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Abstract

In this paper, we consider the problem of grouping a

collection of unconstrained face images in which the num-

ber of subjects is not known. We propose an unsupervised

clustering algorithm called Deep Density Clustering (DDC)

which is based on measuring density affinities between local

neighborhoods in the feature space. By learning the min-

imal covering sphere for each neighborhood, information

about the underlying structure is encapsulated. The encap-

sulation is also capable of locating high-density region of

the neighborhood, which aids in measuring the neighbor-

hood similarity. We theoretically show that the encapsula-

tion asymptotically converges to a Parzen window density

estimator. Our experiments show that DDC is a superior

candidate for clustering unconstrained faces when the num-

ber of subjects is unknown. Unlike conventional linkage and

density-based methods that are sensitive to the selection op-

erating points, DDC attains more consistent and improved

performance. Furthermore, the density-aware property re-

duces the difficulty in finding appropriate operating points.

1. Introduction

Given a collection of unseen face images, humans have

the capability of grouping and summarizing how many dis-

tinct subjects are present by exploiting previously learned

knowledge about essential components of a face and possi-

ble variations of faces from the same person. In computer

vision research, this corresponds to the task of grouping vi-

sual data into clusters with targeted semantics. Most exist-

ing unsupervised algorithms group data into visually simi-

lar clusters, unaware of the underlying semantics. The suc-

cess in clustering handwritten digits or faces appearing in

consecutive video frames is mainly based on the fact that

images that belong to the same category are visually sim-

ilar. For visual data that have extreme intra-class varia-

tions, these methods may not be applicable. In this work,

we focus on clustering unconstrained face images without

prior knowledge of the number of distinct subjects. Vi-
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Figure 1: We introduce Deep Density Clustering (DDC) for

unconstrained face images. DDC is a density-based clus-

tering algorithm, which exploits the local structure of deep

features for improved similarity measure.

sual variations caused by nuisance factors such as pose, il-

lumination and expressions may be larger than variations

between subjects. To our knowledge, few previous works

have addressed this challenging problem. Recent works on

face clustering first extract feature vectors using deep neu-

ral networks (DNNs), and then group data directly in the

feature space. Face clustering based on deep features gen-

erally has advantages over other unsupervised methods due

to side information present in the training data. However,

since clustering algorithms generally deal with unseen data,

these methods will suffer from the shift in data distribution

across different domains. Therefore, the underlying struc-

ture should be considered to prevent performance degrada-

tion.

To tackle the challenges discussed above, we propose

a clustering framework, named Deep Density Clustering

(DDC) that exploits the neighborhood structure of deep

representations. DDC consists of three main steps: ex-

tracting deep features, computing density-based similarity,

and merging clusters. The novelty is mainly in the sec-

ond step: DDC first associates each data point with an ǫ-
neighborhood. Points inside the neighborhood are then rep-

resented by a minimal covering sphere which encapsulates

local information. Finally, DDC computes pairwise similar-

ity by evaluating data points on the functionals defined by
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the spheres.

To summarize, we make the following contributions:

• A new approach for characterizing a collection of data

points that encapsulates sufficient structural informa-

tion in the deep feature space.

• A new method, DDC algorithm, for clustering uncon-

strained face images without prior knowledge of the

number of subjects. We argue that information about

local structures should be included in the linkage cri-

terion, and propose a novel similarity measure based

on local density levels. We theoretically show that the

similarity measure is asymptotically a Parzen window

density estimator.

The remainder of this paper is organized as follows: We

first discuss the related works in unsupervised deep cluster-

ing, unconstrained face clustering, and deep representation.

Then we introduce the proposed face clustering algorithm.

Finally, we detail our experiments and discuss the impact of

the proposed method.

2. Related Works

In this section, we briefly introduce recent advances in

unsupervised clustering and unconstrained face clustering

using deep representations.

2.1. General Clustering Algorithms

Conventional clustering algorithms typically rely on the

absolute distance defined in the embedded space. Sev-

eral recent clustering algorithms, however, have shown that

in addition to point-to-point topology, high-level structure

could be incorporated for improved clustering performance.

For example, sparse subspace clustering (SSC) [3] exploits

the underlying linear subspace structure within data. Sev-

eral different extensions of the SSC algorithm [19, 18, 35,

20] have yielded impressive results on MNIST [13] and Ex-

tended Yale B [6] datasets. However, the SSC algorithm

relies on the assumption that the given dataset can be well-

approximated by a union of low-dimensional subspaces,

which may not be true for unconstrained face images.

