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Abstract

Videos captured by outdoor surveillance equipments

sometimes contain unexpected rain streaks, which brings d-

ifficulty in subsequent video processing tasks. Rain streak

removal from a video is thus an important topic in recent

computer vision research. In this paper, we raise two in-

trinsic characteristics specifically possessed by rain streak-

s. Firstly, the rain streaks in a video contain repetitive local

patterns sparsely scattered over different positions of the

video. Secondly, the rain streaks are with multiscale config-

urations due to their occurrence on positions with different

distances to the cameras. Based on such understanding, we

specifically formulate both characteristics into a multiscale

convolutional sparse coding (MS-CSC) model for the video

rain streak removal task. Specifically, we use multiple con-

volutional filters convolved on the sparse feature maps to

deliver the former characteristic, and further use multiscale

filters to represent different scales of rain streaks. Such a

new encoding manner makes the proposed method capable

of properly extracting rain streaks from videos, thus getting

fine video deraining effects. Experiments implemented on

synthetic and real videos verify the superiority of the pro-

posed method, as compared with the state-of-the-art ones

along this research line, both visually and quantitatively.

1. Introduction

Rainy videos captured by outdoor surveillance equip-

ments may degenerate the performance of subsequent video

processing tasks, like human detection [8], person re-

identification [10], stereo correspondence [14], object track-

ing and recognition [29], and scene analysis [19]. Thus, re-

moving rain streaks from a video is an important issue and

has attracted much attention in computer vision.

Since first raised by Garg and Nayar [12] in 2004, many

∗Deyu Meng is the corresponding author.
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Figure 1. An natural rainy video (upper) is separated into three

layers (middle) of background scene, rain streaks and moving ob-

jects by the proposed multiscale convolutional sparse coding (MS-

CSC) model. The rain streaks can be decomposed into diverse rain

structures (lower row (a)), corresponding to different scales of rain

appearance. All those decompositions are attained through three

scale filters convolved on sparse feature maps (lower row (b)).

methods have been proposed for this task and attained good

performance under different rain circumstances. Many of

these methods implement the task by carefully formulating

certain physical characteristics of rain steaks, e.g. photo-

metric appearance [13], geometrical features [30], chromat-

ic consistency [25], spatio-temporal configurations [34], lo-

cal structure correlations [7], and design certain techniques

for quantitatively formulating these prior rain knowledge

to facilitate a proper separation of rain streaks from the

video background [20]. Some recent methods along this

line achieve decent performance, by pre-training a discrimi-

nator with some pre-annotated sample pairs, with or without
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rains, and extracting discriminative features for distinguish-

ing rain parts from no-rain ones [22]. Different from cur-

rent methods which mainly treat rain streaks as determin-

istic knowledge, Wei et al. [38] formulated rain streaks as

a stochastic distribution, i.e., patch-based mixture of Gaus-

sians, and achieved satisfactory performance for the task in

a purely unsupervised manner.

However, some insightful characteristics possessed by

rain streaks in a video still have not been fully explored and

employed in the previous methods. On one hand, the rain

streaks in a video are always with apparent local patterns,

which repetitively exist while be sparsely scattered over d-

ifferent locations of the video. This can be evidently seen

in Fig. 1(a), which shows that the rains contained in a video

can be separated into several layers, each containing many

local patterns with similar direction, thickness, and shapes.

On the other hand, since rain streaks are captured from dif-

ferent distances by the surveillance camera, they are always

depicted as multiscale forms. This phenomenon can also

be obviously seen in Fig. 1(b), which depicts that multi-

ple scales of rain shapes in different layers, like thick rain

chunks, thin rain lines, and fine-grained rain drops. The

main aim of this study is to fully explore and characterize

such intrinsic prior structures possessed by rain streaks to

further enhance the rain removal capability of current state-

of-the-art approaches.

