C ,

with the assumption that each vector is multiplied at the

right mode (which is the same as its position in the clique).

Therefore, the energy in (5) becomes

E(x) =
∑

C∈C
FC

⊗

{xi}i∈C . (10)
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Problem (5) can then be rewritten as

min E(x) (MRF)

s.t. x ∈ X :=
{

x

∣

∣

∣ 1
⊤xi = 1,xi ∈ {0, 1}

|Si| ∀i ∈ V
}

.

A continuous relaxation of this problem is studied in the

next section.

3. Tight relaxation of MAP inference

By simply relaxing the constraints xi ∈ {0, 1}
|Si|

in (MRF) to xi ≥ 0, we obtain the following nonconvex

relaxation:

min E(x) (RLX)

s.t. x ∈ X :=
{

x

∣

∣

∣ 1
⊤xi = 1,xi ≥ 0 ∀i ∈ V

}

.

A clear advantage of this relaxation over the LP relaxation is

its compactness. Indeed, if all nodes have the same number

of labels S, then the number of variables and number of

constraints of this relaxation are respectively |V|S and |V|,
while for the LP relaxation these numbers are respectively

O(|C|SD) and O(|C|SD), with D the degree of the MRF.

In this section some interesting properties of (RLX) are

presented. In particular, we prove that this relaxation is tight

and show how to obtain a discrete stationary point for it. Let

us first propose a simple BCD algorithm to solve (RLX).

Relaxation tightness and other properties follow naturally.

Let n = |V| be the number of nodes. The vector x can

be seen as an n-block vector, where each block corresponds

to each node: x = (x1,x2, . . . ,xn). Starting from an ini-

tial solution, BCD solves (RLX) by iteratively optimizing

E over xi while fixing all the other blocks. Note that our

subsequent analysis is still valid for other variants of BCD,

such as updating in a random order, or using subgraphs such

as trees (instead of single nodes) as update blocks. To keep

the presentation simple, however, we choose to update in

the deterministic order i = 1, 2, . . . , n. Each update step

consists of solving

x
(k+1)
i ∈ argmin

1⊤xi=1,xi≥0

E(x
(k+1)
[1,i−1],xi,x

(k)
[i+1,n]). (11)

From (10) it is clear that for the cliques that do not con-

tain the node i, their corresponding energy terms are inde-

pendent of xi. Thus, if C(i) denotes the set of cliques con-

taining i, then

E(x) =
∑

C∈C(i)
FC

⊗

{xj}j∈C
+ cst(xi) (12)

= c⊤i xi + cst(xi), (13)

where cst(xi) is a term that does not depend on xi, and

ci =
∑

C∈C(i)
FC

⊗

{xj}j∈C\i ∀i ∈ V. (14)

The update (11) becomes minimizing c⊤i xi, which can be

solved using the following straightforward lemma.

Lemma 1. Let c = (c1, . . . , cp) ∈ R
p, α = argminβ cβ .

The problem min1⊤u=1,u≥0 c
⊤u has an optimal solution

u∗ = (u∗1, . . . , u
∗
p) defined by u∗α = 1 and u∗β = 0 ∀β 6= α.

According to this lemma, we can solve (11) as follows:

compute ci using (14), find the position s of its smallest

element, set xi(s) = 1 and xi(r) = 0 ∀r 6= s. Clearly,

the solution xi returned by this update step is discrete. It

is easily seen that this update is equivalent to assigning the

node i with the following label:

si = argmin
s∈Si

∑

C∈C(i)

∑

sC\i∈SC\i

fC(sC\i, s)
∏

j∈C\i
xj(sj).

(15)

A sketch of the BCD algorithm is given in Algorithm 1.

Algorithm 1 Block coordinate descent for solving (RLX).

1: Initialization: k ← 0, x(0) ∈ X .

2: For i = 1, 2, . . . , n: update x
(k+1)
i as a (discrete) solu-

tion to (11). If x
(k)
i is also a discrete solution to (11),

then set x
(k+1)
i ← x

(k)
i .

