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Abstract

Using deep learning, this paper addresses the problem

of joint object boundary detection and boundary motion

estimation in videos, which we named boundary flow esti-

mation. Boundary flow is an important mid-level visual cue

as boundaries characterize objects’ spatial extents, and the

flow indicates objects’ motions and interactions. Yet, most

prior work on motion estimation has focused on dense ob-

ject motion or feature points that may not necessarily reside

on boundaries. For boundary flow estimation, we specify a

new fully convolutional Siamese network (FCSN) that jointly

estimates object-level boundaries in two consecutive frames.

Boundary correspondences in the two frames are predicted

by the same FCSN with a new, unconventional deconvolution

approach. Finally, the boundary flow estimate is improved

with an edgelet-based filtering. Evaluation is conducted on

three tasks: boundary detection in videos, boundary flow

estimation, and optical flow estimation. On boundary de-

tection, we achieve the state-of-the-art performance on the

benchmark VSB100 dataset. On boundary flow estimation,

we present the first results on the Sintel training dataset. For

optical flow estimation, we run the recent approach CPM-

Flow but on the augmented input with our boundary-flow

matches, and achieve significant performance improvement

on the Sintel benchmark.

1. Introduction

This paper considers the problem of estimating motions

of object boundaries in two consecutive video frames, or

simply two images. We call this problem boundary flow

(BF) estimation. Intuitively, BF is defined as the motion of

every pixel along object boundaries in two images, as illus-

trated in Fig. 1. A more rigorous definition will be presented

in Sec. 3. BF estimation is an important problem. Its solu-

tion can be used as an informative mid-level visual cue for

a wide range of higher-level vision tasks, including object

Figure 1: Boundary flow estimation. Given two images

(a), our approach jointly: predicts object boundaries in both

images (b), and estimates motion of the boundaries in the

two images (c). For clarity, only a part of boundary matches

are shown in (c).

detection (e.g.,[11]), object proposals (e.g.,[38]), video seg-

mentation (e.g.,[21]), and depth prediction (e.g., [1]). This is

because, in a BF, the boundaries identify objects’ locations,

shapes, motions, local interactions, and figure-ground rela-

tionships. In many object-level tasks, BF can be computed

in lieu of the regular optical flow, hence avoiding estimating

motion on many irrelevant background pixels that may not

be essential to the performance of the task.

Yet, this problem has received scant attention in the lit-

erature. Related work has mostly focused on single-frame

edge detection and dense optical flow estimation. These

approaches, however, cannot be readily applied to BF es-

timation, due to new challenges. In particular, low-level

spatiotemporal boundary matching — which is agnostic
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of objects, scenes, and motions depicted in the two video

frames — is subject to many ambiguities. The key chal-

lenge is that distinct surfaces sharing a boundary move with

different motions, out-of-plane rotations and changing occlu-

sions. This makes appearance along the boundary potentially

inconsistent in consecutive frames. The difficulty of match-

ing boundaries in two images also increases when multiple

points along the boundary have similar appearance.

Our key hypothesis is that because of the rich visual cues

along the boundaries, BF may be learned without pixel-

level motion annotations, which is typically very hard to

come by (prior work resorts to simulations [24] or computer

graphics [8], which may not represent realistic images).

While there are a few approaches that separately detect

and match boundaries in a video, e.g., [22, 31, 32], to the

best of our knowledge, this is the first work that gives a

rigorous definition of boundary flow, as well as jointly de-

tects object boundaries and estimates their flow within the

deep learning framework. We extend ideas from deep bound-

ary detection approaches in images [34, 36], and specify a

new Fully Convolutional Siamese encoder-decoder Network

(FCSN) for joint spatiotemporal boundary detection and BF

estimation. As shown in Fig. 2, FCSN encodes two consecu-

tive video frames into a coarse joint feature representation

(JFR) (marked as a green cube in Fig. 2). Then, a Siamese

decoder uses deconvolution and un-max-pooling to estimate

boundaries in each of the two input images.

