
Depth-Aware Stereo Video Retargeting

Bing Li†, Chia-Wen Lin‡, Boxin Shi§, Tiejun Huang§, Wen Gao§, C.-C. Jay Kuo†

†University of Southern California, Los Angeles, California, USA
‡ Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan

§National Engineering Lab for Video Technology, School of EECS, Peking University, China

Abstract

As compared with traditional video retargeting, stereo

video retargeting poses new challenges because stereo

video contains the depth information of salient objects and

its time dynamics. In this work, we propose a depth-aware

stereo video retargeting method by imposing the depth fi-

delity constraint. The proposed depth-aware retargeting

method reconstructs the 3D scene to obtain the depth in-

formation of salient objects. We cast it as a constrained op-

timization problem, where the total cost function includes

the shape, temporal and depth distortions of salient objects.

As a result, the solution can preserve the shape, temporal

and depth fidelity of salient objects simultaneously. It is

demonstrated by experimental results that the depth-aware

retargeting method achieves higher retargeting quality and

provides better user experience.

1. Introduction

3D video contents and display technologies become ma-

ture nowadays, and they offer real-world viewing experi-

ence to users. With this trend, many companies are manu-

facturing 3D display devices of different sizes suitable for

different application environments such as theaters, TVs,

and computers. Furthermore, virtual/augmented-reality de-

vices (e.g., Google Cardboard and Oculus Rift) adopt stereo

video to create immersive environments. It is however a

nontrivial task to allow the same stereo content to be dis-

played on screens of different sizes and/or aspect ratios au-

tomatically, which is known as the resizing technique.

As compared with 2D video retargeting, stereo video re-

targeting poses new challenges because stereo video con-

tains the depth information of salient objects and its time

dynamics. This is particularly true when the object has a

movement along the depth direction as illustrated in Fig. 1,

leading to poorer 3D viewing experience. Generally speak-

ing, there are two key factors that influence human 3D view-

ing experience greatly. They are the correct depth infor-

mation at each time instance (i.e., a single frame) and the

correct depth dynamics across multiple frames. The former

determines the distance of a 3D object to the screen while

the latter indicates the motion direction and speed in a 3D

scene. In order to provide satisfactory 3D viewing experi-

ence, we have to design a stereo video retargeting method

that takes these factors into account on top of the require-

ments of shape preservation and temporal coherence of tra-

ditional 2D video retargeting.

It is worth pointing out that most existing video retar-

geting methods do not impose the depth fidelity constraint.

For example, the uniform scaling method is widely used

for stereo video resizing. It up- or down-samples the left

and right 2D videos of a stereo video, respectively. How-

ever, the depth of a salient object can be distorted. The

comparison of the uniform scaling and the proposed depth-

aware retargeting schemes is shown in Fig. 1. Uniform

scaling not only shrinks the girl’s size but does not capture

her movement along the depth direction properly. The per-

ceived depth change is relatively small. Clearly, the stereo

video retargeting problem cannot be solved by traditional

2D video retargeting methods since they do not preserve

the depth information of salient objects by analyzing the

left- and right-views jointly (see Fig. 2).

In this work, we propose a depth-aware stereo video re-

targeting method that achieves high-quality retargeting per-

formance by preserving the depth information of the origi-

nal stereo video. This method infers the depth information

and include its deviation in the total cost function for min-

imization. Furthermore, it adopts a grid warping scheme

to facilitate the optimization framework. To the best of our

knowledge, this is the first work on stereo video retargeting

by considering the depth-preserving constraints. The con-

straints are simple and flexible to apply. Once salient ob-

jects are detected, the algorithm will preserve their depth

information as faithfully as possible. It enhances users’

3D viewing experience of retargeted stereo video. Exper-

imental results are given to demonstrate the superior perfor-

mance of the proposed depth-aware retargeting method.
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(c) Depth-Aware Retargeting

Figure 1: Illustration of the advantage of the proposed depth-aware retargeting method, where the left columns in (a)-(c) show

the 3D scene at frames t1 and t2 while the right columns in (a)-(c) show the temporal trajectories of the foreground object

in the 3D scene. Uniform scaling only shrinks the girl’s size but does not capture her movement along the depth direction

properly. The perceived depth change is relatively small. In contrast, the proposed depth-aware retargeting method preserves

both the shape and the depth information of the girl. The perceived depth change is similar to the original one.