3: Let k ← k + 1 and go to Step 2 until x(k+1) = x(k).

Remark. Starting from a discrete solution, BCD is equiva-

lent to Iterated Conditional Modes (ICM) [3]. Note however

that BCD is designed for the continuous problem (RLX),

whereas ICM relies on the discrete problem (MRF).

Proposition 1. For any initial solution x(0), BCD (Algo-

rithm 1) converges to a discrete fixed point.

A proof is given in the supplement. We will see in Sec-

tion 5 that this fixed point is also a stationary point of (RLX).

Theorem 1. The continuous relaxation (RLX) is tight.

Proof. Since E(x) is continuous and both X and X are

closed, according to the Weierstrass extreme value theo-

rem, both (MRF) and (RLX) must attain a (global) min-

imum, which we denote by xMRF and xRLX, respectively.

Obviously E(xRLX) ≤ E(xMRF). Now let x∗ be the so-

lution of BCD with initialization x(0) = xRLX. On the

one hand, since BCD is a descent algorithm, we have

E(x∗) ≤ E(xRLX). On the other hand, since the solution

returned by BCD is discrete, we have x∗ ∈ X , yield-

ing E(xMRF) ≤ E(x∗). Putting it all together, we get

E(x∗) ≤ E(xRLX) ≤ E(xMRF) ≤ E(x∗), which implies

E(xRLX) = E(xMRF), i.e. (RLX) is tight.

Remark. The above proof is still valid if BCD performs only

the first outer iteration. This means that one can obtain xMRF

from xRLX (same energy) in polynomial time, i.e. (RLX)
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and (MRF) can be seen as equivalent. This result was pre-

viously presented in [19] for pairwise MRFs, here we have

extended it to arbitrary order MRFs.

While BCD is guaranteed to reach a discrete stationary

point of (RLX), there is no guarantee on the quality of such

point. In practice, as shown later in the experiments, the

performance of BCD compares poorly with state of the art

MRF optimization methods. In fact, the key challenge in

nonconvex optimization is that there might be many local

minima, and as a consequence, algorithms can easily get

trapped in bad ones, even from multiple initializations.

In the next section, we study the resolution of (RLX) us-

ing more sophisticated methods, where we come up with a

multilinear decomposition ADMM that can reach very good

local minima (many times even the global ones) on different

real-world models.

4. Solving the tight nonconvex relaxation

Since the MRF energy (10) is differentiable, it is worth

investigating whether gradient methods can effectively op-

timize it. We briefly present two such methods in the next

section. Then our proposed ADMM based algorithm is pre-

sented in the subsequent section. We provide a convergence

analysis for all methods in Section 5.

4.1. Gradient methods

Projected gradient descent (PGD) and Frank-Wolfe al-

gorithm (FW) (Algorithms 2, 3) are among the most popu-

lar methods for solving constrained optimization. We refer

to [2] for an excellent presentation of these methods.

Algorithm 2 Projected gradient descent for solving (RLX).

1: Initialization: k ← 0, x(0) ∈ X .

2: Compute β(k) and find the projection

s(k) = argmin
s∈X

∥

∥

∥x
(k) − β(k)∇E(x(k))− s

∥

∥

∥

2

2
. (16)

3: Compute α(k) and update x(k+1) = x(k)+α(k)(s(k)−
x(k)). Let k ← k + 1 and go to Step 2.

Algorithm 3 Frank-Wolfe algorithm for solving (RLX).

1: Initialization: k ← 0, x(0) ∈ X .

2: Find s(k) = argmin
s∈X s⊤∇E(x(k)).

3: Compute α(k) and update x(k+1) = x(k)+α(k)(s(k)−
x(k)). Let k ← k + 1 and go to Step 2.

The step-sizes β(k) and α(k) follow a chosen update rule.

