
Towards Faster Training of Global Covariance Pooling Networks by Iterative

Matrix Square Root Normalization

Peihua Li, Jiangtao Xie, Qilong Wang, Zilin Gao

Dalian University of Technology

peihuali@dlut.edu.cn

Abstract

Global covariance pooling in convolutional neural net-

works has achieved impressive improvement over the clas-

sical first-order pooling. Recent works have shown matrix

square root normalization plays a central role in achiev-

ing state-of-the-art performance. However, existing meth-

ods depend heavily on eigendecomposition (EIG) or sin-

gular value decomposition (SVD), suffering from inefficient

training due to limited support of EIG and SVD on GPU.

Towards addressing this problem, we propose an iterative

matrix square root normalization method for fast end-to-

end training of global covariance pooling networks. At

the core of our method is a meta-layer designed with loop-

embedded directed graph structure. The meta-layer con-

sists of three consecutive nonlinear structured layers, which

perform pre-normalization, coupled matrix iteration and

post-compensation, respectively. Our method is much faster

than EIG or SVD based ones, since it involves only ma-

trix multiplications, suitable for parallel implementation on

GPU. Moreover, the proposed network with ResNet archi-

tecture can converge in much less epochs, further accelerat-

ing network training. On large-scale ImageNet, we achieve

competitive performance superior to existing counterparts.

By finetuning our models pre-trained on ImageNet, we es-

tablish state-of-the-art results on three challenging fine-

grained benchmarks. The source code and network models

will be available at http://www.peihuali.org/iSQRT-COV.

1. Introduction

Deep convolutional neural networks (ConvNets) have

made significant progress in the past years, achieving recog-

nition accuracy surpassing human beings in large-scale ob-

ject recognition [7]. The ConvNet models pre-trained on

ImageNet [5] have been proven to benefit a multitude of

other computer vision tasks, ranging from fine-grained vi-

The work was supported by National Natural Science Foundation of

China (No. 61471082). Peihua Li is the corresponding author.

sual categorization (FGVC) [25], object detection [28], se-

mantic segmentation [26] to scene parsing [37], where la-

beled data are insufficient for training from scratch. The

common layers such as convolution, non-linear rectifica-

tion, pooling and batch normalization [11] have become off-

the-shelf commodities, widely supported on devices includ-

ing workstations, PCs and embedded systems.

Although the architecture of ConvNet has greatly

evolved in the past years, its basic layers largely keep un-

changed [19, 18]. Recently, researchers have shown in-

creasing interests in exploring structured layers to enhance

representation capability of networks [12, 25, 1, 22]. One

particular kind of structured layer is concerned with global

covariance pooling after the last convolution layer, which

has shown impressive improvement over the classical first-

order pooling, successfully used in FGVC [25], visual ques-

tion answering [15] and video action recognition [34]. Very

recent works have demonstrated that matrix square root nor-

malization of global covariance pooling plays a key role in

achieving state-of-the-art performance in both large-scale

visual recognition [21] and challenging FGVC [24, 32].

For computing matrix square root, existing methods

depend heavily on eigendecomposition (EIG) or singular

value decomposition (SVD) [21, 32, 24]. However, fast im-

plementation of EIG or SVD on GPU is an open problem,

which is limitedly supported on NVIDIA CUDA platform,

significantly slower than their CPU counterparts [12, 24].

As such, existing methods opt for EIG or SVD on CPU

for computing matrix square root. Nevertheless, current

implementations of meta-layers depending on CPU are far

from ideal, particularly for multi-GPU configuration. Since

GPUs with powerful parallel computing ability have to be

interrupted and await CPUs with limited parallel ability,

their concurrency and throughput are greatly restricted.

In [24], for the purpose of fast forward propagation (FP),

Lin and Maji use Newton-Schulz iteration (called modified

Denman-Beavers iteration therein) algorithm, which is pro-

posed in [9], to compute matrix square-root. Unfortunately,

for backward propagation (BP), they compute the gradient

through Lyapunov equation solution which depends on the

947

http://www.peihuali.org/iSQRT-COV

Method Forward Prop. (FP) Backward Prop. (BP)
CUDA

support

Scalability to

multi-GPUs

Large-scale (LS) or

Small-scale (SS)

MPN-COV [21] EIG algorithm BP of EIG limited limited LS only

G2DeNet [32] SVD algorithm BP of SVD limited limited SS only

Improved B-CNN [24]
Newton-Schulz Iter.

BP by Lyapunov equation

(SCHUR or EIG required) limited limited SS only

SVD algorithm BP of SVD

iSQRT-COV (ours) Newton-Schulz Iter. BP of Newton-Schulz Iter. good good LS+SS

Table 1. Differences between our iSQRT-COV and related methods. The bottleneck operations are marked with red, bold text.

GPU unfriendly Schur-decomposition (SCHUR) or EIG.

Hence, the training in [24] is expensive though FP which

involves only matrix multiplication runs very fast. Inspired

by that work, we propose a fast end-to-end training method,

called iterative matrix square root normalization of covari-

ance pooling (iSQRT-COV), depending on Newton-Schulz

iteration in both forward and backward propagations.

At the core of iSQRT-COV is a meta-layer with loop-

embedded directed graph structure, specifically designed

for ensuring both convergence of Newton-Schulz iteration

and performance of global covariance pooling networks.

The meta-layer consists of three consecutive structured lay-

ers, performing pre-normalization, coupled matrix iteration

and post-compensation, respectively. We derive the gradi-

ents associated with the involved non-linear layers based on

matrix backpropagation theory [12]. The design of sand-

wiching Newton-Schulz iteration using pre-normalization

by Frobenius norm or trace and post-compensation is es-

sential, which, as far as we know, did not appear in previous

literature (e.g. in [9] or [24]). The pre-normalization guar-

antees convergence of Newton-Schulz (NS) iteration, while

post-compensation plays a key role in achieving state-of-

the-art performance with prevalent deep ConvNet architec-

tures, e.g. ResNet [8]. The main differences between our

method and other related works1 are summarized in Tab. 1.