(a) 2D frame I
z,t1 (b) 2D frame I

z,t2 (c) 3D scene

Figure 2: Illustration of a foreground object (a girl) in a 3D scene at two time instances t1 and t2. Their left and right views

are shown in the top and bottom rows of (a) and (b) while the red and green dots on the screen of (c) indicate the x-coordinates

of the girl in left and right 2D frames, respectively. Based on the disparity in the x-coordinates, we can determine the depth

of the girl. The girl moves towards the camera from t1 to t2. Since the girl moves horizontally in each individual video as

shown in the top (or bottom) row alone, traditional video retargeting algorithms cannot recover the depth change information

of the stereo video.

2. Related Work

2D video retargeting. Content-aware retargeting meth-

ods can be categorized into discrete and continuous ap-

proaches [33]. Many discrete methods have been proposed

for 2D videos. Cropping-based methods [11] crop a rectan-

gular region from each 2D frame while seam carving meth-

ods [32, 33, 26] iteratively remove or insert seams. Contin-

uous methods [14, 35, 38, 36] divide video frames into pix-

els or regions and warp them under the guidance of impor-

tance maps. Discrete methods tend to introduce noticeable

distortion to structural objects. Continuous methods gener-

ally preserve the object shape better due to their continuous

warping mechanism. According to the information used in

temporal constraints, one can classify 2D video retargeting

methods to local and global ones by following [20]. Lo-

cal methods [14, 36] resize each frame coherently with its

neighboring frames in a local time window. Global meth-

ods [20, 35, 38] exploit the temporal information of an ob-

ject throughout the entire video shot for coherent resizing,

thereby achieving better shape coherency along time than

local methods.

Stereo image retargeting. Basha et al. [2] and Shen

et al. [34] extended the seam carving method [32, 33, 1]

to stereo image retargeting by iteratively removing a pair

of seams from a stereo image pair. Several continuous

methods were proposed in [4, 16, 19, 17]. They ex-

tended the warping-based 2D image retargeting methods

(e.g. [6, 39]) to stereo image pairs by imposing additional

depth-preserving constraints. These methods [4, 16] at-

tempted to preserve the depth of the whole image by main-

taining the depths of a set of sparse correspondences. The

idea is similar to that of the depth editing methods [15, 37]

while depth distortions may occur. Methods [12, 25] were

proposed to remap the depth. Li et al. [19] imposed effec-

tive depth-preserving constraints on grid warping to achieve

better depth preservation performance.

Stereo video retargeting. Research on stereo video re-
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targeting is much fewer compared to stereo image retar-

geting, since it is more complicated due to additional re-

quirements on temporal coherence in both shape and depth.

Kopf et al. [13] treated a stereo video as two individual

2D videos, and formulated a 2D video retargeting method

to resize the stereo video. For stereo videos (especially for

those with salient objects or their moving occupying a large

portion of a frame), Lin et al. [22] proposed to combine

cropping with the grid-based 2D video retargeting. Never-

theless, since the above methods do not explicitly consider

the depth information of 3D objects and its time dynamics,

they usually produce severe depth artifacts in a retargeted

stereo video.

3. Depth-Aware Stereo Video Retargeting

3.1. Problem Formulation

For stereo video retargeting, we adapt a stereo video se-

quence to a target display size and attempt to maximize

users’ 3D viewing experience. Given a 3D scene fused from

the left- and right-views of a stereo video, 3D objects in the

scene have two key attributes – shape and depth. These

attributes change along time due to camera motions and ob-

ject motions. In the current literature, content-aware 2D

video retargeting methods [35, 38, 36] were proposed to en-

sure faithful preservation of the shape information spatially

and temporally. That is, shapes of salient 3D objects are

preserved at each frame and objects’ shapes are coherently

resized across frames. However, preservation of the time-

varying depth attribute is often neglected. In contrast with

existing methods that preserve visual contents of the left-

and right-views separately, we seek for a solution that pre-

serves the shape and the depth information of salient objects

and their time dynamics in the original content as much as

possible.