The most straightforward is the diminishing rule, which

has for example β(k) = 1√
k+1

, α(k) = 1 for PGD, and

α(k) = 2
k+2 for FW. However, in practice, these step-sizes

often lead to slow convergence. A better alternative is the

following line-search (β(k) is set to 1 for PGD):

α(k) = argmin
0≤α≤1

E
(

x(k) + α(s(k) − x(k))
)

. (17)

For our problem, this line-search can be performed effi-

ciently because E
(

x(k) + α(s(k) − x(k))
)

is a polynomial

of α. Further details (including line-search, update steps,

stopping conditions, as well as other implementation issues)

are provided in the supplement.

4.2. Alternating direction method of multipliers

Our proposed method shares some similarities with the

method introduced in [16] for solving graph matching.

However, to make ADMM efficient and effective for MAP

inference, we add the following important practical contri-

butions: (1) We formulate the problem using individual po-

tential tensors at each clique (instead of a single large tensor

as in [16]), which allows a better exploitation of the problem

structure, as computational quantities at each node can be

cached based on its neighboring nodes, yielding significant

speed-ups; (2) We discuss how to choose the decomposed

constraint sets that result in the best accuracy for MAP in-

ference (note that the constraint sets for graph matching [16]

are different). In addition, we present a convergence analy-

sis for the proposed method in Section 5.

For the reader to quickly get the idea, let us start with an

example of a second-order2 MRF:

Esecond(x) =
∑

i∈V
Fi

⊗

xi +
∑

ij∈C
Fij

⊗

{xi,xj}

+
∑

ijk∈C
Fijk

⊗

{xi,xj ,xk} . (18)

Instead of dealing directly with this high degree polynomial,

which is highly challenging, the idea is to decompose x

into different variables that can be handled separately using

Lagrangian relaxation. To this end, consider the following

multilinear function:

Fsecond(x,y, z) =
∑

i∈V
Fi

⊗

xi +
∑

ij∈C
Fij

⊗

{xi,yj}

+
∑

ijk∈C
Fijk

⊗

{xi,yj , zk} . (19)

Clearly, Esecond(x) = Fsecond(x,x,x). Thus, minimizing

E(x) is equivalent to minimizing Fsecond(x,y, z) under the

constraints x = y = z, which can be relaxed using La-

grangian based method such as ADMM.

Back to our general problem (RLX). Let D denote the

maximum clique size of the corresponding MRF. Using

2Note that pairwise MRFs are also called first-order ones.
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the same idea as above for decomposing x into D vectors

x1,x2, . . . ,xD, let us define

F (x1, . . . ,xD) =
D
∑

d=1

∑

i1...id∈C
Fi1...id

⊗

{

x1
i1
, . . . ,xd

id

}

.

(20)

Clearly, the energy (10) becomes E(x) = F (x,x, . . . ,x).
It is straightforward to see that (RLX) is equivalent to:

min F (x1,x2, . . . ,xD)

s.t. A1x1 + · · ·+ADxD = 0,

xd ∈ X d, d = 1, . . . , D,

(21)

where A1, . . . ,AD are constant matrices such that

A1x1 + · · ·+ADxD = 0⇐⇒ x1 = · · · = xD, (22)

and X 1, . . . ,XD are closed convex sets satisfying

X 1 ∩ X 2 ∩ · · · ∩ XD = X . (23)

Note that the linear constraint in (21) is a general way to

enforce x1 = · · · = xD and it has an infinite number of

particular instances. For example, with suitable choices of

(Ad)1≤d≤D, this linear constraint can become either one of

the following sets of constraints:

(cyclic) xd−1 = xd, d = 2, . . . , D, (24)

(star) x1 = xd, d = 2, . . . , D, (25)

(symmetric) xd = (x1 + · · ·+ xD)/D ∀d. (26)

We call such an instance a decomposition, and each decom-

position will lead to a different algorithm.