Our network trains only on boundary annotations in one

frame and predicts boundaries in each frame, so at first

glance it does not provide motion estimation. However, the

Siamese network is capable of predicting different (but cor-

rect) boundaries in two frames, while the only difference in

the two decoder branches are max-pooling indices. Thus,

our key intuition is that there must be a common edge repre-

sentation in the JFR layer for each edge, that are mapped to

two different boundary predictions by different sets of max-

pooling indices. Such a common representation enables us to

match the corresponding boundaries in the two images. The

matching is done by tracking a boundary from one boundary

prediction image back to the JFR, and then from the JFR to

boundaries in the other boundary prediction image. This is

formalized as an excitation attention-map estimation of the

FCSN. We use edgelet-based matching to further improve

the smoothness and enforce ordering of pixel-level boundary

matching along an edgelet.

Since FCSN performs boundary detection and provides

correspondence scores for boundary matching, we say that

FCSN unifies both boundary detection and BF estimation

within the same deep architecture. In our experiments, this

approach proves capable of handling large object displace-

ments in the two images, and thus can be used as an impor-

tant complementary input to dense optical flow estimation.

We evaluate FCSN on the VSB100 dataset [12] for bound-

ary detection, and on the Sintel training dataset [8] for BF

estimation. Our results demonstrate that FCSN yields higher

precision on boundary detection than the state of the art, and

using the excitation attention score for boundary matching

yields superior BF performance relative to reasonable base-

lines. Also, experiments performed on the Sintel test dataset

show that we can use the BF results to augment the input of

a state-of-the-art optical flow algorithm – CPM-Flow [15] –

and generate significantly better dense optical flow than the

original.

Our key contributions are summarized below:

• We consider the problem of BF estimation within the

deep learning framework, give a rigorous definition of

BF, and specify and extensively evaluate a new deep

architecture FCSN for solving this problem. We also

demonstrate the utility of BF for estimating dense opti-

cal flow.
• We propose a new approach to generate excitation-

based correspondence scores from FCSN for boundary

matching, and develop an edgelet-based matching for

refining point matches along corresponding boundaries.
• We improve the state-of-the-art on spatiotemporal

boundary detection, provide the first results on BF es-

timation, and achieve competitive improvements on

dense optical flow when integrated with CPM-Flow

[15].

2. Related Work

This section reviews closely related work on boundary

detection and dense optical flow estimation. The literature on

semantic video segmentation and semantic contour detection

is beyond our scope.

Boundary Detection. Traditional approaches to boundary

detection typically extract a multitude of hand-designed fea-

tures at different scales, and pass them to a detector for

boundary detection [2]. Some of these methods leverage the

structure of local contour maps for fast edge detection [10].

Recent work resorts to convolutional neural networks (CNN)

for learning deep features that are suitable for boundary de-

tection [13, 29, 6, 5, 34, 36, 23]. [18] trains a boundary

detector on a video dataset and achieved improved results.

Their network is defined on a single frame and does not pro-

vide motion information across two frames. The approach

of [36] is closest to ours, since they use a fully convolutional

encoder-decoder for boundary detection on one frame. How-

ever, without a Siamese network their work cannot be used

to estimate boundary motion as proposed in this paper.

Optical flow estimation. There has been considerable ef-

forts to improve the efficiency and robustness of optical

flow estimation, including PatchMatch [4] and extensions

[20, 14, 3]. They compute the Nearest Neighbor Field (NNF)

by random search and propagation. EpicFlow [28] uses

DeepMatching [33] for a hierarchical matching of image
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Figure 2: FCSN consists of a Siamese encoder and a Siamese decoder and takes two images as input. The two Siamese

soft-max outputs of the decoder produce boundary predictions in each of the two input images. Also, the decoder associates

the two Siamese branches via the decoder layers and the JFR layer (the green cube) for calculating the excitation attention

score, which in turn is used for BF estimation, as indicated by the cyan and purple arrows. The convolution, pooling, softmax

and concatenation layers are marked with black, blue, red and brown respectively. Best viewed in color.

patches, and its extension Coarse-to-fine Patch-Match (CPM-

Flow) [15] introduces a propagation between levels of the

hierarchical matching. While EpicFlow [28] propagates

optical flow to image boundaries, it still does not handle

very abrupt motions well, as can be seen in many of the

fast-moving objects in the Sintel benchmark dataset. In this

paper, we do not focus on dense optical flow estimation,

but demonstrate the capability of boundary flow estimation

in supplementing optical flow, which is beneficial in large

displacements and flow near boundaries. As our results

show, we improve CPM-Flow when using our boundary flow

estimation as a pre-processing step. Boundary motion esti-

mation was first considered in [22], and then in [35] where

dense optical flow was initialized from an optical flow com-

puted on Canny edges. However, in both of these papers,

the definition of their edge flow differs from our boundary

flow in the following. First, they do not consider cases when

optical flow is not defined. Second, they do not have a deep

network to perform boundary detection. Finally, they do not

evaluate edge flow as a separate problem.