To this aim, we design a new rain streak removal mod-

el by fully considering the aforementioned prior structures

possessed by rain streaks. Specifically, we use multiple con-

volutional filters imposed on sparse feature maps (i.e., con-

volutional sparse coding) to deliver repetitive shape charac-

teristic of rain streaks, and further use multiscale filters to

represent different scales of rain streaks. The mechanism

of such modeling way can be easily understood by seeing

the illustration in Fig. 1(b). Such a new encoding man-

ner makes the proposed method capable of more faithful-

ly reflecting the intrinsic structures of rain streaks. Thus

the new method is expected to more properly extract rain

streaks from videos while finely recover the structure of the

video without rains.

Note that different from current methods which repre-

sents the rain streaks as either deterministic (e.g., spatial-

temporal smoothness [20]) or stochastic (e.g., patch-based

MoG [38]) knowledge, the proposed method integratively

consider both types of knowledge under a unified frame-

work. The multiscale convolutional filters deliver determin-

istic local structures of rain streak, while the feature map

with sparsity conveys stochastic information of rain streak

distribution. The proposed regime is thus expected to at-

tain a fine compromise between two types of rain modeling

manners and make the capabilities of both manners com-

pensate between each other to make the method available in

general rain scenarios.

In summary, this paper makes the following three-fold

contributions:

1. Two intrinsic characteristics possessed by rain streaks

in a video are fully explored and utilized in this work,

including the multiscale shapes and the local repetitive

patterns sparsely scattered over the video.

2. A concise multiscale convolutional sparse coding

(MS-CSC) model is designed to faithfully represent the

two explored prior configurations of rain streaks.

3. An alternative optimization algorithm is readily de-

signed to solve the proposed model, where all the pa-

rameters involved in the model can be efficiently solved

in an iterative manner. Experiments implemented on

a series of synthetic and real videos containing rain

streaks verify the superiority of the proposed method,

both visually and quantitatively.

The paper is organized as follows, Section 2 introduces

related works for rain streak removal techniques on videos,

as well as on images. Section 3 presents the MS-CSC mod-

el and the iterative algorithm for solving the model. Ex-

periments are shown in Section 4, and the paper is briefly

concluded in Section 5.

2. Related work

Numerous methods have been proposed to improve the

visibility of images/videos captured with rain streak inter-

ference. In the following, we present a short review for the

developments on this task.

2.1. Video rain removal methods

Garg and Nayar [12] first studied the photometric ap-

pearance of rain drops and developed a comprehensive rain

detection method for videos, which utilizes a linear space-

time correlation model to detect the dynamics of raindrops

and a physics-based motion blur model to explains the pho-

tometry of rain. Against camera-taken rainy images/videos,

Garg and Nayar [13][14] further proposed a method to re-

duce the effects of rain before camera shots by adjusting the

camera parameters such as field depth and exposure time.

In the past years, more physical intrinsic properties of

rain streaks have been explored and formulated in algorithm

designing. For example, Zhang et al. [48] incorporated both

chromatic and temporal properties to utilize K-means clus-

tering for distinguishing background and rain streaks from

videos. To enhance the robustness of rain removal, Bar-

num et al. [2] employed the regular visual effects of rain

in global frequency information to approximate rain streak-

s as a motion-blurred Gaussian. Later, Santhaseelan et al.

[31] used local phase congruency to detect rain and applied

chromatic constrains to excluding false candidates. Chen et

al. [7] proposed a spatio-temporal correlation among local

patches with rain streaks and used low-rank term to help

extract rain streaks from a video.
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To improve the capability of rain removal, Kim et al.

[22] proposed a method based on temporal correlation and

low-rank matrix completion. The method needs to use some

extra supervised knowledge (images/videos with/without

rain streaks) to help training a rain classifier. Recently, Jiang

et al. [20] proposed a tensor-based video rain streak re-

moval approach by considering the sparsity of rain streaks,

smoothness along the raindrops and the rain-perpendicular

direction, and global and local correlation along time direc-

tion. Meanwhile, to deal with heavy rain in dynamic scenes,

Ren et al. [30] divided rain into two categories: sparse ones

and dense ones, which slightly relieves the matter. Wei et al.