2. Related Work

B-CNN is one of the first end-to-end covariance pooling

ConvNets [25, 12]. It performs element-wise square root

normalization followed by ℓ2−normalization for covari-

ance matrix, achieving impressive performance in FGVC

task. Improved B-CNN [24] shows that additional matrix

square root normalization before element-wise square root

and ℓ2−normalization can further attain large improvement.

In training process, they perform FP using Newton-Schulz

iteration or using SVD, and perform BP by solving Lya-

punov equation or compute gradients associated with SVD.

1It is worth noting that, after CVPR submission deadline, authors

of [24] release code of improved B-CNN together with a scheme simi-

lar to ours, in which BP of Newton-Schulz iteration is implemented using

Autograd package in PyTorch. We note that (1) that scheme is parallel to

our work, and (2) they only provide pieces of code but do not train using

BP of Newton-Schulz iteration on any real-world benchmarks.

In any case, improved B-CNN suffers from GPU unfriendly

SVD, SCHUR or EIG and so network training is expen-

sive. Our iSQRT-COV differs from [24] in three aspects.

First, both FP and BP of our method are based on Newton-

Schulz iteration, making network training very efficient as

only GPU friendly matrix multiplications are involved. Sec-

ond, we propose sandwiching Newton-Schulz iteration us-

ing pre-normalization and post-compensation which is es-

sential and plays a key role in training extremely deep Con-

vNets. Finally, we evaluate extensively on both large-scale

ImageNet and on three popular fine-grained benchmarks.

In [21], matrix power normalized covariance pooling

method (MPN-COV) is proposed for large-scale visual

recognition. It achieves impressive improvements over first-

order pooling with AlexNet [18], VGG-Net [3, 29] and

ResNet [8] architectures. MPN-COV has shown that, given

a small number of high-dimensional features, matrix power

is consistent with shrinkage principle of robust covariance

estimation, and matrix square root can be derived as a ro-

bust covariance estimator via a von Neumann regularized

maximum likelihood estimation [33]. It is also shown

that matrix power normalization approximately yet effec-

tively exploits geometry of the manifold of covariance ma-

trices, superior to matrix logarithm normalization [12] for

high-dimensional features. All computations of MPN-COV

meta-layer are implemented with NVIDIA cuBLAS library

running on GPU, except EIG which runs on CPU.

G2DeNet [32] is concerned with inserting global Gaus-

sian distributions into ConvNets for end-to-end learning.

In G2DeNet, each Gaussian is identified as square root of

a symmetric positive definite matrix based on Lie group

structure of Gaussian manifold [20]. The matrix square

root plays a central role in obtaining the competitive per-

formance [32, Tab. 1 & Tab. 5]. Compact bilinear pooling

(CBP) [6] clarifies that bilinear pooling is closely related

to the second-order polynomial kernel, and presents two

compact representations via low-dimensional feature maps

for kernel approximation. Kernel pooling [4] approximates

Gaussian RBF kernel to a given order through compact ex-

plicit feature maps, aiming to characterize higher order fea-

ture interactions. Cai et al. [2] introduce a polynomial ker-

nel based predictor to model higher-order statistics of con-

volutional features across multiple layers.

948

T
Σ = XIX

Pre-normalization Newton-Schulz Iteration Post-compensation Softmax

iSQRT-COV Meta-layer

... ...
0
Y = A

1 1(,)k k kf
− −

Y = Y Z

1 1(,)k k kg
− −

Z = Y Z

1

tr()
Σ

Σ
A =

0
Z = I

Tensor Covariance Pooling

w

h

d

ix

ΣX

1k =

NY

k N=

Σ

tr() NΣC = Y

if k N< 1k k +=

C

Figure 1. Proposed iterative matrix square root normalization of covariance pooling (iSQRT-COV) network. After the last convolution layer,

we perform second-order pooling by estimating a covariance matrix. We design a meta-layer with loop-embedded directed graph structure

for computing approximate square root of covariance matrix. The meta-layer consists of three nonlinear structured layers, performing

pre-normalization, coupled Newton-Schulz iteration and post-compensation, respectively. See Sec. 3 for notations and details.

3. Proposed iSQRT-COV Network

In this section, we first give an overview of the proposed

iSQRT-COV network. Then we describe matrix square root

computation and its forward propagation. We finally derive

the corresponding backward gradients.

3.1. Overview of Method

The flowchart of the proposed network is shown in

Fig. 1. Let output of the last convolutional layer (with

ReLU) be a h×w× d tensor with spatial height h, width w
and channel d. We reshape the tensor to a feature matrix X
consisting of n = wh features of d−dimension. Then we

perform second-order pooling by computing the covariance

matrix Σ = XĪXT , where Ī = 1
n (I− 1

n1), I and 1 are the

n× n identity matrix and matrix of all ones, respectively.

Our meta-layer is designed to have loop-embedded di-

rected graph structure, consisting of three consecutive non-

linear structured layers. The purpose of the first layer (i.e.,

pre-normalization) is to guarantee the convergence of the

following Newton-Schulz iteration, achieved by dividing

the covariance matrix by its trace (or Frobenius norm).

The second layer is of loop structure, repeating the cou-

pled matrix equations involved in Newton-Schulz iteration

a fixed number of times, for computing approximate ma-

trix square root. The pre-normalization nontrivially changes

data magnitudes, so we design the third layer (i.e., post-

compensation) to counteract the adverse effect by multiply-

ing trace (or Frobenius norm) of the square root of the co-

variance matrix. As the output of our meta-layer is a sym-

metric matrix, we concatenate its upper triangular entries

forming an d(d+1)/2-dimensional vector, submitted to the

subsequent layer of the ConvNet.

