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Abstract

In this paper, we present an algorithm to directly restore

a clear image from a hazy image. This problem is highly ill-

posed and most existing algorithms often use hand-crafted

features, e.g., dark channel, color disparity, maximum con-

trast, to estimate transmission maps and then atmospheric

lights. In contrast, we solve this problem based on a con-

ditional generative adversarial network (cGAN), where the

clear image is estimated by an end-to-end trainable neu-

ral network. Different from the generative network in ba-

sic cGAN, we propose an encoder and decoder architecture

so that it can generate better results. To generate realistic

clear images, we further modify the basic cGAN formula-

tion by introducing the VGG features and an L1-regularized

gradient prior. We also synthesize a hazy dataset includ-

ing indoor and outdoor scenes to train and evaluate the

proposed algorithm. Extensive experimental results demon-

strate that the proposed method performs favorably against

the state-of-the-art methods on both synthetic dataset and

real world hazy images.

1. Introduction

Image dehazing aims to restore a clear image from a hazy

image which is corrupted by haze, fog or smoke. This pro-

cess can be formulated by [11, 33]

I(x) = J(x)t(x) + A(1− t(x)) (1)

where I(x) and J(x) represent the hazy image and the scene

radiance, respectively. A is the global atmospheric light,

and t(x) is the medium transmission map. If the haze is

homogeneous, the transmission map can be expressed as

t(x) = e−ρd(x), where ρ is the medium extinction coeffi-

cient and d(x) is the scene depth. x indexes pixels in an

image. As only the observed image I(x) is known, recov-

ering the scene radiance J(x) is highly ill-posed.

In recent years, we have witnessed significant advances

in image dehazing mainly due to using hand-crafted fea-

tures to estimate transmission maps and atmospheric light-

s [1, 3, 4, 10, 11, 19, 20, 22, 40]. The commonly used hand-
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(a) Input image (b) Ren [24]

(c) Cai [3] (d) Ours

Figure 1: Image dehazing example. Existing methods usu-

ally estimate transmission maps and atmospheric lights sep-

arately, which cannot effectively solve the problem. Our

proposed end-to-end trainable method avoids this problem

and generates much better images.

crafted features are mainly based on chromatic, textural and

contrast properties. However, methods based on these fea-

tures do not work well for some cases since the assumptions

on the features do not always hold. For example, He et al.

[11] assume that the values of dark channel in clear images

are close to zero and then use it to estimate the transmis-

sion map. However, it does not work well for the scene ob-

jects which are similar to the atmospheric light. Recently,

some deep learning-based methods have been proposed to

solve image dehazing. These methods first use convolution

neural networks to estimate the transmission map and then

follow the conventional method to estimate the atmospheric

light to recover clear images. However, if the transmission

map is not well estimated, they will accordingly interfere

the estimation of atmospheric light. Therefore the final re-

covered image usually contains color distortions or artifact-

s. As most existing algorithms estimate the transmission

map and atmospheric light separately, it is of great interest
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to jointly estimate the transmission map and atmospheric

light. To that end, we propose an end-to-end trainable net-

work to solve the aforementioned problems.

Our end-to-end trainable network is based on cGAN,

where the generator contains an encoder and decoder archi-

tecture so that it can capture more useful information and

generate much better outputs. The discriminator is used to

distinguish whether outputs from the generator are fake or

not. To preserve details of the output from generator, we

use the pre-trained VGG features as the perceptual loss. As

the final output from generator usually contains artifacts, we

further propose an L1-regularized gradient prior to remove

artifacts while preserving important details.

The contributions of this work are as follows:

• We propose an end-to-end trainable network based on

cGAN to solve image dehazing problem.

• To generate much better dehazed results from gener-

ator, we develop an encoder and decoder architecture

in the generative network so that it can capture more

useful information.

• To generate realistic clear images and remove artifact-

s, we develop a new loss function based on the pre-

trained VGG features and an L1-regularized gradient

prior.

• We synthesize a hazy image dataset which includes

both indoor and outdoor images and show that our al-

gorithm achieves the state-of-the-art performance on

the proposed hazy dataset and real-world images.

Figure 1 shows that our algorithm generates a better clear

image than those of the convolutional neural network-based

methods [3, 24].

2. Related Work

In this section, we briefly review the most related single

image dehazing methods and the applications of the condi-

tional generative adversarial network on image processing.