[38] first encodes rain streaks as a patch-based mixture of

Gaussians and proposed 3DTV to constrain moving object-

s. Such stochastic manner for encoding rain streaks could

make the method deliver a wider range of rain information.

All of the current methods have not fully made use of

the two intrinsic characteristics, i.e., repetitive local patterns

scattered over different positions of the video and multiscale

shapes. While as shown in Fig. 1, such rain structures are

evident and intuitively exist for general rain streaks. We

thus expect to enhance the performance of state-of-the-arts

along this line by exploring these two useful rain properties.

2.2. Single image rain removal methods

For comprehensiveness, we also briefly review the rain

streak removal methods on a single image. Kang et al.

[21] firstly proposed a method formulating rain removal

as an image decomposition problem based on morpholog-

ical component analysis. They achieved rain componen-

t from the high frequency part of an image by using dic-

tionary learning and sparse coding. Luo et al. [26] also

relied on discriminative sparse codes, but built upon a non-

linear screen blend model to remove rain in a single image.

In 2016, Li et al. [24] utilized patch-based GMM priors

to distinguish and remove rains from background in a sin-

gle image, which needs to pre-train a GMM with a set of

pre-collected natural images without rain streaks. Different

from previous methods, Zhang et al. [46] introduced a new

refined loss function into GAN framework and proposed a

derain network called Image De-raining Conditional Gen-

eral Adversarial Network (ID-CGAN).

The state-of-the-art rain removal strategies are presented

very recently by Fu et al. [11] and Yang et al. [41], respec-

tively. Fu et al. [11] firstly developed a deep CNN (called

DerainNet) model to extract discriminative features of rains

in high frequency layer of an image. Yang et al. [41] de-

signed a multi-task deep learning architecture that learns the

binary rain streak map, the appearance of rain streaks, and

the clean background. Both of the networks need to pre-

collect a set of labeled images (with/without rain streaks)

to learn its network parameters. Recently, Gu et al. [17]

jointly analyzed sparse representation and synthesis sparse

representation to encode background scene and rain streak-

s on an image. Zhang et al. [45] learned a set of gener-

ic sparsity-based and low-rank representation-based convo-

lutional filters for efficiently representing background and

rain streaks on an image, respectively.

This study puts emphasis on the rain streak removal issue

in video. Though these image-based methods can deal with

rain removal in a video via a frame-by-frame manner, the

extra utilization of temporal information always makes the

video-based methods work better than image-based ones.

2.3. Multiscale approach

For decades, the multiscale strategy has been applied to

almost every branch of computer vision, especially in im-

age and video processing. In image segmentation, Baatz et

al. [1] firstly used a general segmentation algorithm based

on homogeneity definitions to free adaptable to the scale of

interest. In image quality assessment, Wang et al. [37] pro-

posed a multiscale structural similarity method and devel-

oped an image synthesis method to calibrate the parameters

that define the relative importance of different scales. To

improve the invariance of CNN activations, Gong et al. [15]

firstly presented a simple but effective scheme called multi-

scale orderless pooling. For dense prediction, Yu et al. [43]

developed a new convolutional network module using di-

lated convolutions to systematically aggregate multi-scale

contextual information without losing resolution.

3. MS-CSC Model for Video Rain Removal

An input video is represented by X ∈ Rh×w×n, where

h,w, and n represent the height, width, and frame number

of the video, respectively. As analyzed in the introduction, a

video can be decomposed as X = B +R+ F , where B,R,

and F ∈ Rh×w×n represent the background scene, rain lay-

er, and moving objects of the video, respectively. In this pa-

per, we use X , X, x, and x to denote tensor, matrix, vector,

and scalar, respectively.

3.1. Problem formulation

Modeling rain layers by MS-CSC. Convolutional s-

parse coding [44], which has been used to emphasize lo-

cal texture patterns in an image, can be properly utilized to

describe the local repetitive patterns of rain streaks. Tradi-

tional CSC [17, 45, 18] usually sets filters with same size.