3. Boundary Flow

This section defines BF, introduces the FCSN, and spec-

ifies finding boundary correspondences in the two frames

using the FCSN’s excitation attention score.

3.1. Definition of Boundary Flow

BF is defined as the motion of every boundary pixel to-

wards the corresponding boundary pixel in the next frame.

In the case of out-of-plane rotations and occlusions, BF iden-

tifies the occlusion boundary closest to the original boundary

pixel (which becomes occluded). We denote the set of bound-

aries in frame t and t + 1 as B1 and B2, respectively. Let

OF(x) denote the optical flow of a pixel x in frame t, and

x + OF(x) represent a mapping of pixel x in frame t + 1.

Boundary flow BF(x) is defined as:

x

Occlude

y

B1 B2

x

B1
y

B2

Emerge

(a) (b)

Occluded area Newly appeared areaBoundary in frame t Boundary in frame t+1

Figure 3: Fig. 3(a) shows the case when a boundary B1 in

frame t is occluded at time t+ 1. Fig. 3(b) shows the case

when a boundary B1 in frame t is no longer a boundary at

time t + 1 but its pixels are visible. In both cases BF is

well-defined and always resides on the boundary.

(i) BF(x) = argminy∈B2
‖y−(x+OF(x))‖2−x, if OF(x)

exists;

(ii) BF(x) = OF(argminy,∃OF(y) ‖y−x‖2), if OF(x) does

not exist (x occluded in frame t+ 1);

(iii) BF(x) is undefined if argmin in (i) or (ii) does not return

a unique solution.

In (i), BF is defined as optical flow for translations and

elastic deformations, or the closest boundary pixel from the

optical flow for out-of-plane rotations (see Fig. 3(b)). In (ii),

BF is defined as the closest occlusion boundary of the pixel

which becomes occluded (see Fig. 3(a)). Thus, BF can be

defined even if optical flow is not defined. Since optical flow

is often undefined in the vicinity of occlusion boundaries,

BF captures shapes/occlusions better than optical flow. In

(iii), BF is undefined only in rare cases of fast movements

with symmetric occluders (e.g. a perfect ball) resulting in

multiple pixels as the argmin solution.

3.2. Fully Convolutional Siamese Network

We formulate boundary detection as a binary labeling

problem. For this problem, we develop a new, end-to-end

trainable FCSN, shown in Fig. 2. FCSN takes two images

as input, and produces binary soft-max outputs of boundary

predictions in each of the two input images. The fully con-
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volutional architecture in FCSN scales up to arbitrary image

sizes.

FCSN consists of two modules: a Siamese encoder, and a

Siamese decoder. The encoder stores all the pooling indices

and encodes the two frames as the joint feature representation

(JFR) (green box in Fig. 2) through a series of convolution,

ReLU, and pooling layers. The outputs of the encoder are

concatenated, and then used as the input to the decoder. The

decoder takes both the JFR and the max-pooling indices

from the encoder as inputs. Then, the features from the

decoder are passed into a softmax layer to get the boundary

labels of all pixels in the two images.

The two branches of the encoder and the two branches

of the decoder use the same architecture and share weights

with each other. However, for two different input images, the

two branches would still output different predictions, since

decoder predictions are modulated with different pooling

indices recorded in their corresponding encoder branches.

Each encoder branch uses the layers of VGG net [30] until

the fc6 layer. The decoder decodes the JFR to the original

input size through a set of unpooling, deconvolution, ReLU

and dropout operations. Unlike the deconvolutional net [27]

which uses a symmetric decoder as the encoder, we design a

light-weight decoder with fewer weight parameters than a

symmetric structure for efficiency. Except for the layer right

before the softmax layer, all the other convolution layers of

the decoder are followed by a ReLU operator and a dropout

layer. A detailed description of the convolution and dropout

layers is summarized in Tab. 1.