The augmented Lagrangian of (21) is defined by:

Lρ(x
1, . . . ,xD,y) = F (x1, . . . ,xD)

+ y⊤
(

D
∑

d=1

Adxd

)

+
ρ

2

∥

∥

∥

∥

∥

D
∑

d=1

Adxd

∥

∥

∥

∥

∥

2

2

, (27)

where y is the Lagrangian multiplier vector and ρ > 0 is

called the penalty parameter.

Standard ADMM [4] solves (21) by iterating:

1. For d = 1, 2, . . . , D: update xd(k+1)

as a solution of

min
xd∈Xd

Lρ(x
[1,d−1](k+1)

,xd,x[d+1,D](k)

,y(k)). (28)

2. Update y:

y(k+1) = y(k) + ρ

(

D
∑

d=1

Adxd(k+1)

)

. (29)

The algorithm converges if the following residual converges

to 0 as k → +∞:

r(k) =

∥

∥

∥

∥

∥

D
∑

d=1

Adxd(k)

∥

∥

∥

∥

∥

2

2

+

D
∑

d=1

∥

∥

∥x
d(k)

− xd(k−1)
∥

∥

∥

2

2
. (30)

We show how to solve the x update step (28) (the y up-

date (29) is trivial). Updating xd consists of minimizing the

augmented Lagrangian (27) with respect to the dth block

while fixing the other blocks.

Since F (x1, . . . ,xD) is linear with respect to each block

xd (c.f . (20)), it must have the form

F (x[1,d−1],xd,x[d+1,D]) =
〈

pd,xd
〉

+ cst(xd), (31)

where cst(xd) is a term that does not depend on xd. In-

deed, it can be shown (detailed in the supplement) that

pd = (pd
1, . . . ,p

d
n) where

pd
i =

D
∑

α=d





∑

i1...id−1iid+1...iα∈C
Fi1i2...iα

⊗

{

x1
i1
, . . . ,xd−1

id−1
,xd+1

id+1
, . . . ,xα

iα

}



 ∀i ∈ V. (32)

While the expression of pd
i looks complicated, its intuition

is simple: for a given node i and a degree d, we search for all

cliques satisfying two conditions: (a) their sizes are bigger

than or equal to d, and (b) the node i is at the dth position of

these cliques; then for each clique, we multiply its potential

tensor with all its nodes except node i, and sum all these

products together.

Denote

sd =
d−1
∑

c=1

Acxc +
D
∑

c=d+1

Acxc. (33)

Plugging (31) and (33) into (27) we get:

Lρ(x
1, . . . ,xD,y) =

ρ

2

∥

∥Adxd
∥

∥

2

2

+
(

pd +Ad⊤y + ρAd⊤sd
)⊤

xd + cst(xd). (34)

Therefore, the x update (28) becomes minimizing the

quadratic function (34) (with respect to xd) over X d. With

suitable decompositions, this problem can have a much sim-

pler form and can be efficiently solved. For example, if we

choose the cyclic decomposition (24), then this step is re-

duced to finding the projection of a vector onto X d:

xd(k+1)

= argmin
xd∈Xd

∥

∥

∥x
d − cd

(k)
∥

∥

∥

2

2
, (35)
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where (cd)1≤d≤D are defined as follows (c.f . supplement):

c1
(k)

= x2(k)

−
1

ρ

(

y2(k)

+ p1(k)
)

, (36)

cd
(k)

=
1

2

(

xd−1(k+1)

+ xd+1(k)
)

(37)

+
1

2ρ

(

yd(k)

− yd+1(k)

− pd(k)
)

, 2 ≤ d ≤ D − 1,

cD
(k)

= xD−1(k+1)

+
1

ρ

(

yD(k)

+ pD(k)
)

. (38)

Here the multiplier y is the concatenation of (D−1) vectors

(yd)2≤d≤D, corresponding to (D − 1) constraints in (24).

Similar results can be obtained for other specific de-

compositions such as star (25) and symmetric (26) as well.