However, as we have analyzed in Introduction, rain streaks

in a video are generally with multiscale shapes since they

are pictured from different distances by cameras. Thus, the

MS-CSC model is naturally constructed to depict intricate

structures of rain streaks as follows:

R =

K
∑

k=1

nk
∑

s=1

Dks ⊗Mks. (1)
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Figure 2. Upper: decomposition of a video into a rain layer and that without rains. Lower: different scales of separated rain layers as well

as the corresponding filters. (a) The results obtained by CSC model with single-scale filters. (b) The results obtained by MS-CSC model

with multi-scale filters.

where M = {Mks}
K,nk

k,s=1
⊂ Rh×w×n is a set of fea-

ture maps that approximate the rain streak positions, and

D = {Dks}
K,nk

k,s=1
⊂ Rpk×pk denotes the filters represent-

ing the repetitive local patterns of rain streaks. K and nk

denote the numbers of entire filters and filters at the k-th s-

cale, respectively. Considering the sparsity of feature maps,

this work employs L1-penalty [28] to regularize the feature

maps M. We expect that such a reconstructed-R can finely

extract the rain streaks from the input video. The mecha-

nism of the proposed MS-CSC can be easily understood by

Fig. 2. It is observed that the CSC model with single-scale

filters fails to decompose the rain streaks layers in physical-

meaning-interpretable manner. By contrast, the proposed

MS-CSC model can reasonably divide rain streaks into mul-

tiple scales and structures, where each layer can be easily

explained and finely comply with the instinctive rain sepa-

ration by human vision system.

Modeling background with low-rank term. For a

video captured by surveillance cameras, the background

scene keeps steady over the frames except from the vari-

ation of illumination and interference of moving object-

s. Therefore, the similar background layer can be formu-

lated as recovering a low-dimensional subspace [27] [49]

[50][42][5][6]. The standard approaches to subspace learn-

ing is the following low-rank matrix factorization (LRMF):

B = Fold(UV T ), (2)

where U ∈ Rd×r, V ∈ Rn×r, d = hw, r < min(d, n),
and the operation of ’Fold’ refers to fold up each column of

a matrix into the corresponding frame matrix of a tensor.

Modeling moving objects with Markov random field.

Moving objects in a rain scene are difficult to handle. To

a certain extent, the exact locations of moving objects can

avoid deformations and artifacts. Therefore, inspired by

Wei. et al. [38], this work explicitly detects the moving ob-

jects with Markov random fields (MRF). Let H ∈ Rh×w×n

be a binary tensor denoting the moving object support:

Hijn =

{

1, location ijn is moving objects,

0, location ijn is background.
(3)

Let H⊥ is complementary with H satisfied H + H⊥ = 1.

Therefore, moving objects part of the video satisfies the fol-

lowing equation:

H ◦ X = H ◦ (F +R). (4)

Moving objects layer F , relative to rain streak, is smooth, so

this work imposes total variation (TV) penalty to regularize

it. In a similar way, background part of the video can be

expressed as:

H⊥ ◦ X = H⊥ ◦ (B +R). (5)

Considering the sparse feature and continuous shapes along

both space and time of moving object, this work imposes

L1-penalty [28] and weighted 3-dimensional total variation

(3DTV) penalty to regularize the moving objects support H.

By integrating the aforementioned three models,
the proposed MS-CSC model with parameters Θ =
{D,M,H, F, U, V,R} can be constructed as follows:

min
Θ

L(Θ) =‖ H⊥ ◦ (X − Fold(UV T )−R) ‖2F

+ ‖ H ◦ (X − F −R) ‖2F +λ ‖ F ‖TV

+ α ‖ H ‖3DTV +β ‖ H ‖1 +b

K
∑

k=1

nk
∑

s=1

‖ Mks ‖1

s.t. R =
K
∑

k=1

nk
∑

s=1

Dks ⊗Mks, ‖ Dks ‖2F≤ 1. (6)