Layer Filter Dropout rate

Deconv1 1× 1× 512 0.5

Deconv2 5× 5× 512 0.5

Deconv3 5× 5× 256 0.5

Deconv4 5× 5× 128 0.5

Deconv5 5× 5× 64 0.5

Deconv6 5× 5× 32 0.5

Softmax 5× 5× 1 -

Table 1: The configuration of the decoder in FCSN.

3.3. Boundary Flow Estimation

This section first describes estimation of the excitation

attention score, used as a cue for boundary matching, and

then specifies our edgelet-based matching for refining point

matches along the boundaries.

3.3.1 Excitation Attention Score

A central problem in BF estimation is to identify the cor-

respondence between a pair of boundary points 〈xi
t,y

j
t+1〉,

where xi
t is a boundary point in frame t, and y

j
t+1 is a bound-

ary point in frame t + 1. Our key idea is to estimate this

correspondence by computing the excitation attention scores

in frame t+1 for every xi
t in frame t, as well as the excitation

attention scores in frame t for every y
j
t+1 in frame t+1. The

excitation attention scores can be generated efficiently using

excitation backpropagation (ExcitationBP) [37] – a proba-

bilistic winner-take-all approach that models dependencies

of neural activations through convolutional layers of a neural

network for identifying relevant neurons for prediction, i.e.,

attention maps.

The intuition behind our approach is that the JFR stores

a joint representation of two corresponding boundaries of

the two images, and thus could be used as a “bridge” for

matching them. This “bridge” is established by tracking the

most relevant neurons along the path from one branch of the

decoder to the other branch via the JFR layer (the cyan and

purple arrows in Fig. 2).

In our approach, the winner neurons are sequentially sam-

pled for each layer on the path from frame t to t + 1 via

the JFR, based on a conditional winning probability. The

relevance of each neuron is defined as its probability of being

selected as a winner on the path. Following [37], we define

the winning probability of a neuron am as

p(am) =
∑

n∈Pm

p(am|an)p(an) (1)

=
∑

n∈Pm

w+
mnam∑

m′∈Cn

w+
m′nam′

p(an)

where w+
mn = max{0, wmn}, Pm and Cn denote the

parent nodes of am and the set of children of an in the path

traveling order, respectively. For our path that goes from the

prediction back to the JFR layer, Pm refers to all neurons in

the layer closer to the prediction, and Cn refers to all neurons

in the layer closer to the JFR layer.

ExcitationBP efficiently identifies which neurons are re-

sponsible for the final prediction. In our approach, Exci-

tationBP can be run in parallel for each edgelet (see next

subsection) of a predicted boundary. Starting from boundary

predictions in frame t, we compute the marginal winning

probability of all neurons along the path to the JFR. Once the

JFR is reached, these probabilities are forward-propagated in

the decoder branch of FCSN for finally estimating the pixel-

wise excitation attention scores in frame t+ 1. For a pair of

boundary points, we obtain the attention score si→j . Con-

versely, starting from boundary predictions in frame t+ 1,

we compute the marginal winning probability of all neurons

along the path to JFR, and feed them forward through the

decoder for computing the excitation attention map in frame

t. Then we can obtain the attention score sj→i. The atten-

tion score between a pair of boundary points 〈xi
t,y

j
t+1〉 is

defined as the average of si→j and sj→i, which we denote
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Figure 4: (a) Estimation of the excitation attention score in frame t+ 1 (bottom) for a particular boundary point in frame t

(top; the point is indicated by the arrow). The attention map is well-aligned with the corresponding boundary in frame t+ 1,

despite large motion. (b) Visualization of attention maps at different layers of the decoders of FCSN along the excitation path

(cyan) from a particular boundary point in frame t to frame t+ 1 via the JFR. For simplicity, we only show the attention maps

in some of the layers from the decoder branch at time t and t + 1. As can be seen, starting from a pixel on the predicted

boundary in frame t, the attention map gradually becomes coarser along the path to the JFR. Then from the JFR to boundary

prediction in frame t + 1, the excitation attention scores gradually become refined and more focused on the most relevant

pixels in frame t+ 1. (Best viewed in color)

as sij . An example of our ExcitationBP in shown in Fig. 4.