2.2. Deep Unsupervised Clustering Algorithms

Recently, deep neural networks (DNNs) are extensively

used to learn representation and clusters. In [33], a recurrent

framework that successively updates representations and

clusters is proposed. Although good results are achieved,

it requires tuning a large number of hyperparameters and

repeated training of deep networks. In [31, 32, 7] encoder-

decoder structures are used to learn low-dimensional em-

beddings and cluster assignments. Xie et al. [31] proposed

to first learn deep representations using a stacked autoen-

coder. Cluster assignments are then iteratively refined by

minimizing the KL divergence between the soft assign-

ments and the target distribution. Yang et al. introduce a

joint dimensionality reduction and clustering approach that

learns a clustering-friendly latent representations. Dizaji et

al. [7] proposed an end-to-end clustering framework, named

DEPICT. They derived a regularized relative entropy loss

function to encourage balanced clusters. In addition, the

joint framework avoids layer-wise training and is computa-

tionally more efficient. Ji et al. [11] proposed the deep sub-

space clustering network which uses a novel self-expressive

layer to mimic the self-expressiveness property. One major

drawback of this method is that the number of parameters

for the self-expressive layer scales quadratically with the

number of images.

While successful in some applications, these methods

generally require exact knowledge of the number of cate-

gories [33, 31, 32, 7, 11], layer-wise pretraining [31, 32,

11], and tuning network structures [33, 31, 32, 11]. Fur-

thermore, it is not clear whether clustering based on the

encoder-decoder structure could be scaled to datasets with a

large number of categories. In fact, the evaluations of these

approaches are limited to number of clusters that are less

than a hundred. The proposed DDC algorithm, on the other

hand, does not require the number of categories as a prior,

and is also evaluated on challenging unconstrained datasets

that have more than one thousand categories.

2.3. Unconstrained Face Clustering

Otto et al. [17] developed an efficient algorithm called

the approximated rank-order clustering that measures pair-

wise similarity based on the number of shared nearest

neighbors. The approach of capturing the high-level struc-

ture is efficient when most of the identities have only a few

instances. However, when the dataset contains more large

clusters, the loss of original point-to-point topology would

adversely affect the performance. Lin et al. [14] proposed

the proximity-aware hierarchical clustering (PAHC) which

exploits neighborhood similarity based on linear SVMs that

separates local positive instances and negative instances.

While improved results are achieved on unconstrained face

datasets, it was applied to group faces with balanced cluster

size. Unlike PAHC, the proposed method can be applied to

face images with large variations in cluster sizes. Shi et al.

[25] proposed the ConPaC algorithm in which the clustering

problem is formulated as a conditional random field model.

By maximizing the posterior probability of the adjacency

matrix, improved performance is achieved on the recently

released IJB-B dataset. However, their approach does not

scale well in speed. The proposed DDC algorithms, on the

other hand, could run significantly faster than the ConPaC

algorithm. Jin et al. [12] proposed the Erdős-Rényi clus-

tering algorithm for joint face detection and clustering in

videos. The algorithm is based on the rank-1 count simi-
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larity which requires a reference set. In their work, a col-

lection of frames are sampled as the reference set that are

likely to have similar distribution to the target distribution.

However, collecting such reference set for general face clus-

tering is not an easy task. Unlike the Erdős-Rényi clustering

algorithm, our approach does not require a domain-specific

reference set.

2.4. Deep Face Representations

Deep convolutional neural networks (DCNNs) have been

widely used for face classification [26, 24, 15]. A DCNN

trained on labeled face images is able to separate faces from

distinct identities in the embedded feature space. In this

work, we use deep face representations for unseen face im-

ages to retain sufficient amount of semantic information for

distinguishing different identities.

3. Proposed Method

For an unlabeled dataset X = [x1, · · · ,xN ] ∈ R
D×N ,

the goal of unsupervised clustering algorithm is to find

proper cluster assignment for each data point, such that

data of the same state-of-the-nature identity are grouped to-

gether. In this work, we consider X as a collection of un-

constrained face images with unknown number of subjects.

We adopt the basic average-linkage clustering approach, in

which pairs of face images are grouped according to (1) the

distance measure in the embedded space and (2) the av-

erage linkage criterion that measures the dissimilarity be-

tween two groups of face images.

For unconstrained face images, within-subject variations

could be larger than between-subject variations. To capture

sufficient amount of semantic information for distinguish-

ing different subjects, face images are first projected into

the embedded space using a DNN Ψθ : RD → R
d. Re-

cent works [15] on deep representations have shown that for

DNNs trained with softmax loss, label prediction is mainly

determined by angular similarities to each class. Therefore,

we consider cosine distance as the distance measure in the

feature space. Without loss of generality, Ψθ : RD → S
d−1

is used to represent a DNN, where S
d−1 is a unit hyper-

sphere.

3.1. Key Observations

In this section, we first show that point-to-point distance

measurement might be insufficient, and then describe the

motivation for the proposed method.