3.2. Alternative optimization algorithm

Due to the non-convexity of the objective function, the
proposed model is difficult to obtain the solution in one step.
Hence, we adopt an alternating search algorithm to itera-
tively optimize each variable involved in the energy mini-
mization over Θ. Its corresponding augmented Lagrangian
function can be written as follows:

Lρ(Θ, T ) =‖ H⊥ ◦ (X − Fold(UV T )−R) ‖2F

+ ‖ H ◦ (X − F −R) ‖2F +λ ‖ F ‖TV

+ α ‖ H ‖3DTV +β ‖ H ‖1 +b
K
∑

k=1

nk
∑

s=1

‖ Mks ‖1

+
ρ

2
‖

K
∑

k=1

nk
∑

s=1

Dks ⊗Mks −R+ T ‖2F , (7)
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where T and ρ are the Lagrange variable and penalty pa-

rameter, respectively.
Updating H: The subproblem with respect to H is

min
H

‖H⊥◦ (X−Fold(UV T )−R)‖2F + ‖ H ◦ (X − F −R) ‖2F

+ α ‖ H ‖3DTV +β ‖ H ‖1 . (8)

This is a standard energy minimization problem of MRF,

which can be readily solved by graph cut optimization al-

gorithm [3][23].
Updating F: The subproblem with respect to F is

min
F

‖ H ◦ (X − F −R) ‖2F +λ ‖ F ‖TV , (9)

which can be easily solved by the TV regularization algo-

rithm [35][40].

Updating U, V : The components of Eq.(7) related to U

and V can be rewritten as a matrix form:

min
U,V

‖ H⊥ ◦ (X − UV T −R) ‖2F , (10)

where X and R denote the unfolding matrix forms of X and

R, respectively. Each column of X = [x1, · · · , xn] ∈ Rd×n

represents the corresponding frame. The subproblem E-

q.(10) is exactly equivalent to the weighted L2 LRMF prob-

lem and can use any off-the-shelf algorithms to update U

and V , such as the Alternated Least Squares (ALS) [9],

WLRA [33] and DN [4]. We adopted the WLRA method

in experments due to its simplicity of implementation and

good performance.
Updating M: Fixing R and the filters D, we solve the

following subproblem to obtain M:

min
Mks

!
1

2
‖

K
∑

k=1

nk
∑

s=1

Dks⊗Mks−R+T ‖2
F+

b

ρ

K
∑

k=1

nk
∑

s=1

‖ Mks ‖1.

(11)

It is a standard CSC problem and can be readily solved by

[39]. The algorithm adopts the ADMM scheme and exploits

the FFT to improve computation efficiency.
Updating D: The subproblem with respect to D is:

min
Dks

1

2
‖

K
∑

k=1

nk
∑

s=1

Dks ⊗Mks −R+ T ‖2F, s.t. ‖ Dks ‖2F≤ 1.

(12)

To update the filters dictionary, let the linear operator Mks

satisfy Mksdks = Dks ⊗ Mks, where dks = vec(Dks). The

objective function can be rewritten as follows:

min
d

1

2
‖ Md− r + t ‖2, (13)

where M = [M11, · · · ,M1n1
, · · · ,MK1, · · · ,MKnK

], d =

[dT
11, · · · , d

T
1n1

, · · · , dT
K1, · · · , d

T
KnK

]T , r−t = vec(R−T ) are

the block matrices/vectors. We utilize a proximal gradient

descent method to solve Eq.(13):
{

dt+0.5 = dt − τMT (Md− r + t)

dt+1 = Prox‖·‖≤1(d
t+0.5).

(14)

In (14), τ is the step length of the gradient descent step,

and Prox‖·‖≤1(∗) is the L2-ball proximal operator, which

makes each filter satisfy the constraint ‖ Dkt ‖
2
F≤ 1.