3.3.2 Edgelet-based Matching

After estimating the excitation attention scores sij of bound-

ary point pairs 〈xi
t,y

j
t+1〉, as described in Sec. 3.3.1, we use

them for matching corresponding boundaries that have been

predicted in frames t and t+1. While there are many bound-

ary matching methods that would be suitable, in this work we

use the edgelet-based matching which not only finds good

boundary correspondences, but also produces the detailed

point matches along the boundaries, as needed for our BF

estimation. To this end, we first decompose the predicted

boundaries into smaller edgelets, then apply edgelet-based

matching to pairs of edgelets.

From predicted boundaries to edgelets. Given the two in-

put images and their boundary predictions from FCSN, we

oversegment the two frames using sticky superpixels [10],

and merge the superpixels to larger regions as in [16]. Impor-

tantly, both oversegmentation and superpixel-merging use

our boundary predictions as input, ensuring that contours

of the resulting regions strictly respect our predicted bound-

aries, as illustrated in Fig. 5(a). We define an edgelet as

all the points that lie on a given boundary shared by a pair

of superpixels. Fig. 5(b) shows two examples of matching

edgelet pairs in frames t and t+ 1.

Edgelet matching. We apply edgelet-based matching to

each edgelet pair, et in frame t and e
′

t+1 in frame t+ 1, that

fall within a reasonable spatial neighborhood (empirically set

to 100 pixels around the edgelet as sufficient to accommodate

for large motions). For each edgelet pair, et in frame t and

(a) (b)

r1
s1
'

r2
'

(c)

s2

xt

t

t+1

,

s2
'

s1

xt

yt+1

new

Figure 5: Overview of edgelet matching. The matching pro-

cess consists of three phases: superpixel generation, edgelet

matching, and flow placement. The two frames are first over-

segmented into large superpixels using the FCSN boundaries.

(a) most of the boundary points (in red color) are well aligned

with the superpixel boundaries (in cyan color); (b) Example

edgelet matches. In the second case, it can be seen clearly

that the appearance only matches on one side of the edgelet.

(c) The process of matching and flow placement. Sometimes,

because of the volatility of edge detection, xt and yt+1 falls

on different sides of the boundary, we will need to then move

xt so that they fall on the same side. Note that s1 and s2, s
′

1

and s
′

2 denote the superpixel pairs falling on the two sides

of the edgelets.

e
′

t+1 in frame t+ 1, all the similarities between all the pixel

pairs on these edgelet pairs are summed up and normalized to

obtain the similarity between the edgelet pair. The similarity

between points 〈xi
t,y

j
t+1〉 on et and e

′

t+1 is expressed in

terms of their respective excitation attention scores as sij .

For an edgelet et in frame t, we keep the top-10 most

similar edgelets in frame t + 1 as its matching candidates.

These candidate edgelet pairs are further filtered by their

normals, with only edgelets with an angle not more than 45
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(a) (b) (c) (d) (e)

Figure 6: Example results on VSB100. In each row from left to right we present (a) input image, (b) ground truth annotation,

(c) edge detection [10], (d) object contour detection [36] and (e) our boundary detection.
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Figure 7: (a) PR curve for object boundary detection on

VSB100. (b) PR curve for object boundary detection on

VSB100 with fine-tuning on both BSDS500 and VSB100

training sets.

degrees retained. The normals are computed as the average

direction from pixel coordinates on one side of the edge to

corresponding pixel coordinates on the other side of the edge.

This also helps to determine which superpixel pair falls on

the same side of the edge in the two images. As shown in

Fig. 5(c), superpixels s1 and s
′

1 fall on the left side of edges

et and e
′

t+1, respectively, thus superpixel pair {s1, s
′

1} fall

on the same side of the edges.

After filtering by angle, a greedy matching algorithm is

performed to approximate bipartite matching of edgelets in

frame t to edgelets in the frame t+ 1. This further reduces

the number of edgelet pairs retained.

For the final boundary flow placement, we observe that

some boundary points will be placing on the incorrect side of

the edgelet. We utilize normalized region similarity defined

by color to assign the motion to superpixels pairs that are

more similar to each other in color. As shown in Fig. 5(c),

point xt is on the right side of edge et but the corresponding

point yt+1 is on the left side of edge e
′

t+1. Our approach

moves xt to the other side of et, resulting in xnew
t . After

moving the points, we obtain pixel-level matches which are

the final boundary flow result.

