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Abstract

We design a novel network architecture for learning dis-

criminative image models that are employed to efficiently

tackle the problem of grayscale and color image denois-

ing. Based on the proposed architecture, we introduce two

different variants. The first network involves convolutional

layers as a core component, while the second one relies in-

stead on non-local filtering layers and thus it is able to ex-

ploit the inherent non-local self-similarity property of natu-

ral images. As opposed to most of the existing deep network

approaches, which require the training of a specific model

for each considered noise level, the proposed models are

able to handle a wide range of noise levels using a single set

of learned parameters, while they are very robust when the

noise degrading the latent image does not match the statis-

tics of the noise used during training. The latter argument

is supported by results that we report on publicly available

images corrupted by unknown noise and which we compare

against solutions obtained by competing methods. At the

same time the introduced networks achieve excellent results

under additive white Gaussian noise (AWGN), which are

comparable to those of the current state-of-the-art network,

while they depend on a more shallow architecture with the

number of trained parameters being one order of magnitude

smaller. These properties make the proposed networks ideal

candidates to serve as sub-solvers on restoration methods

that deal with general inverse imaging problems such as

deblurring, demosaicking, superresolution, etc.

1. Introduction

Image denoising is among the basic low-level computer-

vision problems and has received significant attention in

both academic research as well as in practical digital imag-

ing applications [9, 32]. However, during the past decade

there was little progress in improving the state-of-the art

denoising performance and it has been suggested that de-

noising algorithms have reached optimality and cannot be

further improved [28]. Despite these beliefs, very recently

and thanks to the advent of deep learning techniques, sev-

eral powerful image denoising algorithms that managed to

significantly improve the state-of-the-art performance have

been introduced [6, 23, 38, 40, 42, 43]. Nevertheless, their

wide applicability in real-world applications is currently

hindered mainly because the majority of them involves the

training of a specific model for each considered noise level.

Such requirement is rather impractical since it implies that

a huge number of network parameters, proportional to the

number of noise levels that the models are trained for, needs

to be stored. This directly excludes the application of such

methods on devices with limited memory storage. Another

important limitation of such deep-learning methods is that

their denoising performance deteriorates very fast when the

noise level distorting the input images deviates from the one

that the model was originally trained for.

In this work, motivated by the recent advances in deep

learning and relying on the rich body of algorithmic ideas

developed in the past for image restoration problems, we in-

troduce a novel network architecture specifically tailored to

image denoising, which can overcome the aforementioned

limitations. Specifically, our derived networks allow the

training of image models that can handle a wide range of

noise levels and they come in two variants. The first net-

work involves convolutional layers as a core component and

behaves similarly to local variational methods, while the

second one relies on non-local filtering layers that allow us

to exploit the inherent non-local self-similarity property of

natural images. Both networks lead to very competitive re-

sults, which are directly comparable to the state-of-the art,

while their advantage is that they involve considerably less

parameters than the current best-performing network. Fur-

thermore, they are robust and perform very well for inputs

distorted by noise whose statistics differ from the ones of

the noise model used during training.

2. Image Restoration

To restore a latent grayscale or color image X from a

corrupted observation Y, we rely on the linear model

y = Hx+ n. (1)

In this setting, y, x ∈ R
N ·C are the vectorized versions of

the observed and latent images, Y and X respectively, N is
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the number of pixel in each image channel, C is the num-

ber of channels, H is a linear operator that corresponds to

the response of the imaging device, and n is the measure-

ment noise that accounts for all possible errors during im-

age acquisition, including stochastic noise and the possible

mismatch between the observation model and the physical

image acquisition process. For image denoising, which is

the focus of this work, the linear operator H reduces to the

identity matrix I, since it is assumed that the imaging de-

vice does not introduce any other distortions to the latent

signal. Regarding the term n, the most common assump-

tion in the literature, which we also adopt in this work, is

that it is zero-mean i.i.d Gaussian noise with variance σ2.