2.1. Single Image Haze Removal

Single image dehazing methods can be roughly divided

into the adaptive color contrast enhancement-based method

and the regularization-based method. The adaptive color

contrast enhancement-based method usually suffers from

visual artifacts such as color blocking and aliasing, which

are invisible in the input and obvious in the output [6, 33].

The regularization-based method is mainly based on the

physical haze formation model, and kinds of features or im-

age priors are developed to estimate clear images. As the

hazy model involves the transmission map and atmospher-

ic light, several methods employ priors on the scene depth.

For example, Nishino et al. point out that the clear images

and the corresponding depths are statistically independent

and could be jointly estimated on the basis of priors [21].

The other methods assume that the clear images and the

corresponding depths are piece-wise constant and use some

priors based on statistical properties of local image patches

[5, 7, 11]. The learning-based methods have been develope-

d to estimate the transmission map. Tang et al. estimate the

the transmission map by learning multi-scale haze relevant

features [35].

Motivated by the success of the CNN in object detection,

recognition and related tasks [8, 13, 34], CNN has been ap-

plied in image dehazing [3, 24]. These methods first esti-

mate the transmission map and then use conventional meth-

ods to recover clear images. Thus, if the transmission map

was not well estimated, it would affect the clear image es-

timation. To overcome this problem, Li et al. [18] jointly

estimate the transmission map and atmospheric light by a

CNN. Different from [18], we develop an end-to-end de-

hazing method based on a cGAN.

2.2. Conditional Generative Adversarial Network

In [9], Goodfellow et al. propose the GAN framework

to generate realistic-looking images from random noise vi-

a an adversarial learning. However, GAN is not stable in

training process and often produces some artifacts such as

noise and color shift in the synthesized images. Incorporat-

ing conditional information in GAN results in more effec-

tive learning [32]. The conditioning variables augmenting

information increase the stability of learning process and

improve the representation capability of the generator.

Different from original GAN [9], the cGAN algorithm

learns to generate a clear image J from an input image I

and random noise z by optimizing the following objective

function

min
G

max
D

EI,z [log(1−D(I,G(I, z)))] + EI,J [logD(I, J)] (2)

The cGAN has been made great progress in image pro-

cessing field such as super-resolution [17], image inpaint-

ing [37] and style transfer [15]. Raymond et al. [37]

propose a semantic image inpainting algorithm using a c-

GAN. In [23], Isola et al. develop a deep architecture and

GAN formulation to bridge these advances in text and im-

age modeling translating visual concepts from characters to

pixels. The method generates interesting images of flower-

s and birds by conditioning on text descriptions. In image

super-resolution, Ledig et al. [17] modify the GAN formu-

lation by introducing pixel-wise content loss and percep-

tual loss [15] to generate high quality images. Zhang et

al. [39] use the pixel-wise content loss and perceptual loss

in cGAN to solve image deraining problem. Different from

these methods, we proposed an effective image dehazing

algorithm based on cGAN in this paper.
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Figure 2: The network structure of the proposed method. The generator network contains an encoder and decoder process.

The same color used in the rectangles denotes the same operation. “Conv” and “BN” denote the convolution and the batch

normalization operations.

3. Proposed Method

In this section, we introduce the architecture of the pro-

posed network including the generator and the discrimina-

tor. To generate clear images from hazy inputs, we modify

the cGAN framework by a new loss function including ad-

versarial loss, perceptual loss and L1-regularized gradient

prior. In the following, we introduce the proposed network

and loss function in details.

3.1. Generator

The function of the generator is to generate a clear im-

age from an input hazy image. Therefore it should not on-

ly preserve the structure and detail information of an input

image but also remove the haze as much as possible. Mo-

tivated by “ResNet” [14] and “U-Net” [25], we introduce

skip connections of the symmetric layers to break through

the bottleneck of information in decoding process. Instead

of simply concatenating all the channels of the symmetric

layers, we adopt a summation method to capture more use-

ful information. The difference between concatenation and

summation is discussed in section 5.1. As shown in Figure

2(a), the generator contains an encoding process and a de-

coding process. The encoding process is mainly based on

the down-sampling operations and provides feature maps to

the symmetric layer of the decoding process. The decoding

process mainly uses the up-sampling operations and a non-

linear space transfer. The details of the generator structures

and parameter settings are shown in Table 1.