Updating R: The subproblem with respect to R is

min
R

‖ H⊥ ◦ (X−Fold(UV T )−R) ‖2F +‖ H ◦ (X−F−R) ‖2F

+
ρ

2
‖

K
∑

k=1

nk
∑

t=1

Dkt ⊗Mkt −R+ T ‖2F . (15)

The closed-form solution is

Rijn=

{

{ρQijn + 2(X − F)ijn}/(ρ+ 2), ∀ijn ∈ Ω;

{ρQijn+2(X−Fold(UV T ))ijn}/(ρ+2), ∀ijn ∈ Ω⊥;

(16)

where we set Q =
∑

k,s

Dks⊗Mks+T for simple expression, and

Ω = {(i, j, n)|Hijn = 1} represents all background pixels.

Updating T : Under the general ADMM settings, T can be

updated as follows:

T t+1 = T t +
∑

k,s

Dks ⊗Mks −R. (17)

Algorithm 1 MS-CSC Model

Input: video X ∈ R
h×w×n, subspace rank: r, different

scales of filters: p = [p1, · · · , pK ].
Initialization: Initialize U, V,D; support H = 0.

1: while not converge do

2: Update H,F by Eq.(8), (9), respectively.

3: Update U, V by Eq.(10).

4: Update M,D by Eq.(11), (14), respectively.

5: Update R, T by Eq.(16), (17), respectively.

6: end while

7: Obtain background B = Fold(UTV ).
Output: derained video = H⊥ ◦ B +H ◦ F .

4. Experimental results

To evaluate the performance of the proposed algorithm, syn-

thetic and real videos with various rain conditions are employed,

including the wind direction, moving objects, etc. In our experi-

ments, we utilize six videos including three ones captured by re-

al world monitoring system and three synthetic ones. We set the

number and the size of filters in our method as 3 and 13, 9, 5 in

the videos with relatively light rain (Fig. 5 and 7), respectively.

For the rest of videos with heavy rain, we set the number and the

size of filters as 4 and 13, 9, 5, 5, respectively. More compre-

hensive performance comparisons for all competing methods are

provided as demo videos in supplementary material.1 All exper-

iments were implemented on a PC with i7/CPU, 32G/RAM and

MATLAB 2017 compiler. 2.

1The results of our method as well as the comparative methods on the

entire videos are provided in the supplementary material.
2The code of our method is released in the website:

http://gr.xjtu.edu.cn/web/dymeng/2
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(a) Input/Groundtruth (b) Garg et al. [14] (c) Kim et al. [22] (d) Jiang et al. [20] (e) Ren et al. [30] (f) Wei et al. [38] (g) Ours

(h) Whole rain layer (i) Rain layer 1 (j) Rain layer 2 (k) Rain layer 31 (l) Rain layer 32

Figure 3. The first two rows: rain removal results and corresponding rain layers extracted by different methods on a video with usual rain.

The bottom row: multiscale filters and corresponding rain structures extracted form the MS-CSC method.

(a) Input/Groundtruth (b) Garg et al. [14] (c) Kim et al. [34] (d) Jiang et al. [22] (e) Ren et al. [30] (f) Wei et al. [38] (g) Ours

Figure 4. Rain streak removal performance of different methods on a rainy video with heavy rain.

Table 1. Performance comparison of all competing methods on synthetic rain videos in items of PSNR, VIF, FSIM, UQI and SSIM.

Dataset Fig. 3 Fig. 4 Fig. 5

Metrics PSNR VIF FSIM UQI SSIM PSNR VIF FSIM UQI SSIM PSNR VIF FSIM UQI SSIM

Input 28.22 0.637 0.935 0.9938 0.927 23.82 0.766 0.970 0.9404 0.929 36.03 0.910 0.979 0.9986 0.974

Garg [14] 29.83 0.661 0.955 0.9957 0.946 24.15 0.611 0.960 0.9482 0.911 30.78 0.672 0.974 0.9912 0.955

Kim [22] 30.44 0.602 0.958 0.9971 0.952 22.39 0.526 0.932 0.9462 0.886 32.01 0.650 0.970 0.9961 0.955

Jiang[20] 31.93 0.745 0.971 0.9977 0.974 24.32 0.713 0.966 0.9523 0.938 37.61 0.876 0.991 0.9995 0.992