We refer to the supplement for more details. As we ob-

served very similar performance among these decomposi-

tions, only cyclic was included for evaluation (Section 6).

The ADMM procedure are sketched in Algorithm 4.

Algorithm 4 ADMM with general decomposition (21) for

solving (RLX).

1: Initialization: k ← 0, y(0) ← 0 and xd(0)

∈ X d for

d = 1, . . . , D.

2: For d = 1, 2, . . . , D: update xd(k+1)

by solving (28)

(which is reduced to optimizing (34) over X d).

3: Update y(k+1) using (29). Let k ← k + 1 and go to

Step 2.

In practice, we found that the penalty parameter ρ and

the constraint sets (X d)1≤d≤D can greatly affect the con-

vergence as well as the solution quality of ADMM. Let us

address these together with other practical considerations.

Adaptive penalty We observed that small ρ leads to

slower convergence but often better energy, and inversely

for large ρ. To obtain a good trade-off, we follow [16] and

use the following adaptive scheme: initialize ρ at a small

value ρ0 and run for I1 iterations, after that if no improve-

ment of the residual r(k) is achieved every I2 iterations, then

we increase ρ by a factor β. In addition, we stop increasing

ρ after it reaches some value ρmax, so that the convergence

properties presented in the next section still apply. In the

experiments, we normalize all the potentials to [−1, 1] and

set I1 = 500, I2 = 500, β = 1.2, ρ0 = 0.001, ρmax = 100.

Constraint sets A trivial choice of (X d)1≤d≤D that sat-

isfies (23) is X d = X ∀d. Then, (35) becomes projec-

tions onto the simplex
{

xi | 1
⊤xi = 1,xi ≥ 0

}

for each

node i, which can be solved using e.g. the method intro-

duced in [6]. However, we found that this choice often pro-

duces poor quality solutions, despite converging quickly.

The reason is that constraining all xd
i to belong to a sim-

plex will make them reach consensus faster, but without

being allowed to vary more freely, they tend to bypass

good solutions. The idea is to use looser constraint sets,

e.g. X+ := {x | x ≥ 0}, for which (35) becomes simply

xd(k+1)

= max(cd
(k)

, 0). We found that leaving only one

set as X yields the best accuracy. Therefore, in our imple-

mentation we set X 1 = X and X d = X+ ∀d ≥ 2.

Parallelization Since there is no dependency among the

nodes in the constraint sets, the projection (35) is clearly

reduced to independent projections at each node. Moreover,

at each iteration, the expensive computation (32) of pd
i can

also be performed in parallel for all nodes. Therefore, the

proposed ADMM is highly parallelizable.

Caching Significant speed-ups can be achieved by avoid-

ing re-computation of unchanged quantities. From (32) it is

seen that pd
i only depends on the decomposed variables at

the neighbors of i. Thus, if these variables have not changed

from the last iteration, then there is no need to recompute pd
i

in the current iteration. Similarly, the projection (35) for xd
i

can be omitted if cdi is unchanged (c.f . (36)–(38)).

5. Convergence analysis

In this section, we establish some convergence results for

the presented methods. Due to space constraints, proofs are

provided in the supplementary material.

Definition 1 (Stationary point). Let f : Rd → R be a con-

tinuously differentiable function over a closed convex set

M. A point u∗ is called a stationary point of the problem

minu∈M f(u) if and only if it satisfies

∇f(u∗)⊤(u− u∗) ≥ 0 ∀u ∈M. (39)

Note that (39) is a necessary condition for a point u∗ to

be a local optimum (a proof can be found in [2], Chapter 2).

Proposition 2. Let {x(k)} be a sequence generated by

BCD, PGD or FW (Algorithms 1, 2 or 3) with line-

search (17). Then every limit point3 of {x(k)} is stationary.

Next, we give a convergence result for ADMM.