3.2. Matrix Square Root and Forward Propagation

Square roots of matrices, particularly covariance matri-

ces which are symmetric positive (semi)definite (SPD), find

applications in a variety of fields including computer vision,

medical imaging [38] and chemical physics [14]. It is well-

known any SPD matrix has a unique square root which can

be computed accurately by EIG or SVD. Briefly, let A be an

SPD matrix and it has EIG A = Udiag(λi)U
T , where U is

orthogonal and diag(λi) is a diagonal matrix of eigenvalues

λi of A. Then A has a square root Y = Udiag(λ
1/2
i)UT ,

i.e., Y2 = A. Unfortunately, both EIG and SVD are not

well supported on GPU.

Newton-Schulz Iteration Higham [9] studied a class

of methods for iteratively computing matrix square root.

These methods, termed as Newton-Padé iterations, are de-

veloped based on the connection between matrix sign func-

tion and matrix square root, together with rational Padé ap-

proximation. Specifically, for computing the square root Y
of A, given Y0 = A and Z0 = I, for k = 1, · · · , N , the

coupled iteration takes the following form [9, Chap. 6.7]:

Yk = Yk−1plm(Zk−1Yk−1)qlm(Zk−1Yk−1)
−1

Zk = plm(Zk−1Yk−1)qlm(Zk−1Yk−1)
−1Zk−1, (1)

where plm and qlm are polynomials, and l and m are

non-negative integers. Eqn. (1) converges only locally: if

‖A − I‖ < 1 where ‖ · ‖ denotes any induced (or consis-

tent) matrix norm, Yk and Zk quadratically converge to Y
and Y−1, respectively. The family of coupled iteration is

stable in that small errors in the previous iteration will not

be amplified. The case of l = 0,m = 1 called Newton-

Schulz iteration fits for our purpose as no GPU unfriendly

matrix inverse is involved:

Yk =
1

2
Yk−1(3I− Zk−1Yk−1)

Zk =
1

2
(3I− Zk−1Yk−1)Zk−1. (2)

Clearly Eqn. (2) involves only matrix product, suitable

for parallel implementation on GPU. Compared to accu-

rate square root computed by EIG, one can only obtain ap-

proximate solution with a small number of iterations. We

949

determine the number of iterations N by cross-validation.

Interestingly, compared to EIG or SVD based methods, ex-

periments on large-scale ImageNet show that we can obtain

matching or marginally better performance under AlexNet

architecture (Sec. 4.2) and better performance under ResNet

architecture (Sec. 4.3), using no more than 5 iterations.

Pre-normalization and Post-compensation As Newton-

Schulz iteration only converges locally, we pre-normalize

Σ by trace or Frobenius norm, i.e.,

A =
1

tr(Σ)
Σ or

1

‖Σ‖F
Σ. (3)

Let λi be eigenvalues of Σ, arranged in nondecreasing or-

der. As tr(Σ) =
∑

i λi and ‖Σ‖F =
√

∑

i λ
2
i , it is easy to

see that ‖Σ−I‖2, which equals to the largest singular value

of Σ− I, is 1− λ1∑
i
λi

and 1− λ1√∑
i
λ2

i

for the case of trace

and Frobenius norm, respectively, both less than 1. Hence,

the convergence condition is satisfied.

The above pre-normalization of covariance matrix non-

trivially changes the data magnitudes such that it produces

adverse effect on network. Hence, to counteract this change,

after the Newton-Schulz iteration, we accordingly perform

post-compensation, i.e.,

C =
√

tr(Σ)YN or C =
√

‖Σ‖FYN . (4)

An alternative scheme to counterbalance the influence

incurred by pre-normalization is Batch Normalization

(BN) [11]. One may even consider without using any

post-compensation. However, our experiment on Ima-

geNet has shown that, without post-normalization, preva-

lent ResNet [8] fails to converge, while our scheme outper-

forms BN by about 1% (see 4.3 for details).

3.3. Backward Propagation (BP)

The gradients associated with the structured layers are

derived using matrix backpropagation methodology [13],

which establishes the chain rule of a general matrix func-

tion by first-order Taylor approximation. Below we take

pre-normalization by trace as an example, deriving the cor-

responding gradients.

BP of Post-compensation Given ∂l
∂C where l is the loss

function, the chain rule is of the form tr
((

∂l
∂C

)T
dC

)

=

tr
((

∂l
∂YN

)T
dYN +

(

∂l
∂Σ

)T
dΣ

)

, where dC denotes varia-

tion of C. After some manipulations, we have

∂l

∂YN
=

√

tr(Σ)
∂l

∂C

∂l

∂Σ

∣

∣

∣

post
=

1

2
√

tr(Σ)
tr
((∂l

∂C

)T

YN

)

I. (5)

BP of Newton-Schulz Iteration Then we are to compute

the partial derivatives of the loss function with respect to
∂l

∂Yk

and ∂l
∂Zk

, k = N − 1, . . . , 1, given ∂l
∂YN

computed

by Eqn. (5) and ∂l
∂ZN

= 0. As the covariance matrix Σ is

symmetric, it is easy to see from Eqn. (2) that Yk and Zk

are both symmetric. According to the chain rules (omitted

hereafter for simplicity) of matrix backpropagation and af-

ter some manipulations, k = N, . . . , 2, we can derive

∂l

∂Yk−1

=
1

2

(∂l

∂Yk

(

3I−Yk−1Zk−1

)

− Zk−1

∂l

∂Zk
Zk−1

− Zk−1Yk−1

∂l

∂Yk

)