While the additive white Gaussian noise (AWGN) as-

sumption is not frequently met in practice, an efficient so-

lution of this problem is extremely valuable for two main

reasons. The first one is that even in cases where the noise

is signal dependent, there are several techniques available

in the literature, such as variance stabilization transforms

(VST) [1,12,30], which are able to transform the input data

in a different domain so that the noise follows a Gaussian

distribution with a fixed variance. Therefore, the solution

can be obtained by first performing Gaussian denoising in

the transform domain and then mapping the solution back

to the original domain using the inverse VST. The second

reason is that such a solution, in the context of convex op-

timization, can be interpreted as a proximal map [33] of

a regularization function. Such proximal maps typically

serve as building blocks of several powerful optimization

schemes that have been proposed in the literature, including

Majorization-Minimization [11, 18] and variable-splitting

strategies [3]. These optimization strategies can address

more general image restoration problems such as image de-

blurring, superresolution, demosaicking, inpainting, etc.

2.1. Image Priors

While Eq. (1) corresponds to a linear problem, the pres-

ence of the noise, whose exact realization is unknown, com-

bined with the fact that typically the operator H is singular,

makes it an ill-posed problem [2, 41]. This implies that a

unique solution does not exist and therefore we cannot rely

solely on the image evidence but we need to further exploit

a priori information. In this case, the utilization of suitable

prior models of image or scene properties plays an instru-

mental role in the success of image restoration methods.

Several strategies for imposing prior knowledge on the

solution are available and among the most popular ones is

the variational approach. In this framework, image recovery

is cast as a minimization problem of an objective function

of the form

f (x) = d (x;H,y) + λ r (x) , (2)

where the minimizer corresponds to the recovered latent im-

age. The role of the objective function is to quantify the

quality of the solution and typically consists of two terms as

shown in Eq. (2). The first term is the data fidelity, which

measures the proximity of the solution to the observation,

and the second one is the regularizer. The role of the reg-

ularizer is crucial since it encodes our prior knowledge by

penalizing solutions that do not feature the desired proper-

ties. The parameter λ ≥ 0, is used to combine the two terms

and to adjust their contribution on the final result. Interest-

ingly, the variational approach has direct links to Bayesian

estimation methods and the derived solutions can be inter-

preted either as penalized maximum likelihood or as maxi-

mum a posteriori (MAP) estimates [2, 11].

As emphasized previously, a good choice for the regular-

izer is instrumental to the success of any variational-based

image restoration method. A generic formulation that can

be used to describe the majority of the most successful reg-

ularizers in the literature, is provided below

r (x) =

K
∑

k=1

φ (Lkx) , (3)

where L : R
N 7→ R

K×D corresponds to the regulariza-

tion operator (Lkx ∈ R
D denotes the D-dimensional k-th

entry of the result obtained by applying L to the image x)

and φ : RD 7→ R is a potential function. Indeed, by vary-

ing the regularization operator L and the potential function

φ we can derive several existing regularization functionals.

Typical choices for the operator L are first or higher-order

differential operators such as the gradient [4, 36], the struc-

ture tensor [26], the Laplacian and the Hessian [24,27]. For

the potential function there is also a wide variety of possi-

ble choices with the most popular ones being the ℓp vector

norms and the Schatten matrix norms. The main reason for

this is that their combinations with linear operators leads

to convex regularizers which are amenable to efficient opti-

mization and provide certain convergence guarantees.

Besides the local regularization methods mentioned

above1, the definition in Eq. (3) can also be used to de-

scribe non-local regularization functionals such as those

in [10, 14, 20, 25, 44]. In this case, L is designed so that it

allows interactions between distant points in the image do-

main. This way it is possible to capture long-range depen-

dencies between image points and thus model the so called

non-local self similarity (NLSS) property that natural im-

ages exhibit. This property implies that images typically

consist of localized patterns that are repeated in different

and possibly distant locations in the image domain. NLSS

is an important property and if properly exploited it can ef-

fectively distinguish the image content from noise and other

1These methods are considered local in the sense that the regularization

operator is localized and its influence is restricted in a small area around

the pixel of interest.
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types of distortions. This has been succesfuly demonstrated

for several image restoration problems [8, 14, 25].

2.2. Constrained Optimization

In the variational framework the choice of the regularizer

has an important effect on the quality of the restored im-

age. Equally important is our ability to efficiently compute

the minimizer of the overall objective function. Image de-

noising under AWGN, amounts to solving an unconstrained

optimization problem of the form :

x∗ = argmin
x

1

2
‖y − x‖

2
2 + λ

K
∑

k=1

φ (Lkx) , (4)

where for the regularizer we use the generic description of

Eq. (3), while for the fidelity term we use a quadratic cost,

in accordance with the Gaussian noise assumption.