Definition 2 (Karush-Kuhn-Tucker (KKT) conditions). A

point (x∗1,x∗2, . . . ,x∗D,y∗) is said to be a KKT point of

Problem (21) if it satisfies the following KKT conditions:

x∗d ∈ X d, d = 1, . . . , D, (40)

A1x∗1 + · · ·+ADx∗D = 0, (41)

x∗d ∈ argmin
xd∈Xd

{

F (x∗[1,d−1],xd,x∗[d+1,D]) + y∗⊤Adxd
}

.

(42)

Note that (41) is equivalent to x∗1 = x∗2 = · · · = x∗D

(because of (22)). Therefore, any KKT point of (21) must

have the form (x∗, . . . ,x∗,y∗) for some vector x∗ and y∗.

3A vector x is a limit point of a sequence {x(k)} if there exists a sub-

sequence of {x(k)} that converges to x.
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Proposition 3. Let {(x1(k)

, . . . ,xD(k)

,y(k))} be a se-

quence generated by ADMM (Algorithm 4). Assume that

the residual r(k) (30) converges to 0, then any limit point of

this sequence is a KKT point of (21).

We should note that this result is only partial, since we

need the assumption that r(k) converges to 0. In practice, we

found that this assumption always holds if ρ is large enough.

Unlike gradient methods, convergence of ADMM for the

kind of Problem (21) (which is at the same time multi-block,

non-separable and highly nonconvex) is less known and is

a current active research topic. For example, global con-

vergence of ADMM for nonconvex nonsmooth functions is

established in [25], but under numerous assumptions that

are not applicable to our case.

So far for ADMM we have talked about solution to (21)

only and not to (RLX). In fact, we have the following result.

Proposition 4. If (x∗,x∗, . . . ,x∗,y∗) is a KKT point

of (21) then x∗ is a stationary point of (RLX).

An interesting relation of the solutions returned by the

methods is the following. We say a method A can improve

further a method B if we use the returned solution by B as

initialization for A and A will output a better solution.

Proposition 5. At convergence:

1. BCD, PGD and FW cannot improve further each other.

2. BCD, PGD and FW cannot improve further ADMM.

The inverse is not necessarily true.

The first point follows from the fact that solutions of

BCD, PGD and FW are stationary. The second point fol-

lows from Proposition 4. In practice, we observed that

ADMM can often improve further the other methods.

6. Experiments

We compare the proposed nonconvex relaxation meth-

ods (BCD, PGD, FW and ADMM with cyclic decom-

position) with the following ones (where the first four

are only applicable to pairwise MRFs): α-expansion (α-

Exp) [5], fast primal-dual (FastPD) [15], convex QP re-

laxation (CQP) [19], sequential tree reweighted message

passing (TRWS) [12], tree reweighted belief propaga-

tion (TRBP) [24], alternating direction dual decomposi-

tion (ADDD) [17], bundle dual decomposition4 (BUN-

DLE) [11], max-product linear programming (MPLP) [9]

and its extension (MPLP-C) [23], extension of α-expansion

to higher-order using reduction technique (α-Fusion) [7],

generalization of TRWS to higher-order (SRMP) [13].

The code of most methods are obtained via either the

4Subgradient dual decomposition [14] is excluded as we found that its

performance was generally worse than bundle.

OpenGM library [1] or from the authors’ websites, except

for CQP [19] we use our implementation as no code is pub-

licly available (c.f . supplement for implementation details).

For BCD, PGD and FW, we run for 5 different initial-

izations (solution of the unary potentials plus 4 other com-

pletely random) and pick the best one. For ADMM, we use

a single homogeneous initial solution: xi(s) =
1

|Si|∀s ∈ Si
(we find that ADMM is quite insensitive to initialization).

For these methods, BCD is used as a final rounding step.5

Table 1: List of models used for evaluation.