∂l

∂Zk−1

=
1

2

((

3I−Yk−1Zk−1

) ∂l

∂Zk
−Yk−1

∂l

∂Yk
Yk−1

− ∂l

∂Zk
Zk−1Yk−1

)

. (6)

The final step of this layer is concerned with the partial

derivative with respect to ∂l
∂A , which is given by

∂l

∂A
=

1

2

(∂l

∂Y1

(

3I−A
)

− ∂l

∂Z1

−A
∂l

∂Y1

)

. (7)

BP of Pre-normalization Note that here we need to com-

bine the gradient of the loss function l with respect to Σ,

backpropagated from the post-compensation layer. As such,

by referring to Eqn. (3), we make similar derivations as be-

fore and obtain

∂l

∂Σ
=− 1

(tr(Σ))2
tr
((∂l

∂A

)T

Σ
)

I+
1

tr(Σ)

∂l

∂A

+
∂l

∂Σ

∣

∣

∣

post
. (8)

If we adopt pre-normalization by Frobenius norm, the

gradients associated with post-compensation become

∂l

∂YN
=

√

‖Σ‖F
∂l

∂C

∂l

∂Σ

∣

∣

∣

post
=

1

2‖Σ‖3/2F

tr
((∂l

∂C

)T

YN

)

Σ, (9)

and that with respect to pre-normalization is

∂l

∂Σ
=− 1

‖Σ‖3F
tr
((∂l

∂A

)T

Σ
)

Σ+
1

‖Σ‖F
∂l

∂A

+
∂l

∂Σ

∣

∣

∣

post
, (10)

while the backward gradients of Newton-Schulz iteration

(6) keep unchanged.

Finally, given ∂l
∂Σ , one can derive the gradient of the loss

function l with respect to input matrix X, which takes the

following form [21]:

∂l

∂X
= ĪX

(

∂l

∂Σ
+

(

∂l

∂Σ

)T)

. (11)

950

4. Experiments

We evaluate the proposed method on both large-scale im-

age classification and challenging fine-grained visual cate-

gorization tasks. We make experiments using two PCs each

of which is equipped with a 4-core Intel i7-4790k@4.0GHz

CPU, 32G RAM, 512GB Samsung PRO SSD and two Ti-

tan Xp GPUs. We implement our networks using MatCon-

vNet [30] and Matlab2015b, under Ubuntu 14.04.5 LTS.

4.1. Datasets and Our Metalayer Implementation

Datasets For large-scale image classification, we adopt

ImageNet LSVRC2012 dataset [5] with 1,000 object cate-

gories. The dataset contains 1.28M images for training, 50K

images for validation and 100K images for testing (with-

out published labels). As in [11, 8], we report the results

on the validation set. For fine-grained categorization, we

use three popular fine-grained benchmarks, i.e., CUB-200-

2011(Birds) [31], FGVC-aircraft (Aircrafts) [27] and Stan-

ford cars (Cars) [17]. The Birds dataset contains 11,788 im-

ages from 200 species, with large intra-class variation but

small inter-class variation. The Aircrafts dataset includes

100 aircraft classes and a total of 10,000 images with small

background noise but higher inter-class similarity. The Cars

dataset consists of 16,185 images from 196 classes. For all

datasets, we adopt the provided training/test split, using nei-

ther bounding boxes nor part annotations.

Implementation of iSQRT-COV Meta-layer We encap-

sulate our code in three computational blocks, which imple-

ment forward&backward computation of pre-normalization

layer, Newton-Schulz iteration layer and post-compensation

layer, respectively. The code is written in C++ based on

NVIDIA cuBLAS on top of CUDA toolkit 8.0. In addi-

tion, we write code in C++ based on cuBLAS for comput-

ing covariance matrices. We create MEX files so that the

above subroutines can be called in Matlab environment. For

AlexNet, we insert our meta-layer after the last convolution

layer (with ReLU), which outputs an 13× 13× 256 tensor.

For ResNet architecture, as suggested [21], we do not per-

form downsampling for the last set of convolutional blocks,

and add one 1× 1 convolution with d = 256 channels after

the last sum layer (with ReLU). The added 1×1 convolution

layer outputs an 14× 14× 256 tensor. Hence, with both ar-

chitectures, the covariance matrix Σ is of size 256×256 and

our meta-layer outputs an d(d + 1)/2 ≈ 32K-dimensional

vector as the image representation.

4.2. Evaluation with AlexNet on ImageNet

In the first part of experiments, we analyze, with

AlexNet architecture, the design choices of our iSQRT-

COV method, including the number of Newton-Schulz iter-

ations, time and memory usage, and behaviors of different

pre-normalization methods. We select AlexNet because it

1 2 3 4 5 6 7 8 9 10

N

38

38.5

39

39.5

40

40.5

41

to
p

-1
 e

rr
o

r
(%

)

iSQRT-COV

MPN-COV

Plain-COV

Figure 2. Impact of number N of Newton-Schulz iterations on

iSQRT-COV with AlexNet architecture on ImageNet.

runs faster with shallower depth, and the results can extrap-

olate to deeper networks which mostly follow its architec-

ture design.

We follow [21] for color augmentation and weight ini-

tialization, adopting BN and no dropout. We use SGD with

a mini-batch of 128, unless otherwise stated. The momen-

tum is 0.9 and weight decay is 0.0005. We train iSQRT-

COV networks from scratch in 20 epochs where learning

rate follows exponential decay 10−1.1 → 10−5. All train-

ing and test images are uniformly resized with shorter sides

of 256. During training we randomly crop a 224×224 patch

from each image or its horizontal flip. We make inference

on one single 224× 224 center crop from a test image.