As mentioned earlier, λ is a ‘free’ parameter that needs

to be tuned by the user and different values lead to dif-

ferent restoration results of varying image quality. There-

fore, among others one of the main challenges is to choose

the value for the regularization parameter λ, that will lead

to the optimum result under some image quality criterion.

Unfortunately, there is not a direct way to a priori relate

the strength of λ with the quality of the result. There-

fore, in practice, λ is either tuned empirically or heuristic

techniques such as the L-curve method [16] are employed,

which involve solving Problem (4) for several values of λ.

One way to circumvent this difficulty, is to consider the

following equivalent formulation

x∗ = argmin
‖y−x‖

2
≤ε

K
∑

k=1

φ (Lkx) , (5)

which transforms the original problem to a constrained op-

timization form. Problems (4) and (5) are equivalent in the

sense that : for any ε > 0 such that Problem (5) is feasible,

a solution of (5) is either the null vector or else it is a solu-

tion of Problem (4) for some λ > 0 [34]. To highlight what

is the gain by pursuing such a reformulation, we note that

while in Eq. (5) there is still a free parameter ε that needs

to be tuned, this parameter is directly related to the noise

level distorting the latent image x. In particular, it holds

that ‖y − x‖2 = ‖n‖2 ∝ σ. Given that there are several

methods available for estimating the standard deviation of

the noise from the noisy input [13,29], we now have a good

indication about the range of values that the parameter ε
should lie in, as opposed to λ in the previous formulation.

2.3. Minimization Strategy

To attack the minimization problem of Eq. (5) we can

rely on a splitting variable technique such as the Alternating

Direction Method of Multipliers [3]. Here, however, we

opt for a simpler approach that utilizes a gradient descent

algorithm. To do so, we first rewrite Eq. (5) as

x∗ = argmin
x

K
∑

k=1

φ (Lkx) + ιC(y,ε) (x) , (6)

where

ιC(y,ε) (x) =

{

0, if ‖y − x‖2 ≤ ε

∞, otherwise
, (7)

is the indicator function of the convex set C.

Next, we assume that the potential function φ is smooth

and thus we can compute its partial derivatives. Since this

is not the case for the indicator function, instead of the

gradient descent algorithm we employ the proximal gradi-

ent method (PGM) [33]. This is a gradient descent vari-

ant that can deal with functions consisting of both smooth

and non-smooth terms. According to PGM the function

f (x) to be minimized is split into two terms, a smooth

and a non-smooth one. In our case we naturally have

f (x) = r (x) + ιC (x), where based on the smoothness as-

sumption for the potential function φ, the regularizer r (x)
corresponds to the smooth term. Then, the solution is com-

puted in an iterative fashion, using the update rule

xt = proxγtιC

(

xt−1 − γt∇xr
(

xt−1
))

, (8)

where γt is a step-size and proxγtιC
is the proximal opera-

tor [33] related to the indicator function ιC .

The proximal map of the indicator function ιC in Eq. (8)

corresponds to an orthogonal projection of the input onto

the set C. This can be computed in closed form as

ΠC (v) = y + ε
v − y

max (‖v − y‖2 , ε)
. (9)

Given that the gradient of the regularizer is computed as

∇xr (x) =
K
∑

k=1

LT

kψ (Lkx) ≡ h (x) , (10)

with ψ (z) = ∇zφ (z), z ∈ R
D and using Eq. (9), we re-

write Eq. (8) as

xt = ΠC

(

xt−1 − ht
(

xt−1
))

with ht (x) = γt h (x) . (11)

A careful inspection of Eqs. (9) and (11) leads us to the

useful observation that under this approach the solution is

obtained by recursively subtracting from the input refined

estimates of the noise realization that distorts it. In particu-

lar, for the first iteration and given that x0 = y we have

x1 = y − ε
h1 (y)

max (‖h1 (y)‖2 , ε)
= x+ (n− n1). (12)
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Figure 1. The architecture of the non-local filtering layer. The

input of the layer is x while y is the network input based on which

the block matching is computed.

Here h1 (y) can be interpreted as a noise estimator, which

infers from the input the noise realization that distorts it.

The noise realization estimate is further normalized to en-

sure that it has the correct variance and then it is subtracted

from the noisy input. This leads to an output which consists

of the latent image plus some residual noise, n − n1. The

subsequent updates refine the noise estimate and remove it

from the original input as follows

xk = y − nk = x+
(

n− nk
)

, k > 1 (13)

where nk = ε
(nk−1+hk(xk−1))

max(‖nk−1+hk(xk−1)‖
2
,ε)
.