Model No.∗ |V|∗∗ S
†

D
‡ Structure Function

Inpainting 4 14400 4 2 grid-N4/N8 Potts

Matching 4 ∼20 ∼20 2 full/sparse general

1st stereo 3 ∼100000 16-60 2 grid-N4 TL/TS

Segmentation 10 1024 4 4 grid-N4 g-Potts

2nd stereo 4 ∼25000 14 3 grid-N4 general
∗,∗∗,†,‡: number of instances, variables, labels, and MRF degree

The methods are evaluated on several real-world vision

tasks: image inpainting, feature matching, image segmen-

tation and stereo reconstruction. All methods are included

whenever applicable. A summary of the models are given in

Table 1. Except for higher-order stereo, these models were

previously considered in a recent benchmark for evaluat-

ing MRF optimization methods [10], and their model files

are publicly available6. For higher-order stereo, we use the

model presented in [26], where the disparity map is encour-

aged to be piecewise smooth using a second-order prior, and

the labels are obtained from 14 pre-generated piecewise-

planar proposals. We apply this model to 4 image pairs (art,

cones, teddy, venus) of the Middlebury dataset [21] (at half

resolution, due to the high inference time). We refer to [10]

and to the supplement for further details on all models.

The experiments were carried out on a 64-bit Linux ma-

chine with a 3.4GHz processor and 32GB of memory. A

time limit of 1 hour was set for all methods. In Tables 2

and 3, we report the runtime7, the energy value of the final

integer solution as well as the lower bound if available, av-

eraged over all instances of a particular model. The detailed

results are given in the supplement.

In general, ADMM significantly outperforms BCD,

PGD, FW and is the only nonconvex relaxation method that

compares favorably with the other methods. In particular,

it outperforms TRBP, ADDD, BUNDLE, MPLP, MPLP-C

and CQP on all models (except MPLP-C on matching), and

outperforms FastPD, α-Exp/α-Fusion and TRWS on small

or medium sized models (i.e. other than stereo).

On image inpainting (Table 2), ADMM produces the

lowest energies on all instances, while being relatively fast.

5BCD cannot improve further the solution according to Proposition 5.
6http://hciweb2.iwr.uni-heidelberg.de/opengm/

index.php?l0=benchmark
7For a fair comparison, we used the single-thread version of ADMM.
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Table 2: Results on pairwise models.

Inpainting N4 (2 instances) Inpainting N8 (2 instances) Feature matching (4 instances) Pairwise stereo (3 instances)

algorithm time (s) value bound time (s) value bound time (s) value bound time (s) value bound

α-Exp 0.02 454.35 −∞ 0.78 465.02 −∞ −∗ −∗ −∗ 14.75 1617196.00 −∞
FastPD 0.03 454.75 294.89 0.15 465.02 136.28 −∗ −∗ −∗ 7.14 1614255.00 301059.33

TRBP 23.45 480.27 −∞ 64.00 495.80 −∞ 0.00 1.05 × 1011 −∞ 2544.12 1664504.33 −∞

ADDD 15.87 483.41 443.71 35.78 605.14 450.95 3.16 1.05 × 1011 16.35 −∗∗ −∗∗ −∗∗

MPLP 55.32 497.16 411.94 844.97 468.97 453.55 0.47 0.65 × 1011 15.16 −∗∗ −∗∗ −∗∗

MPLP-C 1867.20 468.88 448.03 2272.39 479.54 454.35 6.04 21.22 21.22 −∗∗ −∗∗ −∗∗

BUNDLE 36.18 455.25 448.23 111.74 465.26 455.43 2.33 0.10 × 1011 14.47 2039.47 1664707.67 1583742.13
TRWS 1.37 490.48 448.09 16.23 500.09 453.96 0.05 64.19 15.22 421.20 1587961.67 1584746.58

CQP 1.92 1399.51 −∞ 11.62 1178.91 −∞ 0.08 127.01 −∞ 3602.01 11408446.00 −∞
BCD 0.11 485.88 −∞ 0.29 481.95 −∞ 0.00 84.86 −∞ 10.82 7022189.00 −∞
FW 1.10 488.23 −∞ 5.94 489.82 −∞ 20.10 66.71 −∞ 1989.12 6162418.00 −∞
PGD 0.81 489.80 −∞ 5.19 489.82 −∞ 13.21 58.52 −∞ 1509.49 5209092.33 −∞
ADMM 9.84 454.35 −∞ 40.64 464.76 −∞ 0.31 75.12 −∞ 2377.66 1624106.00 −∞

∗Method not applicable ∗∗Prohibitive execution time (time limit not working) or prohibitive memory consumption

Surprisingly TRWS performs poorly on these models, even

worse than BCD, PGD and FW.

