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Abstract

In this paper, we study the problem of learning image

classification models with label noise. Existing approaches

depending on human supervision are generally not scal-

able as manually identifying correct or incorrect labels is

time-consuming, whereas approaches not relying on hu-

man supervision are scalable but less effective. To reduce

the amount of human supervision for label noise cleaning,

we introduce CleanNet, a joint neural embedding network,

which only requires a fraction of the classes being manu-

ally verified to provide the knowledge of label noise that

can be transferred to other classes. We further integrate

CleanNet and conventional convolutional neural network

classifier into one framework for image classification learn-

ing. We demonstrate the effectiveness of the proposed al-

gorithm on both of the label noise detection task and the

image classification on noisy data task on several large-

scale datasets. Experimental results show that CleanNet

can reduce label noise detection error rate on held-out

classes where no human supervision available by 41.5%

compared to current weakly supervised methods. It also

achieves 47% of the performance gain of verifying all im-

ages with only 3.2% images verified on an image classifi-

cation task. Source code and dataset will be available at

kuanghuei.github.io/CleanNetProject.

1. Introduction

One of the key factors that drive recent advances in large-

scale image recognition is massive collections of labeled

images like ImageNet [5] and COCO [15]. However, it

is normally expensive and time-consuming to collect large-

scale manually labeled datasets. In practice, for fast de-

velopment of new image recognition tasks, a widely used

surrogate is to automatically collect noisy labeled data from

Internet [6, 11, 25]. Yet many studies have shown that label

noise can affect accuracy of the induced classifiers signifi-

cantly [7, 19, 22, 27], making it desirable to develop algo-

rithms for learning in presence of label noise.

∗Work performed while working at Microsoft.

Learning with label noise can be categorized by type of

supervision: methods that rely on human supervision and

methods that do not. For instance, some of the large-scale

training data were constructed using classifiers trained on

manually verified seed images to remove label noise (e.g.

LSUN [37] and Places [38]). Some studies for learning con-

volutional neural networks (CNNs) with noise also rely on

manual labeling to estimate label confusion [20, 35]. The

methods using human supervision exhibit a disadvantage in

scalability as they require labeling effort for every class. For

classification tasks with millions of classes [4, 8], it is in-

feasible to have even one manual annotation per class. In

contrast, methods without human supervision (e.g. model

predictions-based filtering [7] and unsupervised outliers re-

moval [17, 24, 34]) are scalable but often less effective and

more heuristic. Going with any of the existing approaches,

either all the classes or none need to be manually verified.

It is difficult to have both scalability and effectiveness.

In this work, we strive to reconcile this gap. We ob-

serve that one of the key ideas for learning from noisy data

is finding “class prototypes” to effectively represent classes.

Methods learn from manually verified seed images like [37]

and methods assume majority correctness like [1] belong to

this category. Inspired by this observation, we develop an

attention mechanism that learns how to select representa-

tive seed images in a reference image set collected for each

class with supervised information, and transfer the learned

knowledge to other classes without explicit human super-

vision through transfer learning. This effectively addresses

the scalability problem of the methods that rely on human

supervision.

Thus, we introduce “label cleaning network” (Clean-

Net), a novel neural architecture designed for this setting.

First, we develop a reference set encoder with the atten-

tion mechanism to encode a set of reference images of a

class to an embedding vector that represents that class. Sec-

ond, in parallel to reference set embedding, we also build

a query embedding vector for each individual image and

impose a matching constraint in training to require a query

embedding to be similar to its class embedding if the query

is relevant to its class. In other words, the model can tell
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Figure 1. CleanNet architecture for learning a class embedding

vector φs
c and a query embedding vector φq with a similarity

matching constraint. There exists one class embedding for each

of the L classes. Details of component g(·) are depicted in Fig. 2.

whether an image is mislabeled by comparing its query em-

bedding with its class embedding. Since class embeddings

generated from different reference sets represents different

classes where we wish the model to adapt to, CleanNet can

generalize to classes without explicit human supervision.

Fig. 1 illustrates the end-to-end differentiable model.