3. Proposed Network

From the previous analysis it is clear that the success

of the iterative denoising scheme that we described in Sec-

tion 2.3 depends exclusively on how well the function h,

defined in Eq. (10), can estimate the realization of the noise.

Designing such a function amounts to specifying the opera-

tor L and the gradient of the potential function φ. Manually

selecting proper values for these parameters is a cumber-

some task. For this reason, we pursue a machine learning

approach and design a neural network that has the capacity

to learn these parameters in a discriminative fashion from

training data. Towards this end, we consider each PGM up-

date as a composition of network layers and construct our

network as a cascade of them. We emphasize that as op-

posed to previous networks [6, 23, 38] that followed a sim-

ilar unrolling strategy, our network architecture is based on

a constrained minimization formulation (5) rather than on

an unconstrained one (4). This is an important difference

and the key for deriving networks that can handle a wide

range of noise levels using a single set of learned parame-

ters. The main reason is that under our adopted formulation

the parameter ε does not need to be learned for a specific

noise level as is the case for the parameter λ in (4). We fur-

ther note that this is accomplished without any sacrifice in

reconstruction quality or computational complexity.

The remaining issue to be addressed is the parameteri-

zation of the operator L and function ψ in a way that will

facilitate the learning of the network’s parameters in an ef-

ficient and computationally tractable way.

noise std. (σ) 

image filtering 
transpose  
filtering 

non-linear 
activation  

projection  −	

shared parameters 

Figure 2. Schematic representation of the composite layer that

serves as the core component of the proposed network architec-

ture. Depending on the parametrization of the regularization oper-

ator, the filtering (transpose filtering) layer corresponds to either a

convolutional or a non-local filtering layer.

3.1. Local and Non-local Operators

As mentioned in Section 2.1 common choices for the

regularization operator L are local differential operators. In

the discrete setting, image derivatives are typically com-

puted as convolutions of the image with a filterbank con-

sisting of several high-pass kernels. Naturally, this leads

us to parametrize L as a convolutional layer, which is a

widely used component in modern deep neural networks.

One point however that requires our attention is that in

order to learn a valid regularization operator, the filters

utilized for its parametrization need to be zero-mean [7].

Moreover, since the function ψ will also be learned, if we

inspect equation (10) we will notice that without further

imposing a fixed scale to the operators Lk, it is possible

that two different sets of parameters (Lk, ψ) and
(

L̂k, ψ̂
)

lead to the same result. Such a situation can occur if we

choose L̂k = βLk and ψ̂ (βz) = 1
β
ψ (z), which gives

LT

kψ (Lkx) = L̂T

k ψ̂
(

L̂kx
)

. To ensure that the learned op-

erators will satisfy both the zero-mean and the fixed-scale

constraints, we parametrize the weights w ∈ R
L of each

filter in the convolutional layer as

w = s (v − v̄) / ‖v − v̄‖ , (14)

where s is a scalar trainable parameter. Training the convo-

lutional layers with this new parametrization can be done as

usual using a stochastic gradient descent method. The gra-

dient of the new parameters s and v w.r.t the loss function

L can be computed as

∇sL = 〈w/s , ∇wL〉 and ∇vL = Mv∇wL, (15)

where Mv = s
‖v−v̄‖

(

I− 11
T

L

)(

I− (v−v̄)(v−v̄)T

‖v−v̄‖2

)

, v̄ de-

notes the mean value of v, and 1 is a column vector of ones.

Interestingly, the same parametrization of Eq. (14) but

without the mean subtraction has been recently proposed

in [37] as an alternative to batch-normalization [19]. How-

ever, in [37] the motivation is different and the goal is to

make the training of deep networks more robust.

Besides the parametrization of L as a local operator, we

further explore another option where we model L as a non-

local operator. This leads to a second variant of the pro-

posed network architecture. Our motivation for employing
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a non-local regularization operator is that the resulting net-

work can take advantage of the NLSS property that we re-

ferred to in detail in the introduction. To this end, we adopt

the parametrization that was proposed in [23]. Specifically,

the non-local operator can be expressed as the composi-

tion of three layers : 1) a convolution layer, where we use

the parametrization that we adopted earlier, which applies a

linear transformation to every patch extracted from the im-

age2, 2) a block-matching layer which forms a 3-D group

for every valid patch and it consists of the P most simi-

lar patches to the reference patch (including the reference

patch itself) and 3) a collaborative-filtering layer that filters

the grouped patches along the dimension of the group in a

similar fashion as the Non-Local Means filter (NLM) [5]. In

this last layer each 3-D group is projected to a single patch.