Impact of Number N of Newton-Schulz Iterations

Fig. 2 shows top-1 error rate as a function of number of

Newton-Schulz iterations in Eqn. (2). Plain-COV indicates

simple covariance pooling without any normalization. With

one single iteration, our method outperforms Plain-COV by

1.3%. As iteration number grows, the error rate of iSQRT-

COV gradually declines. With 3 iterations, iSQRT-COV is

comparable to MPN-COV, having only 0.3% higher error

rate, while performing marginally better than MPN-COV

between 5 and 7 iterations. After N = 7, the error rate con-

sistently increases, indicating growth of iteration number

is not helpful for improving accuracy. As larger N incurs

higher computational cost, to balance efficiency and accu-

racy, we set N to 5 in the remaining experiments. Notably,

the approximate square root normalization improves a lit-

tle over the accurate one obtained via EIG. This interesting

problem will be discussed in Sec. 4.3, where iSQRT-COV

is further evaluated on substantially deeper ResNets.

Time and Memory Analysis We compare time and

memory consumed by single meta-layer of different meth-

ods. We use public code for MPN-COV, G2DeNet and

improved B-CNN released by the respective authors. As

shown in Tab. 2(a), iSQRT-COV (N = 3) and iSQRT-

COV (N = 5) are 3.1x faster and 1.8x faster than MPN-

COV, respectively. Furthermore, iSQRT-COV (N = 5)

is five times more efficient than improved B-CNN and

951

http://docs.nvidia.com/cuda/cublas/
https://github.com/jiangtaoxie/MPN-COV-ConvNet
http://www.peihuali.org/publications/G2DeNet/G2DeNet-FGVC-v1.0.zip
https://bitbucket.org/tsungyu/bcnn

(a) Time of FP+BP (ms) taken and memory (MB) used by single meta-layer.

Numbers in parentheses indicate FP time.

Method Language bottleneck Time Memory

iSQRT-COV (N=3)
C++ N/A

0.81 (0.26) 0.627

iSQRT-COV (N=5) 1.41 (0.41) 1.129

MPN-COV [21] C++&M EIG 2.58 (2.41) 0.377

Impro.

B-CNN

[24]

FP and BP based

M

SVD

or

EIG

13.51 (11.19)

0.501
on SVD

FP by NS Iter.,
13.91 (2.09)

BP by Lyap.

G2DeNet [32] M SVD 8.56 (4.76) 0.505

(b) Time (ms) taken by matrix decomposition (single precision arithmetic)

Algorithm
CUDA

cuSOLVER

Matlab

(CPU function)

Matlab

(GPU function)

EIG 21.3 1.8 9.8

SVD 52.2 4.1 11.9

Table 2. Comparison of time and memory usage with AlexNet ar-

chitecture. The size of covariance matrix is 256× 256.

2
5

2
6

2
7

2
8

2
9

2
10

batch size

100

200

300

400

500

600

im
a
g
e
s
 p

e
r

s
e
c
o
n
d

1 GPU: iSQRT-COV

2 GPUs:iSQRT-COV

1 GPU: MPN-COV

2 GPUs:MPN-COV

Figure 3. Images per second (FP+BP) of network training with

AlexNet architecture.

G2DeNet. For improved B-CNN, the forward computation

of Newton-Schulz (NS) iteration is much faster than that

of SVD, but the total time of two methods is comparable.

The authors of improved B-CNN also proposed two other

implementations, i.e., FP by NS iteration plus BP by SVD

and FP by SVD plus BP by Lyapunov (Lyap.), which take

15.31 (2.09) and 12.21 (11.19), respectively. We observe

that, in any case, the forward+backward time taken by sin-

gle meta-layer of improved B-CNN is significant as GPU

unfriendly SVD or EIG cannot be avoided, even though

the forward computation is very efficient when NS itera-

tion is used. Tab. 2(b) presents running time of EIG and

SVD of an 256× 256 covariance matrix. Matlab (M) built-

in CPU functions and GPU functions deliver over 10x and

2.1x speedups over their CUDA counterparts, respectively.

Our method needs to store Yk and Zk in Eqn. (2) which

will be used in backpropagation, taking up more memory

than EIG or SVD based ones. Among all, our iSQRT-

COV (N = 5) takes up the largest memory of 1.129MB,

which is insignificant compared to 12GB memory on a Ti-

tan Xp. Note that for network inference only, our method

Method Top-1 Error Top-5 Error Time

AlexNet [18] 41.8 19.2 1.32 (0.77)

MPN-COV [21] 38.51 17.60 3.89 (2.59)

B-CNN [25] 39.89 18.32 1.92 (0.83)

DeepO2P [12] 42.16 19.62 11.23 (7.04)

Impro. B-CNN∗[24] 40.75 18.91 15.48 (13.04)

G2DeNet [32] 38.71 17.66 9.86 (5.88)

iSQRT-COV(Frob.) 38.78 17.67 2.56 (0.81)

iSQRT-COV(trace) 38.45 17.52 2.55 (0.81)

Table 3. Error rate (%) and time of FP+BP (ms) per image

of different covariance pooling methods with AlexNet on Ima-

geNet. Numbers in parentheses indicate FP time. ∗Following [24],

improved B-CNN successively performs matrix square root,

element-wise square root and ℓ2 normalizations.

takes 0.125MB memory as it is unnecessary to store Yk and

Zk.

Next, we compare in Fig. 3 speed of network training

between MPN-COV and iSQRT-COV with both one-GPU

and two-GPU configurations. For one-GPU configuration,

the speed gap vs. batch size between the two methods keeps

nearly constant. For two-GPU configuration, their speed

gap becomes more significant when batch size gets larger.

As can be seen, the speed of iSQRT-COV network continu-

ously grows with increase of batch size while that of MPN-

COV tends to saturate when batch size is larger than 512.

Clearly our iSQRT-COV network can make better use of

computing power of multiple GPUs than MPN-COV.