As the first step of this work, we demonstrate that Clean-

Net is an effective tool for label noise detection. Simple

thresholding based on the similarity between the reference

set and the query image lead to good results compared with

existing methods. Label noise detection not only is useful

for training image classifiers with noisy data, but also has

important values in applications like image search result fil-

tering and linking images to knowledge graph entities.

CleanNet predicts the relevance of an image to its noisy

class label. Therefore, we propose to use CleanNet to assign

weights to image samples according to the image-to-label

relevance to guide training of the image classifier. On the

other hand, as a better classifier provides more discrimina-

tive convolutional image features for learning CleanNet, we

refresh the CleanNet using the newly trained classifier. We

introduce a unified learning scheme to train the CleanNet

and image classifier jointly.

To summarize, our contributions include a novel neural

architecture CleanNet that is designed to make label noise

detection and learning from noisy data with human super-

vision scalable through transfer learning. We also propose

a unified scheme for training CleanNet and the image clas-

sifier with noisy data. We carried out comprehensive ex-

perimentation to evaluate our method for label noise detec-

tion and image classification on three large datasets with

real-world label noise: Clothing1M [35], WebVision [13],

and Food-101N. Food-101N contains 310K images we col-

lected from Internet with the Food-101 taxonomy [2], and

we added “verification label” that verifies whether a noisy

class label is correct for an image1. Experimental results

show that CleanNet can reduce label noise detection er-

ror rate on held-out classes where no human supervision

available by 41.5% compared to current weakly supervised

methods. It also achieves 47% of the performance gain of

verifying all images with only 3.2% images verified on an

image classification task.

2. Related Work

Label noise reduction. Our method belongs to the cat-

egory of approaches that address label noise by demoting

or removing mislabeled instances in training data. One of

the popular approaches is unsupervised outlier removal (e.g.

One-Class SVM [24], UOCL [17], and DRAE [34]). Using

this approach for label noise detection relies on an assump-

tion that outliers are mislabeled. However, outliers are often

not well defined, and therefore removing them presents a

challenge [7]. Another approach that also needs no human

supervision is weakly supervised label noise reduction [7].

For example, Thongkam et al. [29] proposed a classification

filtering method that learns an SVM from noisy data and

removes instances misclassified by the SVM. Weakly su-

pervised methods are often heuristic, and we are not aware

of any large dataset actually built with these methods. On

the other hand, label noise reduction using human supervi-

sion has been widely studied for dataset constructions. For

instance, Yu et al. [37] proposed manually labeling seed im-

ages and then training multilayer perceptrons (MLPs) to re-

move mislabeled images. Similarly, the Places dataset [38]

was constructed using an AlexNet [12] trained on manu-

ally verified seed images. However, methods using human

supervision exhibit a disadvantage in scalability as they re-

quire human supervision for every class to be cleansed.

Direct neural network learning with label noise. Some

methods were developed for directly learning neural net-

work with label noise [1, 3, 14, 20, 22, 27, 32, 35, 41].

Azadi et al. [1] developed a regularization method to ac-

tively select image features for training, but it depends on

features pre-trained for other tasks and hence is less effec-

tive. Zhuang et al. [41] proposed attention in random sam-

ple groups but did not compare with standard CNN classi-

fiers, and thus is less practical. Methods proposed by Xiao

et al. [35] and Patrini et al. [20] rely on manual labeling to

estimate label confusion for real-world label noise. How-

ever, such labeling is required for all classes and much more

1Food-101N will be available at kuanghuei.github.io/CleanNetProject.
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expensive than simply verifying whether the noisy class la-

bels are correct. Veit et al. [32] proposed an architecture

that learns from human verification to clean noisy labels,

but their approach does not generalize to classes that are

not manually verified as opposed to our method. Chen et al.

[3], which relies on specific data sources, and Li et al. [14],

which uses knowledge graph, could be difficult to general-

ize and thus are beyond the scope of this paper.