3.2. Discriminator

The discriminator is used to distinguish whether an im-

age is real or fake. Similar to the network in [39], we devel-

op a neural network, where the basis operations are convo-

lutional, batch normalization, and LeakyReLU activation.

For the final layer of the discriminator, we apply a sigmoid

function to the feature maps so that the probability score can

be normalized into [0,1]. The architecture of the discrimina-

tor is shown in Figure 2(b). The details of the discriminator

structures and parameter settings can included in Table 2.

3.3. Loss Function

Let {Ii, i = 1, 2, ..., N} and {Ji, i = 1, 2, ..., N} de-

note the hazy images and the corresponding clear images.

A straightforward way to train the generative network is to

directly utilize the original cGAN formulation in (2) which

can be expressed as

LA =
1

N

N∑

i=1

log(1−D(Ii, J̃i)), (3)

where J̃i is the output of the generator G. However, we

find that the cGAN algorithm using this function is not able

to remove the haze well and also generates some artifacts

and color distortion on generated images. As shown in the

following, both the visual results (Figure 4(f) and Figure

6(b)) and the quantitative results (Table 5) indicate that only

using (3) does not generate clear images.

In order to recover realistic images, we introduce the per-

ceptual loss based on the pre-trained VGG features to con-
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strain the generator, which is defined as

LP =
1

N

N∑

i=1

‖Fi(G(Ii))−Fi(Ji)‖
2
2 (4)

Here, Fi represents the feature maps of the i-th layer of the

VGG network [31] which is pre-trained on ImageNet [26].

The effect of the perceptual loss has been demonstrated in

super-resolution, image restoration and other relative field-

s [2, 15, 17]. Different from these applications, we find

that using (4) is able to help the details restoration and haze

removal but it accordingly introduces artifacts in the recov-

ered images. This inevitably degrades quality of the recov-

ered images. We will show the effect of this loss function

in Section 5.2.

To remove the artifacts and preserve details and struc-

tures, we introduce L1-regularization gradient prior on the

output of the generator and content-based pixel-wise loss,

which is defined as

LT =
1

N

N∑

i=1

(‖G(Ii)− Ji‖1 + λ‖∇G(Ii)‖1) (5)

where ‖∇G(Ii)‖1 denotes the total variation regularization,

‖G(Ii) − Ji‖1 is the content-based pixel-wise loss, and λ

is the regularization weight. This loss function is able to

remove the artifacts and preserve the details. We will show

the effect of this loss function in Section 5.2.

Finally, we combine the adversarial loss, perceptual loss,

L1-regularized gradient prior and content-based pixel-wise

loss to regularize the proposed generative network, which is

defined as

L = αLA + βLP + γLT (6)

where α, β and γ are the positive weights. The generator G

is trained by minimizing (6).

After obtaining the intermediate generator G, we update

the discriminator D by

max
D

1

N

N∑

i=1

(
log(1−D(Ii, J̃i)) + log(D(Ii, Ji))

)
(7)

4. Experimental Results

In this section, we quantitatively and qualitatively e-

valuate our method against several state-of-the-art algo-

rithms on synthetic dataset and real-world images. The

source code and datasets used in the paper are pub-

licly available at the website: https://github.com/

hong-ye/dehaze-cGAN. More experimental results

are included in the supplemental material.

(a) Clear image (b) Transmission map (c) Synthesized image

Figure 3: The proposed method for synthesizing hazy im-

ages. The first row shows that synthesizing hazy images

with original depths will lead to artifacts. The second row

shows that using image guided filtering method [12] to re-

move the holes in depths can generate better hazy images.

4.1. Synthetic Dataset

As there exist few hazy datasets in image dehazing, we

synthesize a new dataset including both indoor and outdoor

images to train the network. Similar to [24], we use the

NYU Depth dataset [30] only including the indoor images.

In addition, the Make3D datasets [27, 28, 29] are employed

as the outdoor images. We randomly choose 2,400 syn-

thesized images and extract 240 testing images. Given a

clear image J and the corresponding ground truth depth d,

we synthesize a hazy image I according to (1). We gener-

ate the random atmospheric light A = [n1, n2, n3], where

n ∈ [0.8, 1.0], and use the random value ρ ∈ [0.8, 1.6] for

each image. The clean image and the corresponding scene

depth are resized to the canonical size of 512 × 512 pixels

before they are fused. However, directly synthesizing hazy

images according to (1) usually leads to significant artifact-

s as there exist holes in the provided depths (Figure 3(b)).