A schematic representation of the described parametrization

is provided in Fig. 1. This combination of layers leads to a

non-local filtering approach similar to the one initially pro-

posed in [8] but with two main differences. The first one is

that the authors in [8] use fixed transforms while here the

transforms are learned. The second one is that in the third

step of the non-local operation an 1-D transformation along

the group dimension is applied instead of the weighted sum

that we use in this work. Therefore, in our case the output of

the adopted non-local filtering layer leads to an output of the

same size as the input, while in [8] the output is augmented

in the third dimension by a factor of P . An additional re-

mark relevant to the implementation of the described non-

local filtering layer is that we constrain the weights of the

third sub-layer to sum to one. This is consistent to the way

that the NLM filter is defined. To impose such constraint

we parametrize the weights g ∈ RP as g = ν−1
u with

ν = 〈1 , u〉. In this case the gradient of the new parameters

u w.r.t the loss function L are computed as

∇uL = ν−1
(

I− ν−1
u
T
)

∇gL. (16)

3.2. Parametrization of the Potential Function

Having defined the parametrization of the operator L, we

further need to model the function ψ (see Eq. (10)), which

corresponds to the gradient of the potential function φ. To

do so, first we assume that the potential function φ is sepa-

rable, that is it can be expressed in the form

φ (z) =

D
∑

d=1

φd (zd) , (17)

and thus, ψ (z) =
[

ψ1 (z1) ψ2 (z2) . . . ψD (zD)
]T ≡

∇zφ (z), with ψi (zi) = ∂φ (z) /∂zi. Next, we parametrize

the partial derivatives ψi as a linear combination of Radial

Basis Functions (RBFs), i.e.

2Passing an image through a convolution layer of F filters whose sup-

port are H×W , corresponds to applying a linear mapping R
H×W

7→ R
F

to every image patch of size H ×W . In addition, the stride of the convo-

lutional layer determines the overlap between consecutive image patches.

ψi (x) =
M
∑

j=1

πijρj (|x− µj |) , (18)

where πij are the expansion coefficients and µj are the cen-

ters of the basis functions ρj [17]. For our networks we

use Gaussian RBFs, ρj (r) = exp
(

−ajr2
)

, and we employ

M = 51 Gaussian kernels whose centers are distributed

equidistantly in the range [-100, 100] and they all share the

same precision parameter a. To make sure that the input x
lies in the specified range, a clipping layer is preceding the

RBF-mixture layer. The representation of ψi using mixtures

of RBFs is very powerful and allow us to approximate with

high accuracy arbitrary non-linear functions. Details about

the computation of the gradient of the parameters πij and of

the input z w.r.t to the loss function L can be found in [23].

3.3. Trainable Projection Layer

The final component for the construction of the pro-

posed network architecture is the projection layer, which

is defined in Eq. (9). We parametrize the threshold ε as

ε = eασ
√
Nt − 1, where σ is the standard deviation of the

noise distorting the network input, Nt is the total number of

pixel in the image, and α is a trainable parameter. We note,

that in our work we learn a single common α for various

values of σ, where σ as shown in Fig. 2 is provided as an

additional input to our network.

Based on this parametrization and using the identity

max (x, y) = 0.5 (|x− y|+ x+ y), we compute the gra-

dient of the input v w.r.t to the loss function L as

∇vL = εγ
(

I− β+γ2 (v − y) (v − y)
T

)

∇qL, (19)

where q = ΠC (v), β
+ = (1 + sign (‖v − y‖2 − ε)) /2

and γ = 1/max (‖v − y‖2 , ε). Additionally, the gradient

of the parameter α w.r.t the loss function L is computed as

∇αL = µ (v − y)
T ∇qL, (20)

where β− = (1− sign (‖v − y‖2 − ε)) /2 and µ =
εγ (1− εγβ−). Note that for all the formulas above we

are using the convention that sign (0) = −1.