Transfer learning with neural network. There is a large

body on literature of learning neural joint embeddings for

transfer learning [8, 23, 26, 30, 33]. Tsai et al. [30] trained

visual-semantic embeddings with supervised and unsuper-

vised objectives using labeled and unlabeled data to im-

prove robustness of embeddings for transfer learning. Re-

cently Liu et al. [16] and Tzeng et al. [31] exploited adver-

sarial objectives for domain adaptation. Inspired by [30],

we also incorporate unsupervised objectives in this work.

3. Scalable Learning with Label Noise

We focus on learning an image classifier from a set of

images with label noise using transfer learning. Specif-

ically, assume we have a dataset of n images, i.e., X =
{(x1, y1), ..., (xn, yn)}, where xi is the i-th image and yi ∈
{1, ..., L} is its class label, where L is the total number of

classes. Note that the class labels are noisy, means some of

the images’ labels are incorrect.

In this section, we present the CleanNet, a joint neural

embedding network, which only requires a fraction of the

classes being manually verified to provide the knowledge of

label noise that can be transferred to other classes. We then

integrate CleanNet and conventional convolutional neural

network (CNN) into one system for image classifier training

with label noise. Specifically, we introduce the designs and

properties of CleanNet in Section 3.1. In Section 3.3 we

integrate CleanNet and the CNN into one framework for

image classifier learning from noisy data.

3.1. CleanNet

The overall architecture of CleanNet is shown in Fig. 1.

It consists of two parts: a reference set encoder and a query

encoder. The reference set encoder fs(·) learns to focus on

representative features in a noisy reference image set, which

is collected for a specific class, and outputs a class-level em-

bedding vector. Since using all the images in the reference

set is computationally expensive, we first create a represen-

tative subset, and extract one visual feature vector from each

image in that subset to form a representative feature vector

set, i.e., let V s
c denotes the representative reference feature

vector set for class c (reference feature set).

We explored two pragmatic approaches to select V s
c . The

first one is random sampling a subset from all images in

class c and extract features using a pre-trained CNN fv(·)
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Figure 2. Reference set encoder fs(·)

as shown in Fig. 1. The second approach is running K-

means on the extracted features of all images in class c to

find K cluster centroids and use them as V s
c . The K-means

step is ignored in the figures. Since the K-means approach

shows slightly better result on a held-out set, we choose it

for experiments hereafter. We select 50 feature vectors to

form V s
c .

In parallel to reference set encoder, we also develop a

query encoder fq(·). Let q denote a query image labeled

as class c. The query encoder fq(·) maps the query image

feature vq = fv(q) to a query embedding φq = fq(v
q). We

impose a matching constraint such that the query embed-

ding φq is similar to its class embedding φs
c = fs(V

s
c ) if the

query q is relevant to its class label c. In other words, we de-

cide whether a query is mislabeled by comparing its query

embedding vector with its class embedding vector. Since

the class labels are noisy, we can further mark up a query

image and its class label by a manual “verification label”.

The verification label for each image is defined as

l =











1 if the image is relevant to its noisy class label

0 if the image is mislabeled

−1 if verification label not available

(1)

Note that, to reduce human labeling effort, most of the ver-

ification labels are -1, means no human verification avail-

able.

The model learns the matching constraint from the su-

pervision given by the verification labels, such that a query

embedding is similar to its class embedding if the query im-

age q truly belongs to its class label, and transfer to differ-

ent classes where no human verification available. In the

following, we present how we build the reference set en-

coder, query encoder, and objectives for learning the match-

ing constraint.

Reference set encoder. The architecture of the reference

set encoder is depicted in Fig. 2. It maps a reference feature

set V s
c for class c to a class embedding vector φs

c. First,

a two-layer MLP projects each image feature to a hidden

5449



!" = 0.1581 0.00200.00290.1449 0.1224

Reference	set	images	for	the	class	“cup	cakes”

Figure 3. Examples that received the most and the least attention

in a reference set for ”cup cakes”. αi is defined in Eq. (3).

representation hi. Next, we learn an attention mechanism

to encode representative features to a fixed-length hidden

representation as class prototype:

ui = tanh(Whi + b) (2)

αi =
exp(uT

i u)
∑

i exp(u
T
i u)

(3)

h =
∑

i

αihi (4)

As shown in Eq. (4), the importance of each hi is mea-

sured by the similarity between ui and a context vector u.