Ren [30] 28.26 0.685 0.970 0.9932 0.962 23.52 0.681 0.966 0.9408 0.927 30.17 0.640 0.961 0.9986 0.938

Wei [38] 29.76 0.830 0.992 0.9943 0.988 24.47 0.779 0.980 0.9454 0.951 37.36 0.805 0.988 0.9999 0.982

Ours 33.89 0.865 0.992 0.9980 0.992 25.37 0.790 0.980 0.9530 0.957 42.92 0.943 0.996 0.9999 0.994

4.1. Synthetic rain streak removal experiments

In this section, we show experiments on videos added with var-

ious types of synthetic rain streaks. Three videos from CDNET

database [16]3 largely vary in moving objects and background

scenes. We add different types of rain streaks taken by photog-

raphers under black background on these videos, varing from tiny

drizzling to heavy rain storm and vertical rain to slash line. S-

ince the ground truth videos without rain are available, we can

compare all competing methods both in quantity and in visualiza-

tion. To validate the accuracy of the proposed method, we compare

our method with representative state-of-the-art methods, including

Garg et al. [14]4, Kim et al. [22]5, Jiang et al. [20]6, Ren et al.

3http://www.changedetection.net
4http://www.cs.columbia.edu/CAVE/projects/camera rain/
5http://mcl.korea.ac.kr/deraining/
6the authors has directly provided us the code

[30]7, and Wei et al. [38]8.

Fig. 3 illustrates the performance of all compared methods on

videos with usual rain. The rain removal results displayed in the

first row indicate that Garg et al.’s, Kim et al.’s, and Jiang et al.’s

methods do not work well in rain streak detection, and Ren et al.’s

method improperly removes moving objects as rain streaks. The

middle row shows that all compared methods mix different degrees

of background information into rain layer. In comparison, the pro-

posed MS-CSC method can not only more comprehensively re-

move rain streaks in the video, but also best keep the shape and

texture details. An interesting observation is that the multiscale

rain structures extracted by the proposed MS-CSC method fine-

ly accords with human visual system, including long rain blocks

7http://vision.sia.cn/our%20team/RenWeihong-homepage/vision-

renweihong%28English%29.html
8http://gr.xjtu.edu.cn/web/dymeng/2
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(a) Input/Groundtruth (b) Garg et al. [14] (c) Kim et al. [22] (d) Jiang et al. [20] (e) Ren et al. [30] (f) Wei et al. [38] (g) Ours

Figure 5. Rain removal results and corresponding rain layers extracted by different methods on a video with light rain.

(a) Input (b) Garg et al. [14] (c) Kimet al. [22] (d) Jiang et al. [20] (e) Ren et al. [30] (f) Wei et al. [38] (g) Ours

(l) Whole rain layer (h) Rain layer 1 (i) Rain layer 2 (j) Rain layer 31 (k) Rain layer 32

Figure 6. The first two rows: rain removal results and corresponding rain layer extracted by different methods on a video with heavy rain.

The bottom row: multiscale filters and corresponding diverse rain structures learned form our method.

(rain layer 1), medium thin rain lines (rain layer 2), light rain lines

(rain layer 31), and scattered small light rain grains (rain layer 32),

shown in the bottom row of the figure. Further more, multiscale fil-

ters and corresponding rain layers evidently verify the discovered

two intrinsic characteristics possessed by rain streaks: multiscale

structures and repetitive local patterns sparsely scattered over dif-

ferent positions of the video.
Fig. 4 shows a video with heavy rain. The rain removal results

of Garg et al.’s, Kim et al.’s, and Jiang et al.’s methods indicate

that heavy rain reduces their capability of rain detection. Besides,

Ren et al.’s method fails to perfectly deal with the moving objet-

s, which inclines to degrade the performance of subsequent video

processing. Wei et al.’s method can work well on this video, but it

tends to view rain streaks as aggregation of noises rather than nat-

ural streamline. Comparatively, the proposed method still attains

promising visual effect in both rain removal and detail preserva-

tion from the video with heavy rain.