3D objects have different depths in a 3D scene. When

humans fixate an object with two eyes (e.g., P in Fig. 3), the

visual axes of eyes intersect at the object and the horopter

is formed [9]. Objects behind or in front of the fixated ob-

jects are blurred. Since the human visual system (HVS)

fixates a salient 3D object at a time when humans watch a

stereo video, other objects are blurred and their other depth

can be altered to some extent as long as there is little neg-

ative viewing experience. Furthermore, the temporal depth

variation of non-salient objects and background is affected

by objects’ and camera’s motions. It is important to scale

their depths across frames coherently. Otherwise, incoher-

ent scaling among frames often result in incorrect motion

direction (e.g., confusion between moving into or out-of

the screen of non-salient objects). It may also incur tem-

poral depth discontinuity and human inability to perceive

the depth due to vergence-accommodation conflicts and ex-

tended reading time [15, 24, 27]. In this work, being mo-

Figure 3: Objects beyond the fixation point are blurred in

the HVS.

tivated by the above-mentioned characteristics of the HVS,

we propose a depth-aware retargeting solution that not only

preserves the shape and depth of salient 3D objects but also

scales the whole 3D scene along time coherently.

To obtain a high-quality stereo video retargeting algo-

rithm, we formulate the following minimization problem:

minE = min(ES + λS · ET + λD · ED), (1)

where E is the total distortion, ES , ET and ED denote the

distortions caused by spatial shape incoherence (i.e., shape

distortion), temporal shape incoherence (i.e., temporal dis-

tortion) and loss of the 3D depth information of salient ob-

jects (i.e., depth distortion), respectively, λS and λD are

weighting factors. The derivation of the depth distortion,

ED, will be detailed in Sec. 3.2 while that of ES and ET

will be given in Sec. 3.3.

Grid-based warping [15, 16, 30] has proven to be an ef-

fective means for image and video retargeting. It divides

each frame into a grid mesh, and translates the problem of

finding an optimal retargeted stereo video to the search of

the optimal warped mesh set in all frames that minimizes

the total distortion E in Eq. (1). This optimization proce-

dure involves the search for a large number of parameters

and consumes a lot of memory and time in stereo video

retargeting. To lower the complexity, we adopt the axis-

aligned warping scheme in [20] instead. It uses the grid

width and height as parameters to control warping, and de-

mands all retargeted grids in each column and row to be of

the same width and height, respectively. As compared to

those methods that use grid vertices as control parameters

of a warping function, the parameter number of the grid-

edge-based warping is reduced significantly. We use wz,t
k

and hz,t
i to denote the width and height of a grid, denoted

by gz,tk , in the original grid mesh, respectively. Then, get-

ting the optimal warped mesh set is to determine w̃z,t
k and

h̃z,t
k of a retargeted grid that minimize the total distortion.

3.2. Depth Distortion

We will focus on the derivation of the depth distortion,

ED, in this section, and discuss two other distortions, ES

and ET , in Sec. 3.3. The depth distortion is used to preserve

the depth information of salient objects in a stereo video.
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(a) Original 3D scene (b) 3D object is represented by 3D points (c) 3D point is represented by 2D points

Figure 4: The representation of a 3D object “panda” by dense 3D points: (a) the 3D panda in st1 and st2 two scenes, (b) the

3D panda is discretized into 3D points indicated by yellow circles while the corresponding 3D points between 3D scene st1

and st2 are connected by yellow lines, and (c) a 3D point is represented by its corresponding 2D points in the left and right

frames where the yellow rings indicate 2D points.

We consider both spatial depth fidelity at individual frames

and temporal depth fidelity across multiple frames.

Parts of a 3D object may exhibit different movements in

depth along time. One example is illustrated in Fig. 4 (a),

where we show a 3D panda in st1 and st2 two scenes. It

is apparently insufficient to represent the depth trajectory at

the object level. Instead, we need to discretize it into repre-

sentative 3D points and examine their depth trajectories as

shown in Fig. 4 (b). For a 3D object decomposed into N
points, ED is measured by the weighted sum of distortions

of N depth trajectories in form of

ED =

N
∑

i

si · E
D
i , (2)

where ED
i is the distortion of the depth trajectory of the i-

th point and si is the weight used to control the importance

of the i-th depth trajectory. We calculate si by averaging

the saliency values of 3D points in the i-th depth trajectory,

where the saliency values are defined in Sec. 3.3

Let di,t and d̃i,t be the depth values of the i-th point in

the t-th frame of the original and its retargeted video, and

d
i = {di,t} and d̃

i = {d̃i,t} be the original and its re-

targeted depth trajectories of the i-th point across multiple

frames of interest, respectively. Each depth trajectory is as-

sumed to be continuous and first-order differentiable.Then,

the distortion of the i-th depth trajectory is defined as

ED
i =

∑

t

(

(∆di,t)2 + (∆
∂di

∂t
|t)