Similar to [36], the context vector u is learned during train-

ing. Driven by the matching constraint, this attention mech-

anism learns how to pay attention on the most representa-

tive features for classes. This model learns from supervised

information, i.e., the manual verification label, and adapts

to other classes without explicit supervision. An example

of this attention mechanism is shown in Fig. 3. Finally, a

one-layer MLP maps the hidden representation to the class

embedding φs
c.

Query encoder. As illustrated in Fig. 1, we adopt a 5-

layer autoencoder [10] as the query encoder and incorpo-

rate autoencoder reconstruction error into learning objec-

tives. Taking this strategy, as proposed in [30], forces the

query embedding to preserve semantic information of all

the classes including those classes without verification la-

bels, because images without verification label can now be

used in training with this unsupervised objective. It has

been proven effective for improving domain adaptation per-

formance.

Given a query image feature vector vq , the autoencoder

maps vq to a hidden representation φq and seek to recon-

struct vq from φq . The reconstruction error is defined as

Lr(v
q) = ||vq − r(vq)||

2
(5)

where r(vq) is the reconstructed representation.

Learning objectives based on matching constraint. With

the supervision from human verification labels, the similar-

ity between class embedding φs
c and query embedding φq is

maximized if a query is relevant to its class label (l = 1);

otherwise the similarity is minimized (l = 0). We adopt the

cosine similarity loss with margin to impose this constraint:

Lcos(φ
q, φs

c, l) =











1− cos(φq, φs
c) if l = 1

ω(max(0, cos(φq, φs
c)− ρ)) if l = 0

0 if l = −1
(6)

where cos(·) is the normalized cosine similarity, ω is nega-

tive sample weight for balancing positive and negative sam-

ples, and ρ is the margin set to 0.1 in this work. The case

l = −1 is ignored in the loss function since this supervised

objective only utilizes query images with verification label.

On the other hand, images without verification label can

also be utilized to learn the matching constraint. Similar to

[30], we introduce an unsupervised self-reinforcing strategy

that applies pseudo-verification to images without verifica-

tion label. To be specific, a query is treated as relevant if

cos(φq, φs
c) is larger than the margin ρ:

Lunsup
cos (φq, φs

c) =

{

1− cos(φq, φs
c) if lsudo = 1

0 if lsudo = 0
(7)

lsudo =

{

1 if cos(φq, φs
c) ≥ ρ

0 otherwise
(8)

where ρ is the same margin as in Eq. (6). From Eq. (7)

and Eq. (8), we can see that for queries that are initially

treated as relevant, the model learns to further push up the

similarity between queries and reference sets; for queries

that are initially treated as irrelevant, they are ignored.

Total loss. To summarize the training objectives, our model

is learned by minimizing a total loss combining both super-

vised and unsupervised objectives:

Ltotal = Lcos + βLr + tγLunsup
cos (9)

t =

{

1 if l = −1

0 if l ∈ {0, 1}
(10)

where β and γ are selected through hyper-parameter search,

and t indicates whether a query image has verification label.

β and γ are set to 0.1 in this work. During training, we ran-

domly sample images without verification label as queries

for a fraction of a mini-batch (usually 1/2).

Note that the parameters of the attentional reference set

encoder and the query encoder are tied across all classes

so the information learned from classes that have human

verification labels can be transferred to other classes that

have no human verification label.

3.2. CleanNet for Label Noise Detection.

From a relevance perspective, CleanNet can be used to

rank all the images with label noise for a class by cosine

similarity cos(φq, φs
c). We can simply perform thresholding

for label noise detection:

l̂ =

{

1 if cos(φq, φs
c) ≥ δ

0 otherwise
(11)
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where δ is a threshold selected through cross-validation. We

observe that the threshold is not very sensitive to different

classes in most cases, and therefore we usually select an

uniform threshold for all classes so that verification labels

are not required for all classes for cross-validation.