In order to remove these artifacts, we use the image guided

filtering method [12] (where the clear image is the guid-

ance) to remove the holes in the depth (Figure 3(b)). With

the filtered depth, we can generate much better hazy images

(Figure 3(c)).

4.2. Experimental Settings

The detail architectures and parameter settings of the

proposed network are presented in Table 1. Each layer

of the encoding process consists of the convolution, batch

normalization and LeakyReLU. Each layer of the decod-

ing process is composed of deconvolution (fractionally-

strided convolution [38]), batch normalization and ReLU.

The size of the input and output in the generator is set to

be 256 × 256 × 3. The size of the input in the discrimi-

nator is set to be 256 × 256 × 6 and the size of its output

is 256 × 256 × 1. In training process, we empirically set

α = 1, β = 150, γ = 150, λ = 10−5. The learning rate is

set to be 2×10−4. The update ratio of generator G and dis-
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Table 1: Architecture of the generator and parameter setting. “conv” denotes the convolution, “uconv” denotes the deconvo-

lution (fractionally-strided convolution [38]), “Tanh” denotes an hyperbolic tangent function.

Generator

Encoding

Layer conv conv conv conv conv conv conv conv conv conv

Kernel Size 5× 5 3× 3 4× 4 4× 4 4× 4 4× 4 4× 4 4× 4 4× 4 4× 4
Stride 1× 1 1× 1 2× 2 2× 2 2× 2 2× 2 2× 2 2× 2 2× 2 2× 2
Pad 2× 2 1× 1 1× 1 1× 1 1× 1 1× 1 1× 1 1× 1 1× 1 1× 1

Channel 64 64 64 128 256 512 1024 1024 1024 1024

Decoding

Layer uconv uconv uconv uconv uconv uconv uconv uconv conv Tanh

Kernel Size 4× 4 4× 4 4× 4 4× 4 4× 4 4× 4 4× 4 4× 4 3× 3 -

Stride 2× 2 2× 2 2× 2 2× 2 2× 2 2× 2 2× 2 2× 2 1× 1 -

Pad 1× 1 1× 1 1× 1 1× 1 1× 1 1× 1 1× 1 1× 1 1× 1 -

Channel 1024 1024 1024 512 256 128 64 64 3 -

criminator D is set to be 1. We use the Adam optimization

method [16] to train our network. The proposed algorith-

m is implemented in Torch7 on a computer with a Nvidia

Titan-X GPU.

Table 2: Architecture of the discriminator and parameter

setting. “Sigmoid” denotes a sigmoid function.

Discriminator

Layer conv conv conv conv conv Sigmoid

Kernel Size 3× 3 3× 3 3× 3 3× 3 3× 3 -

Stride 1× 1 1× 1 1× 1 1× 1 1× 1 -

Pad 1× 1 1× 1 1× 1 1× 1 1× 1 -

Channel 48 96 192 384 1 -

4.3. Quantitative Evaluation

We evaluate our algorithm on the synthetic dataset and

compare it with several state-of-the-art single image dehaz-

ing methods using Peak Signal to Noise Ratio (PSNR) and

Structural Similarity Index (SSIM). We also retrain the orig-

inal cGAN with the same parameter settings for fair com-

parisons. The quantitative evaluation results are shown in

Table 3. The proposed method generates the results with

higher PSNR and SSIM values than those of other algo-

rithms.

In Figure 4, we show three examples from the synthetic

testing dataset for illustration. The dehazing results by He

et al. [11] have some color distortions and blocking arti-

facts when the scene objects are similar to the atmospheric

light (e.g., the part enclosed in red box on the image from

the second row). This is mainly caused by inaccurate trans-

mission maps. The deep learning-based methods by Ren et

al. [24] and Cai et al [3] use CNN to estimate transmis-

sion maps, which overcome the limitations of [11] to some

extent. Thus, the dehazing results with fewer artifacts than

those of He et al. [11] on the outdoor dataset. However,

there are still some hazy residuals in the estimated images.