The feature matching model (Table 2) is a typical ex-

ample showing that the standard LP relaxation can be very

loose. All methods solving its dual produce very poor re-

sults (despite reaching relatively good lower bounds). They

are largely outperformed by TRWS and nonconvex relax-

ation methods (BCD, PGD, FW, ADMM). On this problem,

MPLP-C reaches the global optimum for all instances.

Table 3: Results on higher-order models.

Segmentation (10 instances) Second-order stereo (4 instances)

algorithm time (s) value bound time (s) value bound

α-Fusion 0.05 1587.13 −∞ 50.03 14035.91 −∞
TRBP 18.20 1900.84 −∞ 3675.90 14087.40 −∞
ADDD 6.36 3400.81 1400.33 4474.83 14226.93 13752.73
MPLP 9.68 4000.44 1400.30 −∗ −∗ −∗

MPLP-C 3496.50 4000.41 1400.35 −∗ −∗ −∗

BUNDLE 101.56 4007.73 1392.01 3813.84 15221.19 13321.96
SRMP 0.13 1400.57 1400.57 3603.41 13914.82 13900.87

BCD 0.14 12518.59 −∞ 59.59 14397.22 −∞
FW 21.23 5805.17 −∞ 1749.19 14272.54 −∞
PGD 51.04 5513.02 −∞ 3664.92 14543.65 −∞
ADMM 97.37 1400.68 −∞ 3662.13 14068.53 −∞

∗Prohibitive execution time (time limit not working)

On image segmentation (Table 3), SRMP performs ex-

ceptionally well, producing the global optimum for all in-

stances while being very fast. ADMM is only slightly out-

performed by SRMP in terms of energy value, while both

clearly outperform the other methods.

On large scale models such as stereo, TRWS/SRMP per-

form best in terms of energy value, followed by move mak-

ing algorithms (FastPD, α-Exp/α-Fusion) and ADMM. An

example of estimated disparity maps is given in Figure 1

for SRMP and nonconvex relaxation methods. Results for

all methods are given in the supplement.

An interesting observation is that CQP performs worse

than nonconvex methods on all models (and worst overall),

which means simply solving the QP relaxation in a straight-

forward manner is already better than adding a sophisticated

convexification step, as done in [19].

(a) Ground-truth (b) SRMP (18433.01) (c) BCD (18926.70)

(d) FW (18776.26) (e) PGD (19060.17) (f) ADMM (18590.87)

Figure 1: Estimated disparity maps and energy values on

higher-order stereo model.

7. Conclusion

We have presented a tight nonconvex continuous re-

laxation for the problem of MAP inference and studied

four different methods for solving it: block coordinate de-

scent, projected gradient descent, Frank-Wolfe algorithm,

and ADMM. Due to the high nonconvexity, it is very chal-

lenging to obtain good solutions to this relaxation, as shown

by the performance of the first three methods. The lat-

ter, however, outperforms many existing methods and thus

demonstrates that directly solving the nonconvex relaxation

can lead to very accurate results. These methods are mem-

ory efficient, thanks to the small number of variables and

constraints (as discussed in Section 3). On top of that, the

proposed ADMM algorithm is also highly parallelizable (as

discussed in Section 4.2), which is not the case for methods

like TRWS or SRMP. Therefore, ADMM is also suitable for

distributed or real-time applications on GPUs.
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