3.3. CleanNet for Learning Classifiers

CleanNet predicts the relevance of an image to its noisy

class label by comparing the query embedding of the im-

age to its class embedding that represents the class. That

is, the distance between two embeddings can be used to de-

cide how much attention we should pay to a data sample in

training the image classifier. Specifically, we assign atten-

tion weights on data samples based on the cosine similarity:

wsoft(x, y = c, V s
c ) = max(0, cos(fq(fv(x)), fs(V

s
c ))) (12)

where V s
c is the reference image feature set that represents

the prototype of class y = c. Eq. (12) defines a soft weight-

ing on an image x with noisy class label y = c. Similarly,

we also define a hard weighting as

whard(x, y = c, V s
c ) =

{

1 if cos(fq(fv(x)), fs(V
s
c )) ≥ δ

0 otherwise

(13)

where δ is a threshold as in Eq. (11). In essence, hard

weighting is equivalent to explicit label noise removal. With

wsoft or whard, we define the weighted classification learn-

ing objective as

Lweighted(x, y = c, V s
c ) = wsoft|hard(x, y, V

s
c )H(x, y = c)

(14)

where H(x, y = c) is negative log likelihood:

H(x, y = c) = −

L
∑

c=0

p(y = c|x)logp̂(y = c|x) (15)

Integrating CleanNet and the image classifier. Learning

the image classifier relies on CleanNet to assign proper at-

tention weights to data samples. On the other hand, bet-

ter classifier provides more discriminative features which

are critical for CleanNet learning. Therefore, we inte-

grate CleanNet and the CNN-based image classifier into one

framework for end-to-end learning of image classifiers with

label noise. The overall architecture of this framework is

illustrated in Fig. 4. The structure of a CNN-based image

classifier is split into fully-connected layer(s) and convolu-

tional layers fcl that can be used for feature extraction.

Alternating training. We adopt an alternative training

scheme to learn the proposed classification system. At step

1, we first train a classifier from noisy data with all sam-

ple weights set to 1. At step 2, parameters of convolutional

layers fcl are copied to feature extractor fv and a Clean-

Net is trained to convergence. At step 3, the classifier are

fine-tuned using the sample weights proposed by CleanNet.

Convolutional Layers
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Figure 4. Illustration of integrating CleanNet for training the CNN-

based image classifier with label noise.

dataset #class #images #v-labels

Food-101N 101 310k/ - /25k 55k/5k

Clothing1M 14 1M/14k/10k 25k/7k

WebVision 1000 2.4M/50k/ - 25k/ -

Table 1. Datasets. #images shows the numbers of images in

train/val/test sets for classification (the train set is noisy labeled).

#v-labels shows the numbers of validation labels in train/val sets.

A similar alternating process can continue till the classifier

stops improving. For more iterations of learning classifier,

we fix the convolutional layers and only fine-tune the fully-

connected layers.

4. Experiments

4.1. Datasets

Table 1 lists the statistics of the datasets.

Food-101N: We collect 310k images from Google, Bing,

Yelp, and TripAdvisor using the Food-101 [2] taxonomy,

and avoid foodspotting.com where the original Food-101

was collected. The estimated noisy class label accuracy is

80%. We manually add 55k verification label for training

and 5k for testing label noise detection. Image classifica-

tion is evaluated on Food-101 test set.

Clothing1M [35]: Clothing1M is a public large-scale

dataset designed for learning from noisy data with human

supervision. It consists of 1M images with noisy class la-

bels from 14 fashion classes. The estimated accuracy of

class labels is 61.54%. There are also three sets of images,

with the size of 50k, 14k, 10k, respectively, which have cor-
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rect class labels provided by human labelers – we call them

clean sets. There are some images overlap between the three

clean sets and the noisy set. For those overlapped images,

we can then verify whether the noisy class label (as in the

noisy set) is correct given the human labels on these im-

ages, and hence obtain verification labels for these images.

Through this process, we obtain 25k and 7k verification la-

bels for training and validation, respectively. The state of

the art result of image classification on Clothing1M is re-

ported in [20].