The method by Li et al. [18] jointly estimates the transmis-

sion map and the atmospheric light by a CNN. However, the

dehazing results still contains some hazy residuals. The de-

hazing results by the original cGAN contain some artifact-

Table 3: Quantitative comparisons on the synthetic testing

dataset

He [11] Ren [24] Cai [3] Li [18] cGAN Ours

PSNR 32.72 31.11 32.42 31.38 31.09 33.61

SSIM 0.814 0.793 0.842 0.814 0.802 0.915

s and color distortion. In contrast, the proposed dehazing

method generates much clearer images with fewer artifact-

s and finer details. In addition, compared to the baseline

method, i.e., cGAN, the proposed method introduces new

loss functions. The results show that the proposed loss func-

tion is able to help the image dehazing problem.

4.4. Real Image Haze Removal

Although the proposed network is trained on synthetic

haze images, we show that it can be generalized to han-

dle real-world haze images. Figure 5 shows three real hazy

images and the corresponding dehazing results generated

by state-of-the-art algorithms. Although the dark channel

prior-based method [11] is able to remove some haze, it al-

so generates some artifacts as shown in Figure 5(b). The

deep learning methods by Cai et al. [3] and Ren et al. [24]

use a CNN to estimate the transmission map and then use

the conventional method to recover clear images. Howev-

er, the dehazing results still contain some artifacts and haze

residuals due to the imperfect transmission map estimation.

The method proposed by Li et al. [18] directly estimate

clear images from hazy images. However, the method fails

to generate clear images as shown in Figure 5(c).

Different from these methods, the proposed algorithm is

based on an end-to-end trainable network which avoids the

transmission map estimation and the atmospheric light esti-

mation thus facilitating haze removal. The images generat-

ed by the proposed method are much clearer than those of

other algorithms as shown in Figure 5(f).

4.5. Run Time

As our network contains twenty layers, a natural ques-

tion is that whether the proposed algorithm is fast or not.

We evaluate the proposed method using the synthetic test
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(a) Input (b) He [11] (c) Ren [24] (d) Cai [3] (e) Li [18] (f) cGAN (g) Ours (h) Ground truth

PSNR/SSIM 35.67/0.766 26.91/0.797 26.51/0.807 25.17/0.759 30.35/0.744 44.76/0.824 +∞/1

(a) Input (b) He [11] (c) Ren [24] (d) Cai [3] (e) Li [18] (f) cGAN (g) Ours (h) Ground truth

PSNR/SSIM 46.15/0.853 32.55/0.886 49.25/0.812 47.25/0.899 40.63/0.828 39.86/0.953 +∞/1

(a) Input (b) He [11] (c) Ren [24] (d) Cai [3] (e) Li [18] (f) cGAN (g) Ours (h) Ground truth

PSNR/SSIM 33.69/0.848 34.93/0.878 33.53/0.919 33.04/0.906 31.78/0.836 31.18/0.950 +∞/1

Figure 4: Three instances of synthetic hazy dataset and haze removal results using several state-of-the-art dehazing methods.

Please see the detail differences in rectangles in amplified figures. (a) Synthetic hazy images, (h) Ground truth.

dataset on the a computer (Intel(R) Core(TM) i7-6700 CPU

@3.40GHz). We also compare with the state-of-the-art al-

gorithms [39, 18, 24, 3]. The algorithm including thirteen

layers [39], a light-weight model AOD-Net [18] and our

network are accelerated with a Titan GPU. Table 4 shows

the implementation platform and the average run time of

several state-of-the-art dehazing methods on synthetic test

dataset.

Table 4: Average run time (second) on the synthetic test

dataset

Image Size Ren [24] Cai [3] Li [18] Zhang [39] Ours

Platform Matlab Matlab Pycaffe Torch7 Torch7

512× 512 1.89 1.78 0.015 0.059 0.052

5. Analysis and Discussions

In this section, we further analyze and discuss the effect

of the proposed algorithm including the network architec-

tures and loss functions. We also show the robustness of the

proposed algorithm on the image noise. Finally, we discuss

the limitations of the proposed methods.

5.1. Effect of the Proposed Network

In the generator, we use the summation method to cap-

ture more useful information. To show the effect of con-

catenation and summation methods, we train the networks

with these two methods in the same settings for fair compar-

isons. Figure 7 shows the quantitative comparisons of con-

catenation and summation methods. Although the methods

with concatenation and summation strategies tend to gen-

erate the similar results, the maximum PSNR and SSIM

values (33.61dB, 0.9152) of summation strategy are larger

than those (33.45dB, 0.9092) of the concatenation strategy.