4. Training

FCSN is implemented using Caffe [17]. The encoder

weights are initialized with VGG-16 net and fixed during

training. We update only the decoder parameters using the

Adam method [19] with learning rate 10−4. We train on

VSB100, a state-of-the-art video object boundary dataset,

which contains 40 training videos with annotations on every

20-th frame, for a total of 240 annotated frames. Because

there are too few annotations, we augment the training with

the PASCAL VOC 12 dataset, which contains 10582 still

images (with refined object-level annotations as in [36]). In

each iteration, 8 patches with size 224× 224 are randomly

sampled from an image pair of VSB100 (or two duplicated

frames of PASCAL VOC) and passed to the model.

The loss function is specified as the weighted binary

cross-entropy loss common in boundary detection [34]
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Method ODS OIS AP

CEDN [36] 0.563 0.614 0.547

FCSN 0.597 0.632 0.566

Table 2: Results on VSB100.

Method ODS OIS AP

SE [10] 0.643 0.680 0.608
HED [34] 0.677 0.715 0.618

CEDN [36] 0.686 0.718 0.687
FCSN 0.698 0.729 0.705

Table 3: Results on VSB100 with fine-tuning on both

BSDS500 and VSB100 training sets.

Method
FLANN

[26]

RANSAC

[7]
Greedy

Our

Matching

EPE 23.158 20.874 25.476 9.856

Table 4: Quantitative results of boundary flow on Sintel

training dataset in EPE metric.

L(w)=− 1
N

∑N

i=1[λ1yn log ŷn + λ2(1−yn) log(1−ŷn)]
where N is the number of pixels in an iteration. Note that

the loss is defined on a single side of the outputs, since only

single frame annotations are available. The two decoder

branches share the same architecture and weights, and thus

can be both updated simultaneously with our one-side loss.

The two branches still can output different predictions, since

decoder predictions are modulated with different pooling

indices recorded in the corresponding encoder branches.

Due to the imbalances of boundary pixels and non-boundary

pixels, we set λ1 to 1 and λ2 to 0.1, respectively.

5. Results

This section presents our evaluation of boundary detec-

tion, BF estimation, and utility of BF for optical flow esti-

mation.

5.1. Boundary Detection

After FCSN generates boundary predictions, we apply the

standard non-maximum suppression (NMS). The resulting

boundary detection is evaluated using precision-recall (PR)

curves and F-measure.

VSB100. For the benchmark VSB100 test dataset [12], we

compare with the state-of-the-art approach CEDN [36]. We

train both FCSN and CEDN using the same training data

with 30000 iterations. Note that CEDN is single-frame based.

Nevertheless, both FCSN and CEDN use the same level of

supervision, since only isolated single frame annotations

apart from one another are available. Fig. 7a shows the

PR-curves of object boundary detection. As can be seen,

CPM

Boundary

Flow

EpicFlow

Contour

Figure 8: Overview of augmenting boundary flow into the

framework of CPM-Flow. Given two images, we compute

the standard input to CPM-Flow: matches using CPM match-

ing [15] and the edges of the first image using SE [10]. Then

we augment the matches with our predicted boundary flow

(i.e., matches on the boundaries), as indicated by black ar-

rows.

F-score of FCSN is 0.60 while 0.56 for CEDN. FCSN yields

higher precision than CEDN, and qualitatively we observe

that FCSN generates visually cleaner object boundaries. As

shown in Fig. 6, CEDN misses some of the boundaries of

background objects, but our FCSN is able to detect them.

Due to limited training data, both FCSN and CEDN obtain

relatively low recall. Tab. 2 shows that FCSN outperforms

CEDN in terms of the optimal dataset scale (ODS), optimal

image scale (OIS), and average precision (AP).

Finetuning on BSDS500 and VSB100. We also evaluate

another training setting when FCSN and CEDN are both

fine-tuned on the BSDS500 training dataset [2] and VSB100

training set for 100 epochs with learning rate 10−5. BSDS

has more edges annotated hence allows for higher recall.