WebVision[13]: WebVision contains 2.4M noisy labeled

images crawled from Flickr and Google using the ILSVRC

taxonomy [5]. We conveniently verify noisy class labels

using the Inception-ResNet-V2 model [28] pre-trained on

ILSVRC. Noisy class label of an image is verified as rel-

evant if it falls in top-5 predictions. Otherwise, the noisy

class label is marked as mislabeled. We randomly obtain

250 “pseudo-verification labels” for each class for training.

For evaluating image classification, we use 50k WebVision

validation set and 50k ILSVRC 2012 validation set.

4.2. Label Noise Detection

We first evaluate CleanNet for the task of label noise de-

tection. The label noise detection problem can be viewed

as a binary classification problem for each class, and hence

the results and comparisons are reported in average error

rate over all the classes. We compare with the following

categories of existing baseline methods:

• Supervised: Supervised methods learn a binary clas-

sification from verification labels for each class. We

consider neural networks (2-layer MLP, used in [37]

for data construction), kNN, SVM, label prop [40], and

label spread [39]. We also explored MLPs of more lay-

ers but 2-layer shows the best results.

• Unsupervised: We consider DRAE [34], the state of

the art unsupervised outlier removal. Empirically,

DRAE shows better results than one-class SVM [24].

• Weakly supervised: Like unsupervised method,

weakly supervised methods do not require verification

labels. We compare with a widely used classification

filtering method: we train a CNN model on noisy data

and predict top-K classes for each training image. An

image is classified as relevant to its class label if the

class is in top-K predictions. Otherwise, it is classified

as mislabeled. K is selected on the validation set.

We provide two additional baselines: naive baseline that

treats all class labels as correct, and average baseline that

simply averages reference features as a class embedding

vector and use query feature as a query embedding vector.

CleanNet and all the baselines depend on a CNN to ex-

tract image features. We fine-tune the ImageNet pre-trained

average error rate

method Food-101N Clothing1M

naive baseline 19.66 38.46

supervised baselines

MLP 10.42 16.09

kNN 13.28 17.58

SVM 11.21 16.75

label prop [40] 13.24 17.81

label spread [39] 12.03 17.71

weakly supervised baselines

classification filtering 16.60 23.55

unsupervised baselines

DRAE [34] 18.70 38.95

average baseline 16.20 30.56

CleanNet (full supervision)

CleanNet 9.61 15.91

CleanNet* 6.99 15.77

Table 2. Label noise detection in terms of average error rate over

all the classes (%). CleanNet* denotes the results using image

features extracted from the classifiers retrained with data cleansed

by CleanNet.

ResNet-50 models [9] on noisy data, same as step 1 in

the alternating training scheme, and extract the pool5 layer

as image features. Implementations of kNN, SVM, label

prop, and label spread are from scikit-learn [21]. We re-

implemented DRAE and MLP in our experimentation.

In the following, we will evaluate CleanNet for label

noise detection under two scenarios: Full supervision:

verification labels in all classes are available for learning

CleanNet; Transfer learning: only a fraction of classes

contains verification labels for learning CleanNet.

Full supervision. In Table 2, we report the label noise de-

tection results in terms of average error rate over all the

classes. CleanNet gives error rate of 9.61% on Food-101N

and 15.91% on Clothing1M. Comparing to MLP at 10.42%

on Food-101N and 16.09% on Clothing1M, we validate that

CleanNet performs similar to the best supervised baseline.

Comparing to classification filtering at 16.60% on Food-

101N and 23.55% on Clothing1M, the results demonstrate

effectiveness of adding verification labels for human super-

vision for label noise detection. CleanNet* denotes the re-

sults of CleanNet using image features extracted from the

classifiers retrained with data cleansed by CleanNet, and

shows improvements (6.99% on Food-101N and 15.77%

on Clothing1M). However, improvements become negligi-

ble with more iterations.