In Figure 2, the average linkage between two groups of

points Ci and Cj determines whether they should be merged

together. By definition, if the distance measure is d, the

average linkage is calculated by

d(Ci, Cj) =
1

|Ci||Cj |

∑

u∈Ci,v∈Cj

d(u,v). (1)

Ci Cj

 

C’i Cj

 

 
 

Figure 2: Linkage computation for two groups of data

points on a circle. It is clear that after averaging, ū and

v̄ fail to represent whether the original group of points are

sparsely or densely distributed.

For data points that lie on a unit hypersphere Sd−1, (1)

equals to 1−ūT v̄, which is equivalent to the cosine distance

between arithmetic averages ū and v̄. Note that local infor-

mation about Ci is not retained in ū and v̄. One can find

another sparsely distributed C ′
i with the same ū. However,

merging C ′
i and Cj is less desirable since the cluster C ′

i∪Cj

is less homogeneous than Ci ∪ Cj . We argue that neigh-

borhood information should be aggregated during linkage

computation in order to differentiate merging Ci or C ′
i with

Cj . Specifically, when measuring the distance between

two points, their neighboring points should also be consid-

ered. Following this observation, we propose a new sim-

ilarity measure based on the following steps: (1) building

a nearest-neighbor graph for the entire dataset, which will

be described in Section 3.2, (2) representing each neigh-

borhood in a compact form, which will be discussed in

Section 3.3, and (3) computing a density-based similarity,

which will be described in Section 3.4. We name the pro-

posed method Deep Density Clustering since the similarity

measure is asymptotically a Parzen window density estima-

tor as will be proved in Section 3.4.

3.2. Nearest­Neighbor Graph Construction

We can view a set of data points as a union of local

neighborhoods. Namely, we can write X =
⋃N

m=1 V (xm),
where V (xm) consists of neighboring points of xm mea-

sured in the feature space. Common approaches to con-

structing local neighborhoods include k-nearest neighbors

and ǫ-neighborhood. We construct V (xm) based on the ǫ-
neighborhood approach since it is more robust to density

variations, and as N → ∞, |V (x)| → ∞ holds, which

achieves the asymptotic property that will be discussed in

subsequent sections. However, proper selection of ǫ is not

trivial and usually depends on the representation. In this

work, we propose to select ǫ as the maximum likelihood

(ML) estimator of the cosine distance between matched

pairs (image pairs belong to the same subjects). Formally,

ǫ = argmax
d

Ec[p(d |c)], (2)
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Figure 3: Neighborhood encapsulation. (left) Pink regions

are the local neighborhoods of the points xi, xj , and xk in

feature space. (right) Encapsulations are learned by solv-

ing (3). The encapsulation is density-aware. In the figure,

regions closer to the centers of the spheres have higher den-

sity.

where c is the subject label. The matched pairs can be sam-

pled from the training data or an external dataset. Details

about the selection of ǫ will be presented in Section 4.1.

3.3. Local Neighborhood Encapsulation

A trivial way of characterizing points in a neighborhood

is to store all the points, however, this representation will

not be useful. We propose to encapsulate each local neigh-

borhood in a hypersphere which retains information about

local structure. This is inspired by the SVDD algorithm [28]

that describes a collection of data by finding a sphere that

covers all the target data while including no superfluous

space. Instead of the entire dataset, we apply SVDD to all

the local neighborhoods. For each V (xm), we solve for its

encapsulation using the following optimization:

min
cm, R̄m, ξm

R̄m +
1

ν · nV

∑

z∈V (xm)

ξm(z)

s.t. ‖Ψθ(z)− cm‖
2
≤ R̄m + ξm(z),

ξm ≥ 0, ∀z ∈ V (xm),

(3)

where R̄m = R2
m is the squared radius and nV is the size of

V (xm). Note that in (3), instead of minimizing over Rm,

we aim to solve for optimal R̄∗
m since the original formu-

lation in [28] is not convex. Readers are referred to [2]

for more details. After solving (3) for m = 1, · · · , N ,

the resulting collection of spheres {(c∗m, R∗
m)}Nm=1 mini-

mally covers each local neighborhood as demonstrated in

Figure 3. In what follows, when there is no confusion pos-

sible, we will drop the subscript m in (3) for more compact

notations.

3.3.1 Relation to One-Class SVM

One-class SVM (OC-SVM) was first proposed in [23] to

build a representational model for a given dataset. Suppose

we choose the set as V (x), then OC-SVM aims to solve the

following optimization problem:

min
w, ρ, ξ

1

2
‖w‖

2
+

1

ν · nV

∑

z∈V (x)

ξz − ρ

s.t. wTΨθ(z) ≥ ρ− ξz,

ξz ≥ 0, ∀z ∈ V (x).

(4)

The optimal hyperplane separates the data with the origin in

feature space and maximizes the distance from the hyper-

plane to the origin. We present the following Lemma show-

ing equivalence between the formulations in (3) and (4).