Fig. 5 shows a light rain scene with a man passing by the

surveillance camera. Similar to above experiments, all competing

methods fails to remove relatively light rain lines or destroy the

edge information of moving objects, while the proposed MS-CSC

method still clearly removes all rain streaks on the video without

extra information left behind in the separated rain layer.

Quantitative comparisons are listed in Table 1. Here we use

five image quality assessment (IQA) metrics, PSNR, VIF [32], F-

SIM [47], UQI [36] and SSIM [37] to verify the performance of

synthetic videos. From the table, it is seen that our method attains

evidently better results in terms of all those measures in all cas-

es. Since these measures mainly focus on image structure and are

more consistent with humans visual perception, the superiority of

the proposed method can thus be substantiated.

4.2. Rain streak removal experiments on real videos

In this section, we show the results of proposed MS-CSC

method on real world rain scenarios.

Fig. 6 shows the results of different methods on the real world

video with heavy rains. The results displayed in the first two rows

show that all compared methods still contain a few rain streaks in

the results and involve edges information from background in the

extracted rain layer. By contrast, our method still clearly removes

all rain streaks on the video without extra information left behind

in the rain layer.

In Fig. 7, we present the rain removal results on the video

with complex moving objects, consisting of walking pedestrian

and moving vehicles. The results of Zhang [48] are obtained by

code written by ourself. The proposed MS-CSC method work-

s consistently well in this relative complex task. Comparatively,
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(a) Input (b) Garg et al. [14] (c) Zhang et al. [48] (d) Kim et al. [22]

(e) Jiang et al. [20] (f) Ren et al. [30] (g) Wei et al. [38] (h) Ours

Figure 7. Rain streak removal performance of different methods on a real rainy video with complex moving objects.

(a) Input (b) Garg [14] (c) Zhang [48] (d) Kim [22]

(e) Jiang [20] (f) Ren et al. [30] (g) Wei et al. [38] (h) Ours

Figure 8. Rain streak removal performance of different methods on a real video captured by surveillance equipments at night.

most other competing methods either miss detecting a few rain

streaks. Fig. 8 further presents the rain removal results on a real

world video captured by surveillance equipments at night, where

code of Zhang et al. [48] is written by ourself. Similar to above

experiments, the proposed MS-CSC method is still capable of at-

taining superior performance on the challenging video. More sup-

plementary experiments are showed in here9.

We list the running times of all competing methods in table 2,

which shows that our method is slower than two methods while

faster than other competing ones. Considering the evident superi-

ority of the proposed MS-CSC method both in quantity and visu-

alization, it should be rational to say that it is relatively efficient.

Table 2. Processing time comparison of all competing methods

on three videos, respectively with 150, 100,120 frames.

Dataset Fig. 3 Fig. 6 fig. 7

Frame Size 210×310 288×368 240×360

Garg [14] 1.9 6.7 2.3

Kim [22] 2020.1 2740.8 1929.1

Jiang [20] 43.4 64.9 53.5

Ren [30] 526.9 540.5 798.8

Wei [38] 441.4 622.3 755.4

Ours 297.4 337.6 222.6

9https://sites.google.com/view/cvpr-anonymity

5. Conclusion

In this paper, we extracted two intrinsic characteristics of rain

streaks, repetitive local patterns sparsely scattered over differen-

t positions of the video and multiscale structures, and formulated

these two intrinsic characteristics as multiscale convolutional s-

parse coding. The MS-CSC model can usually decomposes the

rain layer into different levels of rain streaks with physical mean-

ings, like long rain blocks, thin rain lines, scattered light rain grain-

s, and small rain blocks. Together with the priors imposed on mov-

ing objects and background scene, the proposed MS-CSC model

shows surprisingly good performance on synthetic and real videos

with various types of rains. The experiments on real and synthetic

video sequences demonstrate that our method performs better than

other state-of-the-art methods. For future work, we will attempt

to combine online strategies to further improve its efficiency and

meet the requirement of real-time rain removal task.
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