Transfer learning. We choose Food-101N to demonstrate

label noise detection with CleanNet under the setting of

transfer learning, where verification labels in n classes are

held out for CleanNet (Lists of the held-out classes are

available in the Food-101N dataset.). Here we also consider

MLP that uses all verification labels and classification filter-

ing that needs no verification labels. We ONLY evaluate the
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Figure 5. Label noise detection on Food-101N with transfer learn-

ing. Verification labels in n/101 classes are held out for learning

CleanNet, whereas MLP still uses all verification labels. Note that

average error rate (%) are ONLY evaluated on n classes held out

for CleanNet (so the numbers for MLP and classification filtering

fluctuate for different n).

method data top-1 accuracy

None Food-101 81.67

None Food-101N 81.44

CleanNet, whard Food-101N 83.47

CleanNet, wsoft Food-101N 83.95

Table 3. Image classification on Food-101N in terms of top-1 ac-

curacy (%). Verification labels in all classes are available. “None”

denotes classifier without any method for label noise.

results on n held-out classes to demonstrate the results on

classes without explicit human supervision. The results are

shown in Fig. 5. First, we observe that CleanNet can reduce

label noise detection error rate on held-out classes where no

human supervision available by 41.5% relatively (n = 10)

compared to classification filtering. CleanNet consistently

outperforms classification filtering, the weakly-supervised

baseline. We also observe that the result of CleanNet with

50/101 classes held out (11.02%) is still comparable to

the result of MLP which is based on supervised learning

(10.12%).

4.3. Learning Classifiers with Label Noise

In this subsection, we present experiments for learning

image classification models with label noise using the pro-

posed CleanNet-based learning framework. Experimenta-

tion in this section is based on ResNet-50.

Experiments on Food-101N. Table 3 lists the results on

Food-101N using verification labels in all classes. We ob-

serve that the performance of smooth soft weighting (wsoft)

(83.95%) without need for thresholding outperforms hard

weighting (whard) (83.47%). Fig. 6 presents the results

Figure 6. Image classification on Food-101N in terms of top-1 ac-

curacy (%). Red line shows the results when verification labels

in n/101 classes are held out for CleanNet. The blue dashed line

shows the baseline without using CleanNet.

Ramen 1

F:0.8247

D:0.7297

F:0.8259

D:0.7267

F:0.1060

D:0.1909

F:0.0007

D:0.0453

Ramen 1 Ramen 0 Ramen 0

Garlic Bread 1

F:0.7460

D:0.6308

F:0.8062

D:0.5839

F:0.2486

D:0.1833

F:0.0588

D:0.1878

Garlic Bread 1 Garlic Bread 0 Garlic Bread 0

T-shirt 1

F:0.7119F:0.9201 F:0.4574 F:-0.2260

T-shirt 1 T-shirt 0 T-shirt 0

Figure 7. Selected examples of CleanNet results on Food-101N

and Clothing1M. “F” denotes cosine similarity predicted by model

using verification labels in all classes. “D” denotes cosine similar-

ity under transfer learning (50/101 classes are excluded for Food-

101N, including ramen and garlic bread). Class names and verifi-

cation labels are shown at bottom-left.

of image classification using the proposed CleanNet-based

method when verification labels in n classes are held out.

For these n held-out classes, the information needed for

cleaning up the noisy class labels are transferred from other

classes through CleanNet. It is observed that there are still

2.1% and 1.75% accuracy gain when 50/101 and 70/101

classes are held out. This validates that labeling effort on a

small fraction of classes can still lead to significant gains.

Fig. 7 shows examples of predictions by CleanNet. The

cosine similarity score between the image and the reference

set of its class is shown for each example. Because of trans-

fer learning, CleanNet can assign reasonable scores to im-

ages from classes where no training images belonging to it

are manually verified.