4. Network Training

We train our networks for grayscale and color image

denoising under i.i.d Gaussian noise. Each network con-

sists of a cascade of S composite layers, as the one shown

in Fig. 2, plus an additional clipping layer placed just be-

fore the output of the network. This last layer incorpo-

rates our prior knowledge about the valid range of image

intensities and forces the pixel values of the restored im-

age to lie in the range [0, 255]. The network parameters

Θ =
[

Θ1, . . . ,ΘS
]

, where Θt = {st,vt, gt,πt, αt}3 de-

notes the set of parameters for the t-th layer, are learned

3For the local variants of the proposed network, the parameters gt are

not present in the parameter set Θt.
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(a) (b) (e) (d) (e)

Figure 3. Grayscale image denoising. (a) Original image, (b) Noisy image (AWGN with σ = 20) ; PSNR = 22.10 dB. (c) Denoised image using

EPLL [45] ; PSNR = 31.54 dB. (d) Denoised image using DnCNN [42] ; PSNR = 31.83 dB. (e) Denoised image using UNet5; PSNR = 31.71 dB.

(a) (b) (e) (d) (e)

Figure 4. Color image denoising. (a) Original image, (b) Noisy image (AWGN with σ = 30) ; PSNR = 18.57 dB. (c) Denoised image using CBM3D [8]

; PSNR = 28.55 dB. (d) Denoised image using CDnCNN [42] ; PSNR = 29.08 dB. (e) Denoised image using CUNLNet5; PSNR = 29.13 dB.

using a loss-minimization strategy given Q pairs of training

data {yq,xq}Qq=1. Here yq is a noisy input and xq is the

corresponding ground-truth image. To achieve an increased

capacity for the network, we learn different parameters for

each composite layer. However, the convolutional and non-

local filtering layers (for the local and non-local version of

the network, respectively) in each composite layer share the

same parameters {st,vt, gt} with their transpose layers.

Since the objective function to be minimized is non-

convex, to avoid getting stuck in poor local-minima we ini-

tialize our networks with the parameters that are learned fol-

lowing a greedy-training strategy. The same approach has

been adopted in [6, 23, 38] and it amounts to learning the

parameters of each composite layer by keeping all the pre-

ceding layers of the network fixed and minimizing the cost

L
(

Θt
)

=

Q
∑

q=1

ℓ
(

x̂t
q,xq

)

. (21)

In Eq. (21), x̂t
q is the output of the t-th composite layer and

the loss function ℓ corresponds to the negative peak signal-

to-noise-ratio (PSNR). This is computed as ℓ (y,x) =
−20 log10 (p/ ‖y − x‖2), where p = 255

√
Nt. While

these learned parameters are sub-optimal, we have exper-

imentally observed that they serve as a good initialization

for the joint optimization training that follows.

To minimize the objective function in Eq. (21) w.r.t the

parameters Θt we employ the Adam algorithm [21], which

is a variant of the stochastic gradient descent (SGD) that

involves adaptive normalization of the learning rate. Each

layer is trained for 100 epochs using an initial learning rate

1e-2 (1e-3 for grayscale images), while the configuration

parameters for Adam are chosen as beta_1 = 0.9, beta_2

= 0.999 and eps = 1e-4.

The final parameters of our network are obtained by us-

ing the previous learned parameters as initial values and by

jointly minimizing the objective function

L (Θ) =

Q
∑

q=1

ℓ
(

x̂S
q ,xq

)

, (22)

w.r.t to all network parameters Θ. This cost function does

not take into account anymore the intermediate results (out-

puts of each composite layer) but only depends on the final

output of the network x̂S
q . In this case the training is per-

formed by running 100 epochs using Adam optimization

with the same configuration parameters as before.

5. Experiments and Results

To train our local and non-local models we generated

the training data using the Berkeley segmentation dataset

(BSDS) [31], which consists of 500 images. We split these

images in two sets, a training set which consists of 400 im-

ages and the validation set which consists of the remaining

100 images. All the images were randomly cropped so that

their size is 180 × 180 pixel. We note that the 68 BSDS

images of [35] that are used for the comparisons reported

in Tables 1 and 2 are strictly excluded from the training set

and only cropped versions of them are used in the validation

set. The proposed models were trained on a NVIDIA 1080

Ti GPU and the software we used for training and testing4

was built on top of MatConvnet [39].

Grayscale denoising Following the strategy described in

Section 4, we have trained two variants of our proposed net-

work. In the first network, we parametrize the regulariza-

tion operator L as a local operator and in the second one

as a non-local operator. Both networks consist of S = 5
composite layers each and we will refer to them as UNet5
and UNLNet5, respectively. For the local model, in order

4The code implementing the proposed networks is available from the

author’s website.
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Noise level - σ (std.)