Pre-normalization by Trace vs. by Frobenius Norm

Sec. 3 describes two pre-normalization methods. Here we

compare them in Tab. 3 (bottom rows), where iSQRT-COV

(trace) indicates pre-normalization by trace. We can see that

pre-normalization by trace produces 0.3% lower error rate

than that by Frobenius norm, while taking similar time with

the latter. Hence, in all the remaining experiments, we adopt

trace based pre-normalization method.

Comparison with Other Covariance Pooling Methods

We compare iSQRT-COV with other covariance pooling

methods, as shown in Tab. 3. The results of MPN-COV,

B-CNN and DeepO2P are duplicated from [21]. We train

from scratch G2DeNet and improved B-CNN on ImageNet.

We use the most efficient implementation of improved B-

CNN, i.e., FP by SVD and BP by Lyap., and we men-

tion all implementations of improved B-CNN produce sim-

ilar results. Our iSQRT-COV using pre-normalization by

trace is marginally better than MPN-COV. All matrix square

root normalization methods except improved B-CNN out-

perform B-CNN and DeepO2P. Since improved B-CNN is

identical to MPN-COV if element-wise square root normal-

ization and ℓ2−normalization are neglected, its unsatisfac-

tory performance suggests that, after matrix square root nor-

malization, further element-wise square root normalization

and ℓ2−normalization hurt large-scale ImageNet classifica-

952

Pre-normalization Post-compensation Top-1 Err. Top-5 Err.

Trace

w/o N/A N/A

w/ BN [11] 23.12 6.60

w/ Trace 22.14 6.22

Table 4. Impact of post-compensation on iSQRT-COV with

ResNet-50 architecture on ImageNet.

10 20 30 40 50 60 70 80 90

epochs

20

30

40

50

to
p

-1
 e

rr
o

r
(%

)

train: He et al.

train: MPN-COV

train: iSQRT-COV

val: He et al.

val: MPN-COV

val: iSQRT-COV

Figure 4. Convergence curves of different networks trained with

ResNet-50 architecture on ImageNet.

tion. This is consistent with the observation in [21, Tab.

1], where after matrix power normalization, additional nor-

malization by Frobenius norm or matrix ℓ2−norm makes

performance decline.

4.3. Results on ImageNet with ResNet Architecture

This section evaluates iSQRT-COV with ResNet archi-

tecture [8]. We follow [21] for color augmentation and

weight initialization. We rescale each training image with

its shorter side randomly sampled on [256, 512] [29]. The

fixed-size 224 × 224 patch is randomly cropped from the

rescaled image or its horizontal flip. We rescale each test

image with a shorter side of 256 and evaluate a single

224 × 224 center crop for inference. We use SGD with

a mini-batch size of 256, a weight decay of 0.0001 and a

momentum of 0.9. We train iSQRT-COV networks from

scratch in 60 epochs, initializing the learning rate to 10−1.1

which is divided by 10 at epoch 30 and 45, respectively.

Significance of Post-compensation Rather than our post-

compensation scheme, one may choose Batch Normaliza-

tion (BN) [11] or simply do nothing (i.e., without post-

compensation). Tab. 4 summarizes impact of different

schemes on iSQRT-COV network with ResNet-50 archi-

tecture. Without post-compensation, iSQRT-COV network

fails to converge. Careful observations show that in this

case the gradients are very small (on the order of 10−5),

and largely tuning of learning rate helps little. Option of

BN helps the network converge, but producing about 1%

higher top-1 error rate than our post-compensation scheme.

The comparison above suggests that our post-compensation

scheme is essential for achieving state-of-the-art results.

Method Model Top-1 Err. Top-5 Err.

He et al. [8]

ResNet-50

24.7 7.8

FBN [23] 24.0 7.1

SORT [35] 23.82 6.72

MPN-COV [21] 22.73 6.54

iSQRT-COV 22.14 6.22

He et al. [8]
ResNet-101

23.6 7.1

iSQRT-COV 21.21 5.68

He et al. [8] ResNet-152 23.0 6.7

Table 5. Error (%) comparison of second-order networks with first-

order ones on ImageNet.

Fast Convergence of iSQRT-COV Network We com-

pare convergence of iSQRT-COV and MPN-COV with

ResNet-50 architecture, as well as the original ResNet-

50 [8] in which global average pooling is performed af-

ter the last convolution layer. Fig. 4 presents the conver-

gence curves. Compared to the original ResNet-50, the

convergence of both iSQRT-COV and MPN-COV is signif-

icantly faster. We observe that iSQRT-COV can converge

well within 60 epochs, achieving top-1 error rate of 22.14%,

∼0.6% lower than MPN-COV. We also trained iSQRT-COV

with 90 epochs using same setting with MPN-COV, obtain-

ing top-5 error of 6.12%, slightly lower than that with 60

epochs (6.22%). This indicates iSQRT-COV can converge

in less epochs, so further accelerating training, as opposed

to MPN-COV. The fast convergence property of iSQRT-

COV is appealing. As far as we know, previous networks

with ResNet-50 architecture require at least 90 epochs to

converge to competitive results.

Comparison with State-of-the-arts In Tab. 5, we com-

pare our method with other second-order networks, as well

as the original ResNets. With ResNet-50 architecture, all

the second-order networks improve over the first-order one

while our method performing best. MPN-COV and iSQRT-

COV, both of which involve square root normalization, are

superior to FBN [23] which uses no normalization and

SORT [35] which introduces dot product transform in the

linear sum of two-branch module followed by element-wise

normalization. Moreover, our iSQRT-COV outperforms

MPN-COV by 0.6% in top-1 error. Note that our 50-layer

iSQRT-COV network achieves lower error rate than much

deeper ResNet-101 and ResNet-152, while our 101-layer

iSQRT-COV network outperforming the original ResNet-

101 by 2.4% and ResNet-152 by 1.8%, respectively.