Experiments on Clothing1M. For Clothing1M, we con-

sider the state of the art result reported in [20], which also
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# method data pretrained top-1

1 None [20] 1M noisy ImageNet 68.94

2 None [20] 50k clean ImageNet 75.19

3 loss correct. [20] 1M noisy ImageNet 69.84

4 None [20] 50k clean #3 model 80.38†

5 CleanNet,whard 1M noisy ImageNet 74.15

6 CleanNet,wsoft 1M noisy ImageNet 74.69

7 None 50k clean #6 model 79.90

Table 4. Image classification on Clothing1M in terms of top-1 ac-

curacy (top-1)(%). “None” denotes classifier without any method

for label noise. †: the result is not directly comparable to ours (See

Sec. 4.3 for more details).

verification definition

every-image verification labels for every image

all-1000 all 1000 classes

semantic-308 308 classes selected from each group of

classes that share a common second-level

hypernym in WordNet [18]
random-308 random selected 308 classes

random-118 random selected 118 classes

dogs-118 118 dog classes

Table 5. Verification conditions: selecting different classes for

adding verification labels. Other than every-image, all other con-

ditions have only 250 verification labels in each class.

used ResNet-50. [20] used the part of data in Clothing1M

that has both noisy and correct class labels to estimate con-

fusion among classes and modeled this information in loss

function. Since we only compare the noisy class label to the

correct class label for an image to verify whether the noisy

class label is correct, we lose the label confusion informa-

tion, and thus these numbers are not directly comparable.

However, labeling the correct classes like Clothing1M (only

14 classes) is not scalable in number of classes because hav-

ing labeling workers select from a large number of classes

is time-consuming and unlikely to be accurate.

Table 4 lists the results of image classification using ver-

ification labels in all classes. Using CleanNet significantly

improves the accuracy from 68.94% (#1) to 74.69% (#6) on

1M noisy training data. We also follow [20] to fine-tune the

best model trained on 1M noisy set on the 50k clean train-

ing set. Our proposed method achieves 79.90%, which is

comparable to the state of the art 80.38% reported in [20]

which benefits from the extra label confusion information.

Experiments on WebVision. As opposed to Food-101N

and Clothing1M which are fine-grained tasks, WebVision

experiments sheds light on general image classification at

very large scale. As mentioned in Sec. 4.1, the pseudo-

verification labels are model-based so that we can obtain

for all images. This property allows us to explore how to

select classes for adding verification labels and compare to

the upper bound scenario where all noisy class labels are

val acc top-1(top-5)

method verification WebVision ILSVRC

baseline - 67.76(85.75) 58.88(79.76)

upper bnd every-image 70.31(87.77) 63.42(84.59)

CleanNet all-1000 69.14(86.73) 61.03(82.01)

CleanNet semantic-308 68.96(86.64) 60.48(81.40)

CleanNet random-308 68.89(86.61) 60.27(81.27)

CleanNet random-118 68.50(86.51) 60.16(81.05)

CleanNet dogs-118 68.33(86.04) 59.43(80.22)

Table 6. Image classification on WebVision in terms of top-1 and

top-5 accuracy (%). The models are trained WebVision training

set and tested on WebVision and ILSVRC validation sets under

various verification conditions.

verified without any cost. We define how to add verification

labels as “verification conditions”, listed in Table 5. Table

6 shows the experimental results using CleanNet and soft

weighting (wsoft). We observe that verifying every image

(every-image) improves the top-1 accuracy from 67.76% to

70.31% on the WebVision validation set. With only 3.20%

and 1.2% images verified, semantic-308 and random-118

give 47% and 29% of the performance gain of every-image

on the WebVision validation set respectively. Note that we

only include 250 verification labels for each class for all

experiments using CleanNet. The results again confirm that

labeling on a fraction of classes is effective because of trans-

fer learning by CleanNet.

5. Conclusion

In this work, we highlighted the difficulties of having

both scalability and effectiveness of human supervision for

label noise detection and classification learning from noisy

data. We introduced CleanNet as a transfer learning ap-

proach to reconcile the issue by transferring supervised in-

formation of transferring the correctness of labels to classes

without explicit human supervision. We empirically evalu-

ate our proposed methods on both general and fine-grained

image classification datasets. The results show that Clean-

Net outperforms methods using no human supervision by a

large margin when small fraction of classes is manually ver-

ified. It also matches existing methods that require exten-

sive human supervision when sufficient classes are manu-

ally verified. We believe this work creates a novel paradigm

that efficiently utilizes human supervision to better address

label noise in large-scale image classification tasks.
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