2
)

, (3)

where the first term

∆di,t = di,t − d̃i,t (4)

captures the spatial depth distortion while the second term

∆
∂di

∂t
|t =

∂di

∂t
|t −

∂d̃i

∂t
|t (5)

captures the temporal depth change distortion of trajectory

d
i in the t-th frame. We use the following approximations

∂di

∂t
|t = di,t − di,t+1,

∂d̃i

∂t
|t = d̃i,t − d̃i,t+1,

in Eq. (5) for computation.

As mentioned in Sec. 3.1, distortion ED
i in Eq. (3)

should be expressed as a function of the grid width and

height for the purpose of minimization. A 3D point is

formed by its proper correspondence between the left- and

right-views as shown in Fig. 4(c). It is well known that

the depth of a 3D point, dti, increases as its disparity along

the x-axis becomes larger. Thus, one can represent ED
i as a

function of grid width; namely, ED
i (wz,t, ˜wz,t), by relating

horizontal disparity to the difference of the grid width.

To obtain ED in Eq. (2), one way is to detect all 3D

points between each stereo pair, IL,t and IR,t, and calcu-

late di,t using a disparity estimation algorithm. Afterwards,

we align the corresponding 3D points across frames via mo-

tion estimation algorithms so as to calculate ∂di,t/∂t. This

approach relies on dense motion estimation and disparity

estimation. However, estimating ED from dense points not

only consumes large amounts of memory, but also makes

Eq. (1) a large-scale optimization model, leading to a high

computational cost. In addition, for video frames contain-

ing large textureless regions, motion/disparity estimation

may become unreliable. As a result, incorrect cost func-

tions ED
i can be yielded, thereby significantly degrading

the visual quality of retargeted stereo video.

Instead, we aim to estimate ED
i based on a small num-

ber of reliable 3D control points. This can be accomplished

by directly representing ED
i by sparse depth trajectories,

whose performance, however, can be easily degraded by the

inaccuracy of depth trajectory tracking caused by severely

inaccurate motion estimation. To address this issue, we

adopt a spline-interpolation-like scheme that approximates

1D curves and 2D surfaces by a few control points via grid

warping. This involves two tasks. First, we use a small

number of control points to build the correspondence in the

spatial (left/right) and temporal domains. Second, we use

the grid warping technique to approximate the depth map

and its time dynamics, so as to establish the correspondence

of dense 3D points and avoid depth distortions caused by

tracking errors.
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By combining Eqs. (2) and (3), we can express ED as

ED = τ ·
(

EC + EW
)

, τ ≡ min
i

si, (6)

where

EC =
∑

i∈C

∑

t

(si − τ

τ
· (∆d̃i,t)2 +

si
τ

· (∆
∂d̃i

∂t
)2
)

is used to capture the depth distortion of a set of selected

control points, denoted by C and

EW =
∑

i

∑

t

(∆d̃i,t)2

is used to capture the grid warping distortion over space and

time.

For EC , there are several ways to select reliable con-

trol points from a dense set of 3D points. For example, we

can remove 3D points from the textureless region and ex-

tract local features such as the SIFT and SURF features to

match representative points in the two views. We adopt the

SIFT features in our implementation, due to its promising

performance reported in [15, 28]. Note that the number of

tracked SIFT points may be too few on some frames, due

to some factors such as significant motions, blurring, and

occlusions. We address such problem by reinitializing new

trajectories, or by skipping such frames and generating re-

targeting results by using interpolation like [20].