Methods 5 10 15 20 25 30 35 40 45 50 55 avg.

BM3D [8] 37.57 33.30 31.06 29.60 28.55 27.74 27.07 26.45 25.99 25.60 25.26 28.93

EPLL [45] 37.55 33.36 31.18 29.73 28.67 27.84 27.16 26.58 26.09 25.71 25.34 29.02

WNMM [15] 37.76 33.55 31.31 29.83 28.73 27.94 27.28 26.72 26.26 25.85 25.49 29.16

DnCNN [42] 37.68 33.72 31.60 30.19 29.15 28.33 27.66 27.10 26.62 26.21 25.80 29.46

UNet5 37.59 33.54 31.38 29.93 28.84 28.01 27.38 26.85 26.38 25.95 25.53 29.22

UNLNet5 37.62 33.62 31.47 30.04 28.96 28.13 27.50 26.96 26.48 26.04 25.64 29.32

UNLNet
orc

5 37.79 33.97 31.95 30.59 29.51 28.54 27.97 27.47 26.97 26.41 25.80 29.72

Table 1. Grayscale denoising comparisons for different noise levels over the standard set of 68 [35] Berkeley images. Performance is

measured in terms of average PSNR (in dB). The highlighted results refer to those of the non-local model with oracle grouping.

Noise Methods

σ (std.) CBM3D [8] CDnCNN [42] CUNet5 CUNLNet5 CUNLNet
orc

5

5 40.24 40.11 40.31 40.39 40.54

10 35.88 36.11 36.08 36.20 36.70

15 33.49 33.88 33.78 33.90 34.58

20 31.88 32.36 32.21 32.34 33.11

25 30.68 31.22 31.03 31.17 31.95

30 29.71 30.31 30.06 30.24 31.06

35 28.86 29.57 29.37 29.53 30.37

40 28.06 28.94 28.77 28.91 29.75

45 27.82 28.39 28.23 28.37 29.19

50 27.36 27.91 27.74 27.89 28.65

55 26.95 27.45 27.27 27.44 28.10

avg. 30.99 31.48 31.35 31.49 32.18

Table 2. Color denoising comparisons for different noise levels

over the standard set of 68 [35] Berkeley images. Performance

is measured in terms of average PSNR (in dB). The highlighted

results refer to those of the non-local model with oracle grouping.

to parametrize the operator L, in each composite layer we

employ a convolution layer of 48 filters, which are zero-

mean and have a 7 × 7 support. For the non-local model,

instead of the convolution layer we utilize the non-local fil-

tering layer as described in Section 3.1. In this case, similar

to the local network, we utilize 48 filters of 7 × 7 support.

As explained in Section 3.1 this corresponds to applying a

non-redundant linear transformation, T : R7×7 7→ R
48 on

every image patch of size 7×7 extracted from the input im-

age, excluding the DC component (the low-pass content) of

the transform. Finally, in order to form the group of similar

patches as required by the second step of the non-local fil-

tering layer, we use the P = 8 closest neighbors (including

the reference patch) while the similar patches are searched

on the noisy input of the network in a window of 31 × 31
centered around each pixel. The same group indices are

then used for all the composite layers of the network.

We trained two UNet5 and UNLNet5 networks, one for

low input noise levels (σ < 30) and one for high input noise

levels (30 ≤ σ < 55). For the low-noise network training,

the training data were distorted with AWGN of standard de-

viation that varies from σ = 5 to σ = 29 with increments

of 4 and for the high-noise network with AWGN of stan-

dard deviation that varies from σ = 30 to σ = 55 using the

same increments. To evaluate the restoration performance

of our proposed networks, in Table 1 we report comparisons

with recent state-of-the-art denoising methods on the stan-

dard evaluation dataset of 68 images [35] for eleven differ-

ent noise levels, where the standard deviation of the noise

varies from σ = 5 to σ = 55 with increments of 5.