Why Approximate Square Root Performs Better Fig. 2

shows that more iterations which lead to more accurate

square root is not helpful for iSQRT-COV with AlexNet.

From Tab. 5, we observe that iSQRT-COV with ResNet

computing approximate square root performs better than

MPN-COV which can obtain exact square root by EIG.

Recall that, for covariance pooling ConvNets, we face the

953

Method d Dim. Top-1 Err. Top-5 Err. Time

He et al. [8] N/A 2K 24.7 7.8 8.08 (1.93)

iSQRT-COV

64 2K 23.73 6.99 9.86 (2.39)

128 8K 22.78 6.43 10.75 (2.67)

256 32K 22.14 6.22 11.33 (2.89)

Table 6. Error rate (%) and time of FP+BP (ms) per image vs. d (or

representation dimension) of compact iSQRT-COV with ResNet-

50 on ImageNet. Numbers in parentheses indicate FP time.

problem of small sample of large dimensionality, and matrix

square root is consistent with general shrinkage principle of

robust covariance estimation [21]. Hence, we conjuncture

that approximate matrix square root may be a better robust

covariance estimator than the exact square root. Despite this

analysis, we think this problem is worth future research.

Compactness of iSQRT-COV Our iSQRT-COV outputs

32k-dimensional representation which is high. Here we

consider to compress this representation. Compactness by

PCA [25] is not viable since obtaining the principal compo-

nents on ImageNet is too expensive. CBP [6] is not applica-

ble to our iSQRT-COV as well, as it does not explicitly es-

timate the covariance matrix. We propose a simple scheme,

which decreases the dimension (dim.) of covariance repre-

sentation by lowering the number d of channels of 1 × 1
convolutional layer before our covariance pooling. Tab. 6

summarizes results of compact iSQRT-COV. The recogni-

tion error increases slightly (↑ 0.64%) when d decreases

from 256 to 128 (correspondingly, dim. of image represen-

tation 32K → 8K). The error rate is 23.73% if the dimen-

sion is compressed to 2K, still outperforming the original

ResNet-50 which performs global average pooling.

4.4. Finegrained Visual Categorization (FGVC)

Finally, we apply iSQRT-COV models pre-trained on

ImageNet to FGVC. For fair comparison, we follow [25]

for experimental setting and evaluation protocol. On all

datasets, we crop 448 × 448 patches as input images. We

replace 1000-way softmax layer of a pre-trained iSQRT-

COV model by a k-way softmax layer, where k is number

of classes in the fine-grained dataset, and finetune the net-

work using SGD with momentum of 0.9 for 50∼100 epochs

with a small learning rate (lr=10−2.1) for all layers except

the fully-connected layer, which is set to 5 × lr. We use

horizontal flipping as data augmentation. After finetuning,

the outputs of iSQRT-COV layer are ℓ2−normalized before

inputted to train k one-vs-all linear SVMs with hyperpa-

rameter C = 1. We predict the label of a test image by

averaging SVM scores of the image and its horizontal flip.

Tab. 7 presents classification results of different meth-

ods, where column 3 lists the dimension of the correspond-

ing representation. With ResNet-50 architecture, KP per-

forms much better than CBP, while iSQRT-COV (8K) re-

spectively outperforms KP (14K) by about 2.6%, 3.8%

Method Dim. Birds Aircrafts Cars

R
es

N
et

-5
0

iSQRT-COV
32K 88.1 90.0 92.8

8K 87.3 89.5 91.7

CBP [6] 14K 81.6 81.6 88.6

KP [4] 14K 84.7 85.7 91.1

V
G

G
-D

iSQRT-COV 32K 87.2 90.0 92.5

NetVLAD [1] 32K 81.9 81.8 88.6

CBP [6] 8K 84.3 84.1 91.2

KP [4] 13K 86.2 86.9 92.4

LRBP [16] 10K 84.2 87.3 90.9

Improved

B-CNN[24]
262K 85.8 88.5 92.0

G2DeNet [32] 263K 87.1 89.0 92.5

HIHCA [2] 9K 85.3 88.3 91.7

iSQRT-COV with ResNet-101 32K 88.7 91.4 93.3

Table 7. Comparison of accuracy (%) on fine-grained benchmarks.

Our method uses neither bounding boxes nor part annotations.

and 0.6% on Birds, Aircrafts and Cars, and iSQRT-COV

(32K) further improves accuracy. Note that KP combines

first-order up to fourth-order statistics while iSQRT-COV

only exploits second-order one. With VGG-D, iSQRT-COV

(32k) matches or outperforms state-of-the-art competitors,

but inferior to iSQRT-COV (32k) with ResNet-50.

On all fine-grained datasets, KP and CBP with 16-layer

VGG-D perform better than their counterparts with 50-

layer ResNet, despite the fact that ResNet-50 significantly

outperforms VGG-D on ImageNet [8]. The reason may

be that the last convolution layer of pre-trained ResNet-

50 outputs 2048-dimensional features, much higher than

512-dimensional one of VGG-D, which are not suitable for

existing second- or higher-order pooling methods. Differ-

ent from all existing methods which use models pre-trained

on ImageNet with first-order information, our pre-trained

models are of second-order. Using pre-trained iSQRT-COV

models with ResNet-50, we achieve recognition results su-

perior to all the compared methods, and furthermore, es-

tablish state-of-the-art results on three fine-grained bench-

marks using iSQRT-COV model with ResNet-101.