Therefore we use the summation strategy in the generator.

We also note that several methods develop GANs [39] to

solve image deraining and image super-resolution [36]. For

fair comparisons, we retrained the model by [39] using the

same dataset and parameter settings.

5.2. Effect of Loss Functions

To generate high quality dehazing images, we propose

a loss function which includes several terms. In order to

evaluate the effect of the loss function, we show the effect

of each term in Table 5. The quantitative evaluations are

conducted on the proposed synthetic test dataset with the

same settings. For simplicity, we denote L1 as the term of

LT only using the first term.

We note that the method with LT loss generates the re-

sults with higher PSNR values compared to the method with

L1, which indicates the effectiveness of the L1-regularized

gradient prior in image dehazing. The results from the first

column and the second column show that LP helps to im-

prove the SSIM value indicating that it is able to preserve

the structures of images.

Figure 6 shows some dehazing results examples with dif-

ferent loss functions and corresponding quantitative results.

The method with the proposed loss function generates better

results. The GAN method by [39] is able to remove some
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(a) Nature images (b) He [11] (c) Li [18] (d) Ren [24] (e) Cai [3] (f) Ours

Figure 5: Real world hazy images and corresponding dehazing results from several state-of-the-art methods. The second

row, the fourth row and the sixth row are the close-ups from the first row, the third row and the fifth row in red rectangles,

respectively.

Table 5: Quantitatively evaluate the effect of the different loss functions in the proposed method
Loss LA LA + LP LA + L1 LA + LT LA + L1 + LP LA + LT + LP

PSNR 31.08 31.19 31.76 33.81 32.82 33.61

SSIM 0.761 0.8966 0.887 0.883 0.908 0.915

hazy, but the recovered images still contain haze residuals

and some artifacts, as shown in supplementary material.

5.3. Robustness to Image Noise

The proposed method is robust to image noise. In order

to evaluate the robustness of the proposed method, we add

random noise with noise level from 0.5% to 3% to all test

samples. Figure 8 shows quantification results of several

state-of-the-art methods on the synthetic test dataset. Our

method performs well even when the noise level increases.

5.4. Limitations

The proposed method learns the mapping functions from

hazy images to corresponding clear images and is trained

based on the synthetic dataset. However, if the hazy mod-

el does not hold for hazy images, the proposed method will
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(a) Input (b) (c) (d) (e) (f) (g) (h) Ground truth

psnr/ssim 27.87/0.867 29.35/0.936 31.65/0.913 31.89/0.902 31.21/0.9306 32.47/0.939 +∞/1

(a) Input (b) (c) (d) (e) (f) (g) (h) Ground truth

psnr/ssim 30.95/0.697 31.88/0.940 29.48/0.908 33.81/0.896 35.31/0.924 35.55/0.945 +∞/1

Figure 6: The effect of the proposed network with different loss functions. (b) LA loss. (c) LA +LP loss. (d) LA +L1 loss.

(e) LA + LT loss. (f) LA + L1 + LP loss. (g) LA + LT + LP loss.
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Figure 7: Quantitative comparisons of concatenation and

summation methods.
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Figure 8: Quantitative evaluations of several dehazing

methods on the test dataset with different noise level.

not be able to generate clear images. Figure 9 shows that the

proposed method does not work well on light hazy images

and night hazy images. This is probably because our train-

ing dataset does not include similar samples. Therefore the

hazy model can not learn the corresponding mapping func-

tion. We will solve these problems by dedicating to collect

more comprehensive haze samples and optimize the model.

6. Conclusion

In this paper, we adopt a conditional generative adversar-

ial network for single image haze removal. The proposed

network is trained in an end-to-end manner, which avoid-

(a) Light hazy image (b) Output

(a) Night hazy image (b) Output

Figure 9: The proposed method does not work well when

the hazy images cannot be modeled by the hazy model.

s to estimate the transmission map and atmospheric light

separately. To generate better results, we have proposed an

encoder and decoder architecture so that it can capture more

useful information. We further modify the basic cGAN for-

mulation by introducing new loss functions to generate re-

alistic clear images. We also synthesize a hazy data includ-

ing indoor and outdoor scenes to train and evaluate the pro-

posed algorithm. The proposed method performs favorably

against several state-of-the-art methods on both synthetic

dataset and real world hazy images.
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