We adopt the grid warping scheme as proposed in [19]

and express EW as the spatial depth distortion of each

frame by interchanging the summation order of t and i;
namely,

EW =
∑

i

∑

t

(∆d̃i,t)2 =
∑

t

∑

i

(∆d̃i,t)2 · Γi,t (7)

where Γi,t is an indicator that indicates whether trajectory

d
i appears in scene St. Then,

∑

i(∆d̃i,t)2 · Γi,t is the total

depth distortion of all 3D points from the frame pair of IL,t

and IR,t. By demanding

∑

i

(∆d̃i,t)2 · Γi,t = 0,

we get the following two warping constraints [19]:







∑

q
z,t

k
∈r̄z

j

w̃z,t
k =

∑

q
z,t

k
∈r̄z

j

wz,t
k , ∀r̄zj ∈ Ῡ

w̃L,t
k − wL,t

k = w̃R,t
k − wR,t

k , ∀gz,tk ∈ rzj , ∀r
z
j ∈ Υ

(8)

where Ῡ and Υ denote the set of non-paired regions r̄zj
and the set of paired regions rzj , respectively. Nevertheless,

the conditions in (8) are too strong to be directly used in

EW since the requirement of no spatial depth distortion of-

ten conflicts with the spatial and temporal shape-preserving

constraints in Sec. 3.3. Hence, we abandon the hard form as

given in Eq. (8) and adopt the corresponding soft form (i.e.

square differences). As a result, we have the grid warping

distortion as

EW =
∑

t

(
∑

qz
k
∈r̄z

j

̟k(w̃
z,t
k − wz,t

k )2+

∑

rz
j
∈Υ

∑

qz
k
∈rz

j

(w̃L,t
k − wL,t

k − (w̃R,t
k − wR,t

k ))2).
(9)

3.3. Spatio­Temporal Shape Distortions

To preserve the shape of salient objects, we define the

shape distortion of stereo video as the total shape distortion

of all grids. Since the retargeted grids remain rectangular,

the shape distortion of grid gz,tk can be simply measured by

the difference between the original aspect ratio and that of

the retargeted version as [20][18] :

ES =
∑

z

∑

t

∑

i

D(gz,tk )

=
∑

z

∑

t

∑

i

‖wz,t
k · h̃z,t

k − w̃z,t
k · hz,t

k )‖2 · δz,tk ,

(10)

where sz,tk is the saliency value of gz,tk calculated by aver-

aging the saliency values of all pixels in gz,tk . Similar to

[15], we calculate pixel saliency δz,tk using a weighted sum

of the image-based saliency[8][40] and the disparity-based

saliency [15].

To maintain the temporal shape coherence of 3D objects,

we have to resize each corresponding object across the left

and right views coherently. Given gz,tk in Iz,t, we can align

it with the corresponding grid gz,t
′

j in Iz,t
′

by employing

the optical flow estimation [3, 23]. Then, we can sum up

the temporal grid distortions at the horizontal and vertical

directions, respectively, as

ET =
∑

t

∑

g
z,t

k

∑

j∈A(k)

(‖w̃z,t
k − w̃z,t′

j ‖2 + ‖h̃z,t
k − h̃z,t′

j ‖2)),

(11)

where A(k) is the set of aligned grids for gz,tk .

4. Experiments

Implementation. We minimize the objective function

in Eq. (1) to find the optimal set of grid meshes for a

stereo video subject to the boundary and spatial neighboring

constraints [20]. This is a quadratic optimization problem,

which can be solved by the active-set method [29]. Simi-

lar to existing retargeting works, our method contains a few

adjustable parameters ( e.g., λS and λD). They are used to

weigh the shape and depth cost functions. We set λD = 105

and λS = 103 for all tested stereo videos in the experi-

ments.
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Original US CVW Ours

Figure 5: The left frame and the disparity map of two close-up shot frames from movie Ice Age 4 are shown in the top and

bottom rows. Regions with higher depth values are marked by red blocks in left frames.

Original left frame Original disparity US CVW Ours

Figure 6: Comparison of disparity maps of three retargeting methods of two frames in a long shot from movie Madagascar3

Performance Comparison. Since there are only few ex-

isting works on stereo video retargeting, we compare the

performance of our method with two existing methods: the

uniform scaling (US) method and the CVW (Consistent

Volumetric Warping) [22]. The CVW offers the state-of-

the-art solution to warping-based stereo video retargeting,

and it is most related to our work. We test the three methods

on various test videos. Most of them are from the dataset

used for CVW [22]. The test videos contain various types

of motions and salient objects with a large depth range and

significant depth variations, imposing great challenges on

stereo video retargeting. We consider the same retargeting

goal in [22]; namely, reducing the width of each video to

50% while preserving the height. Because the salient ob-

jects in the CVW dataset often occupy a large area (more

than 50%) of a frame as shown in Fig. 5, one cannot simply

crop a test video by removing unimportant side regions to

achieve the goal. Instead, one has to combine cropping and

warping. This strategy is adopted by both CVW and our

method. A good stereo video retargeting method should

preserve both the shape and depth attributes of salient 3D

objects and ensure temporal coherence of shape and depth.