Such trained FCSN and CEDN are then compared with the

state-of-the-art, including structured edge detection (SE)

[10], and holistically-nested edge detection algorithm (HED)

[34]. Both SE and HED are re-trained with the same training

setting as ours. Fig. 7b and Tab. 3 present the PR-curves and

AP. As can be seen, FCSN outperforms CEDN, SE and HED

in all metrics. We presume that further improvement may

be obtained by training with annotated boundaries in both

frames.

5.2. Boundary Flow Estimation

Boundary flow accuracies are evaluated by average end-

point error (EPE) between our boundary flow prediction and

the ground truth boundary flow (as defined in Sec. 3.1) on

the Sintel training dataset.

In order to identify a good competing approach, we have

tested a number of the state-of-art matching algorithms on

the Sintel training dataset, including coarse-to-fine Patch-

Match (CPM) [15], Kd-tree PatchMatch [14] and Deep-

Matching [33], but have found that these algorithms are

not suitable for our comparison because they prefer to find

point matches off boundaries.
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Figure 9: Example results on MPI-Sintel test dataset. The columns correspond to original images, ground truth, CPM-AUG

(i.e., our approach), CPM-Flow [15] and EpicFlow[28]. The rectangles highlight the improvements and the numbers indicate

the EPEs.

Therefore, we compare our edgelet-based matching al-

gorithm with the following baselines: (i) greedy nearest-

neighbor point-to-point matching, (ii) RANSAC [7], (iii)

FLANN, a matching method that uses SIFT feautres. The

quantitative results are summarized in Tab. 4. Our edgelet-

based matching outperforms all the baselines significantly.

5.3. Dense Optical Flow Estimation

We also test the utility of our approach for optical flow

estimation on the Sintel testing dataset. After running our

boundary flow estimation, the resulting boundary matches

are used to augment the standard input to the state of the art

CPM-Flow [15], as shown in Fig. 8. Such an approach is

denoted as CPM-AUG, and compared with the other existing

methods in Tab. 5. As can be seen, CPM-AUG outperforms

CPM-Flow and FlowFields. Note the results we submitted on

”Sintel clean” under the name CPM-AUG was not actually

results of CPM-AUG, actually it was just our implementation

of CPMFlow[15], which is a bit lower than the public one

on the Sintel dataset. However these are the best results we

can obtain using the public implementation of the algorithm.

In principle, the augmented point matches should be able

to help other optical flow algorithms as well as it is largely

orthogonal to the information pursued by current optical flow

algorithms.

Fig. 9 shows qualitative results of CPM-AUG on Sin-

tel testing dataset with comparison to two state-of-the-art

methods: CPM-Flow and EpicFlow. As it can be seen, CPM-

AUG performs especially well on the occluded areas and

benefits from the boundary flow to produce sharp motion

boundaries on small objects like the leg and the claws as

well as the elongated halberd.

6. Conclusion

We have formulated the problem of boundary flow esti-

mation in videos. For this problem, we have specified a new

end-to-end trainable FCSN which takes two images as input

Method
EPE

all

EPE

matched

EPE

unmatched

CPM-AUG 5.645 2.737 29.362

FlowFields[3] 5.810 2.621 31.799
Full Flow[9] 5.895 2.838 30.793

CPM-Flow[15] 5.960 2.990 30.177
DiscreteFlow[25] 6.077 2.937 31.685

EpicFlow[28] 6.285 3.060 32.564

Table 5: Quantitative results on Sintel final test set.

and produces boundary detections in each image. We have

also used FCSN to generate excitation attention maps in

the two images as informative features for boundary match-

ing, thereby unifying detection and flow estimation. For

matching points along boundaries, we have decomposed the

predicted boundaries into edgelets and applied edgelet-based

matching to pairs of edgelets from the two images. Our ex-

periments on the benchmark VSB100 dataset for boundary

detection demonstrate that FCSN is superior to the state-

of-the-art, succeeding in detecting boundaries both of fore-

ground and background objects. We have presented the first

results of boundary flow on the benchmark Sintel training

set, and compared with reasonable baselines. The utility of

boundary flow is further demonstrated by integrating our

approach with the CPM-Flow for dense optical flow esti-

mation. This has resulted in an improved performance over

the original CPM-Flow, especially on small details, sharp

motion boundaries, and elongated thin objects in the optical

flow.
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