From these results we observe that the proposed net-

works perform better than all the methods except to the

blind variant of the deep network (DnCNN) [42], which

similar to ours can handle inputs distorted by different noise

levels. Specifically, on average our local model UNet5
leads to results that are 0.25 dB worse than DnCNN, while

our non-local network UNLNet5 performs better than the

local one but still falls behind DnCNN around 0.15 dB

on average. Nevertheless, the memory footprint of the

proposed networks is about 14 times smaller than that of

DnCNN (48K versus 666K parameters), which makes them

ideal for deployment in mobile devices where memory stor-

age is limited. More importantly, as we demonstrate later,

our models show an excellent denoising performance un-

der more realistic noise conditions, as opposed to the blind

DnCNN that performs poorly. In Table 1 we further re-

port the results obtained by our non-local network when the

indices of similar patches are computed from the ground-

truth images. In this case we observe that UNLNet5
orc out-

performs DnCNN and leads to an average increase of 0.25
dB. While this is not a practical configuration, these results

highlight the fact that a better grouping approach, which is

out of the scope of the current work, can lead to further

improvements in the restoration quality without any need to

re-train the network. Representative grayscale denoising re-

sults that demonstrate visually the restoration quality of the

proposed models are shown in Fig. 3.

Color denosing Similar to the grayscale case we trained

two different network configurations, one using a local op-

erator and one using a non-local operator. The only dif-

ference between the color denoising network architecture

and the grayscale one is that the convolution layers used

in the color-denoising networks consist of 74 filters of sup-

3210



(a) Noisy image (σ = 15) (b) DnCNN [42] (c) BM3D [8] (d) Noise Clinic [22] (e) UNet5

(a) Noisy image (σ = 22) (b) CDnCNN [42] (c) CBM3D [8] (d) Noise Clinic [22] (e) CUNLNet5

Figure 5. Real grayscale and color image denoising results. The indicated value of σ corresponds to noise’s standard deviation estimate,

which we provide as additional input both to BM3D and to our proposed networks. The details in the results are better viewed magnified

on a computer screen.

port 5 × 5 × 3. The rest of the network parameters and the

training setup remains the same as above. In Table 2 we re-

port results for several noise levels and our comparisons in-

volve only methods that are specifically designed to handle

color images. We refrain from reporting results by methods

that are applied on each image channel independently, since

such results are not competitive enough.

From Table 2 we observe that our color networks out-

perform CBM3D [8], which has been the state-of-the-art

method for almost a decade, by 0.35 dB for the local model

and 0.5 dB for the non-local model and they are very com-

petitive to CDnCNN [42], which is the current state-of-the-

art method. Specifically, the proposed non-local network

on average matches the performance of CDnCNN while

it is considerably more shallow with 7 times less parame-

ters (93K versus 668K). Another important advantage of the

proposed networks, as it will be demonstrated next, is that

similarly to the grayscale case they perform very well when

the noise distorting the input is not AWGN, as opposed to

blind DnCNN that cannot handle successfully such cases.

For a visual inspection of the restoration performance of the

proposed color models we refer to Fig. 4.

Results on real images To demonstrate the practical sig-

nificance of the proposed network architecture, we further

report representative results on images obtained from [22],

which are distorted by real noise and whose distribution and

noise level are unknown. Since ground-truth images are not

available, the evaluation of the different methods is only

possible by visual comparisons. From Fig. 5 we observe

that as opposed to the rest of the methods, blind DnCNN

has a hard time in removing the noise. We note that the

noise-specific variant of DnCNN does not have the same

drawback, but in this case the advantage of using a single

network for different noise levels is lost. Regarding the per-

formance of the proposed networks, they lead to visually

pleasing results with most of the noise being removed and

without introducing any spurious artifacts, as those present

in the rest of the methods under comparison. More results

on real images can be found in the supplementary material.

6. Conclusions and Future Work

In this work we proposed a novel network architecture

for grayscale and color image denoising. The design of

the resulting image models has been inspired by local and

non-local variational methods and a constrained optimiza-

tion formulation of the problem, which allows us to train

our networks for a wide range of noise levels using a single

set of parameters. While the architecture of the proposed

networks is considerably more shallow than current state-

of-the-art deep CNN-based approaches, the resulting mod-

els lead to very competitive results for AWGN distortions

while they also appear to be very robust when the noise de-

grading the input deviates from the Gaussian assumption.

Based on the reported results using oracle grouping, a

promising future research direction that has the potential to

lead to further improvements in the restoration quality is to

investigate different block-matching approaches for finding

the similar patches used in the non-local variant of the pro-

posed network. Another direction that we plan to explore is

the use of the proposed networks as sub-solvers in restora-

tion methods that deal with more general inverse imaging

problems such as deblurring, inpainting, demosaicking, etc.
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