Due to the space limit, we only show the retargeting re-

sults of two frames for each video, and provide more re-

sults in the supplemental materials1. Note, the performance

of spatio-temporal depth preservation can be evaluated by

the corresponding disparity map [10], where the red and the

blue colors are used to indicate the smallest negative dispar-

ity and the largest positive disparity, respectively.

Fig. 5 shows retargeting results of a close-up shot. In

this video, its background is static while the foreground

object has a strong depth value in the spatio-temporal do-

1The effect of cropping is also analyzed in our supplemental materials.
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Original left frame Original disparity map US sCVW Ours

Figure 7: Comparison of disparity maps of three retargeting methods for a shot in movie Guardians of the Galaxy2

Original left frame Original disparity map US sCVW Ours

Figure 8: Comparison of disparity maps of three retargeting methods for a shot in movie Guardians of the Galaxy2

main. The squirrel is in front of the screen and rushes out

along the depth direction. All three methods achieve high

performance in terms of temporal coherence. As to spa-

tial shape preservation, US shrinks the shape of the squir-

rel since it does not consider video content at all. CVW

preserves the shape better than US thanks to its incorpora-

tion of the shaper cost function. However, CVW distorts

the shape of squirrel’s nose. Among the three methods, our

method offers the highest shape fidelity. As to the spatio-

temporal depth preservation, US reduces the depth of the

squirrel at each frame and the depth variation across frames

since it ignores the depth information. Similarly, CVW dis-

torts the depth value at each frame and decreases the range

of squirrel’s motion along the depth direction. In contrast,

our method preserves the spatio-temporal depth information

of the squirrel well thanks to the carefully-designed depth

cost function.

Fig. 6 shows retargeting results on a long shot where

the camera moves slowly. For most long-shot videos, the

depth of foreground objects is not as strong as that of the

close-up shot. However, the depth value of the background

is large so as to increase the distance of the whole 3D scene

to the screen. Our method can preserve such viewing expe-

rience well by preserving the depth information. However,

the US and the CVW decrease the depth values, leading to

the poorer depth perception of the whole 3D scene.

Besides the CVW dataset, we also test the methods on

more challenging videos, as shown in Fig. 7 and 8. These

videos contain multiple foreground objects and relatively

complex background, which have strong depth values in the

3D scene. Moreover, these video contain significant camera

and object motions, leading to significant depth changes of

objects along time. The depth changes make depth preser-

 Disparity distortion ratio
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39.01

27.44

21.93
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21.33

6.83
4.24

6.63

Fig.5 Fig.6 IceAge4_2
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20
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40
D

D
r(

%
)

Our

CVW

US

Figure 9: Estimated depth distortions of videos in Figs. 5

and 6 and IceAge4 2 respectively, where IceAge4 2 is a

close-up shot from movie Ice Age 4.

vation very challenging to stereo video retargeting meth-

ods. Since we are unable to obtain CVW’s results for these

videos, we implement the constraints proposed in CVW to

build a baseline called sCVW. The results show that our

method can preserve the spatio-temporal depth of salient

objects well, whereas US and sCVW reduce that, since they

do not have effective depth-preserving constraints.

We also compare our method with representative 2D im-

age/video retargeting methods using images from VOC [7].

Fig. 10 shows our method can better preserve the object

shape as compared to SLR [5] and SC [32], though the ob-

ject size is a bit smaller.

Quantitative Analysis To the best of our knowledge,

there is no widely accepted metric for evaluating spatio-

temporal depth preservation for a retargeted stereo video
2. We propose an objective metric called Disparity Dis-

tortion ratio (DDr). The metric calculates the ratio of the

2 Lin et al. [21][22] employed Pearson correlation coefficient to evalu-

ate the depth performance of ”stereo image” retargeting” instead of stereo

video retargeting. Moreover, such metric is not suited to evaluate depth

preservation, as it evaluates the ”linearity” between the depth of a stereo

image pair and its counterpart of the retargeted pair.
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Table 1: Winning frequencies of subjective test in compar-

ing three stereo video retargeting methods.