5. Conclusion

We presented an iterative matrix square root normaliza-

tion of covariance pooling (iSQRT-COV) network which

can be trained end-to-end. Compared to existing works

depending heavily on GPU unfriendly EIG or SVD, our

method, based on coupled Newton-Schulz iteration [9],

runs much faster as it involves only matrix multiplications,

suitable for parallel implementation on GPU. We validated

our method on both large-scale ImageNet dataset and chal-

lenging fine-grained benchmarks. Given efficiency and

promising performance of our iSQRT-COV, we hope global

covariance pooling will be a promising alternative to global

average pooling in other deep network architectures, e.g.,

ResNeXt [36], Inception [11] and DenseNet [10].

954

References

[1] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic.

NetVLAD: CNN architecture for weakly supervised place

recognition. In CVPR, 2016. 1, 8

[2] S. Cai, W. Zuo, and L. Zhang. Higher-order integration of

hierarchical convolutional activations for fine-grained visual

categorization. In ICCV, Oct 2017. 2, 8

[3] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.

Return of the devil in the details: Delving deep into convo-

lutional nets. In BMVC, 2014. 2

[4] Y. Cui, F. Zhou, J. Wang, X. Liu, Y. Lin, and S. Belongie.

Kernel pooling for convolutional neural networks. In CVPR,

July 2017. 2, 8

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. ImageNet: A large-scale hierarchical image database.

In CVPR, 2009. 1, 5

[6] Y. Gao, O. Beijbom, N. Zhang, and T. Darrell. Compact

bilinear pooling. In CVPR, June 2016. 2, 8

[7] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rec-

tifiers: Surpassing human-level performance on ImageNet

classification. In ICCV, 2015. 1

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 2, 4, 5, 7, 8

[9] N. J. Higham. Functions of Matrices: Theory and Computa-

tion. SIAM, Philadelphia, PA, USA, 2008. 1, 2, 3, 8

[10] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger.

Densely connected convolutional networks. In CVPR, July

2017. 8

[11] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015. 1, 4, 5, 7, 8

[12] C. Ionescu, O. Vantzos, and C. Sminchisescu. Matrix back-

propagation for deep networks with structured layers. In

ICCV, 2015. 1, 2, 6

[13] C. Ionescu, O. Vantzos, and C. Sminchisescu. Training deep

networks with structured layers by matrix backpropagation.

arXiv, abs/1509.07838, 2015. 4

[14] B. Jansı́k, S. Høst, P. Jørgensen, J. Olsen, and T. Helgaker.

Linear-scaling symmetric square-root decomposition of the

overlap matrix. J. of Chemical Physics, pages 124104–

124104, 2007. 3

[15] K. Kafle and C. Kanan. An analysis of visual question an-

swering algorithms. In ICCV, Oct 2017. 1

[16] S. Kong and C. Fowlkes. Low-rank bilinear pooling for fine-

grained classification. In CVPR, July 2017. 8

[17] J. Krause, M. Stark, D. Jia, and F. F. Li. 3D Object represen-

tations for fine-grained categorization. In ICCV Workshops,

pages 554–561, 2013. 5

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet

classification with deep convolutional neural networks. In

NIPS, pages 1097–1105, 2012. 1, 2, 6

[19] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998. 1

[20] P. Li, Q. Wang, H. Zeng, and L. Zhang. Local Log-Euclidean

multivariate Gaussian descriptor and its application to image

classification. IEEE TPAMI, 2017. 2

[21] P. Li, J. Xie, Q. Wang, and W. Zuo. Is second-order informa-

tion helpful for large-scale visual recognition? In ICCV, Oct

2017. 1, 2, 4, 5, 6, 7, 8

[22] Y. Li, M. Dixit, and N. Vasconcelos. Deep scene image clas-

sification with the MFAFVNet. In ICCV, Oct 2017. 1

[23] Y. Li, N. Wang, J. Liu, and X. Hou. Factorized bilinear mod-

els for image recognition. In ICCV, 2017. 7

[24] T.-Y. Lin and S. Maji. Improved bilinear pooling with CNNs.

In BMVC, 2017. 1, 2, 6, 8

[25] T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear CNN

models for fine-grained visual recognition. In ICCV, 2015.

1, 2, 6, 8

[26] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, June 2015. 1

[27] S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi.

Fine-grained visual classification of aircraft. HAL - INRIA,

2013. 5

[28] J. Redmon and A. Farhadi. YOLO9000: Better, faster,

stronger. In CVPR, July 2017. 1

[29] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

2, 7

[30] A. Vedaldi and K. Lenc. MatConvNet – convolutional neural

networks for MATLAB. In ACM on Multimedia, 2015. 5

[31] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.

The Caltech-UCSD Birds200-2011 Dataset. California In-

stitute of Technology, 2011. 5

[32] Q. Wang, P. Li, and L. Zhang. G2DeNet: Global Gaussian

distribution embedding network and its application to visual

recognition. In CVPR, July 2017. 1, 2, 6, 8

[33] Q. Wang, P. Li, W. Zuo, and L. Zhang. RAID-G: Robust es-

timation of approximate infinite dimensional Gaussian with

application to material recognition. In CVPR, 2016. 2

[34] Y. Wang, M. Long, J. Wang, and P. S. Yu. Spatiotemporal

pyramid network for video action recognition. In CVPR, July

2017. 1

[35] Y. Wang, L. Xie, C. Liu, S. Qiao, Y. Zhang, W. Zhang,

Q. Tian, and A. Yuille. SORT: Second-order response trans-

form for visual recognition. In ICCV, 2017. 7

[36] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He. Aggregated

residual transformations for deep neural networks. In CVPR,

July 2017. 8

[37] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Tor-

ralba. Scene parsing through ADE20K dataset. In CVPR,

2017. 1

[38] D. Zhou, I. L. Dryden, A. A. Koloydenko, K. M. Audenaert,

and L. Bai. Regularisation, interpolation and visualisation of

diffusion tensor images using non-Euclidean statistics. Jour-

nal of Applied Statistics, 43(5):943–978, 2016. 3

955