Ours US CVW Total

Ours – 96 % 76 % 86%

US 4% – 30% 17%

CVW 24% 70% – 47%

average disparity deviation of 3D points between the retar-

geted video and the original video, normalized to the dis-

parity range of the original video as follows:

DDr =
1

|dmax| ·Nv

∑

(k,t)

|dz,tk − d̃z,tk | (12)

where dz,tk is the depth of gz,tk , Nv is the total number of 3D

points, and |dmax| is the maximal magnitude of disparity in

the original video. As shown in Fig. 9, our method achieves

the lowest depth distortions, compared with US and CVW.

User study. We conducted the subjective evaluation on

a 3D 22-inch monitor using the NVIDIA active shuttered

glasses and an NVIDIA GeForce 3D Vision Solution. We

invited 10 subjects to participate in the test. The subjects

consisted of 7 males and 3 females. Two of the subjects

were experts in the 3D perception field while the others

were not. By following the same subjective test methodol-

ogy in [31], we compared our method with US and CVW on

5 stereo videos. Also, by following the same setting in [28],

we placed the original video in the middle and randomly

put two retargeted videos at its left and right sides. Sub-

jects were allowed to pause, forward and rewind the videos.

Then, each subject was asked to answer the following ques-

tion: Q: which retargeted video is more similar to the orig-

inal one ?

In total, we receive 3 × 5 × 10 = 150 answers and each

method is pairwise compared by 2 × 5 × 10 = 100 times.

Table 1 shows the percentages of answers to the question.

In total, 85% of participants were in favor of our method

over CVW while 96% of participants were in favor of our

method over the US method. This result clearly indicates

the superiority of our method over the US and the CVW

methods in preserving the fidelity of depth information. The

main reason is that most subjects paid special attention to

regions with stronger depth values (especially for objects

moving out of the screen), making depth distortions in these

regions relatively noticeable. Since our method better pre-

serves depth information, it also leads to better 3D viewing

experience generally.

Discussions Our method can be easily incorporated into

exiting retargeting frameworks. For instance, we demon-

strate the result of integrating our method with per-vertex

optimization, which has been adopted in several 2D im-

age/video retargeting methods (e.g.[39]). As shown in Fig.

11, per-vertex optimization often incurs shape distortions

due to its high degrees of freedom for warping, whereas the

Original US SC SLR Ours

Figure 10: Comparisons with 2D retargeting methods

Original Per-vertex Ours

Figure 11: Examples of integrating our method with per-

vertex optimization. Row from top to bottom: left frame

and disparity map

result preserves depth well thanks to the depth-preserving

energy. Nevertheless, the complexity of per-vertex opti-

mization is much higher than that of axis-aligned warping.

In particular, the complexity of per-vertex optimization is

in form of 4 · Nt · (Nc × Nr), where Nt is the total num-

ber of frames, Nc and Nr are the numbers of grid columns

and rows in a frame. In contrast, the number of variables of

axis-aligned warping is 2 ·Nt · (Nc +Nr).
Besides, in practice, there is another important issue:

for a stereo video, some display and viewing conditions

may yield improper perceived depth, which makes viewers

feel uncomfortable. To address this problem, our method

can be combined with depth retargeting [15] by first con-

structing comfortable perceived depth maps according to a

given viewing condition. We can then derive target dispar-

ity maps, and improve Eq. (3), such that the disparity of a

stereo video is remapped to a desired target disparity value.

5. Conclusion

A novel approach was proposed to preserve the depth ef-

fect in stereo video retargeting. A cost function that takes

the depth preservation requirement into account was derived

and incorporated in the total cost function. A grid-warping-

based optimization problem was formulated and solved to

offer an effective stereo video retargeting solution that pre-

serves depths of salient regions, coherently transforms other

non-salient regions and achieves spatio-temporal shape co-

herence simultaneously. The proposed depth-aware retar-

geting method is flexible. It allows user interactions to em-

phasize the region of interest. Our method is easy to im-

plement and can be easily incorporated in the VR or stereo

video content editing toolbox with a proper interface.
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