The proof for the lemma is provided in the supplementary

material.

Lemma 1. If 1/nV < ν ≤ 1, the SVDD formulation in (3)

is equivalent to the OC-SVM formulation in (4) when the

evaluation functions for the two are given by

hSVDD(x) = R̄∗ − ‖Ψθ(x)− c∗‖
2
, (5)

hOC-SVM(x) = w∗TΨθ(x)− ρ∗, (6)

with the correspondence w∗ = c∗, and ρ∗ = c∗TΨθ(xs),
where xs is a support vector in (3) that lies on the learned

enclosing sphere.

Intuitively, the evaluation functions (5) and (6) measures the

closeness to the neighborhood V (x).

3.4. Density­based Similarity Measure

Our goal is to associate each pair of points with a simi-

larity measure. We first use the following theorem to show

the evaluation function defined in (5) is a local density esti-

mator. The detailed proof is provided in the supplementary

material.

Theorem 1. If 1/nV < ν ≤ 1 and c∗TΨθ(xs) 6= 0 for

some support vector xs, hSVDD(x) defined in (5) is asymp-

totically a Parzen window density estimator in the feature

space with Epanechnikov kernel.

Proof. Given the condition, according to Lemma 1,

hSVDD(x) is equivalent to hOC-SVM(x) with ρ∗ 6= 0. From

the results in [21] and the fact that
∑

αi = 1 in the dual

formulations of (3) and (4), it can be shown that

hOC-SVM(x) =
8

3

nV
∑

i=1

αiKE

(

‖Ψθ(x)−Ψθ(xi)‖

2

)

− ρ∗ − 1,

where KE(u) = 3
4 (1 − u2), |u| ≤ 1 is the Epanechnikov

kernel. As a consequence of Proposition 4 in [21] and the

proof of Proposition 1 in [22], when nV → ∞, the fraction

of support vector is ν, and the fraction of points with 0 <
αi < 1/(ν · nV ) vanishes. Therefore, either αi = 0 or
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αi = 1/(ν ·nV ). By introducing the notation S̄ = {i | αi =
1/(ν · nV )}, it can be shown that

hOC-SVM(x) =
2d+3

3
f̂ (Ψθ(x))− ρ∗ − 1, (7)

where f̂(z) = 1
ν·nV ·2d

∑

s∈S̄ KE

(

‖zs−z‖
2

)

is a density es-

timator. As a result, hSVDD(x) is equivalent to a Parzen win-

dow density estimator with Epanechnikov kernel of band-

width 2. By scaling properly, Parzen window estimator with

different bandwidths can be obtained.

According to Theorem 1, we associate each neighbor-

hood V (xm) with a density estimator Em : RD → R:

Em(x) = R̄∗
m − ‖Ψθ(x)− c∗m‖

2
. (8)

Data points that yield smaller Em lie in low-density region

of V (xm) and are therefore less similar to the neighborhood

V (xm). This leads to a similarity measure between xi and

xj , which is defined as:

s(xi,xj) =
1

2

[
∑

z∈V (xj)
Ei(z)

|V (xj)|
+

∑

z∈V (xi)
Ej(z)

|V (xi)|

]

.

(9)

The distance between pairs of data samples can be taken as

a proper monotonically decreasing function of s(xi,xj).

3.5. Negative Set Mining

In [27], the authors proposed that when negative sam-

ples are available for SVDD, they can be incorporated to

improve the description. Specifically, the enclosing sphere

is refined by modifying the constraints in the following way:

‖Ψθ(z)− c‖
2
≤ R̄+ ξ, ∀z ∈ V (x), (10)

‖Ψθ(z)− c‖
2
≥ R̄− ξ, ∀z ∈ V −(x), (11)

where V −(x) ⊂ X contains instances which are hard neg-

atives of x. However, since no label information about x

is available, the general notion of negative samples is not

well-defined. Instead, we view the selection of hard neg-

ative samples as finding a balance between the amount of

false positives and the false negatives in binary hypothe-

sis testing formulation. Specifically, points in V −(x) are

sampled from {x′ : d(x′,x) > η}, where η is chosen to

minimize the misclassification rate. In other words, we as-

sign the same risk function to the action of selecting false

positives and false negatives. Details about the selection of

η will be presented in Section 4.1.

To incorporate the negative samples, we make the fol-

lowing observations. From the equivalence of (3) and (4),

when no negative samples are available, encapsulations are

learned by separating the data points against the origin with

(a) YTF

(b) LFW

(c) IJB-B

Figure 4: Sample images for the datasets.

a margin ρ. Note that the −ρ in (4) encourages large sepa-

ration with the origin. In the presence of negative samples,

−ρ is no longer required, and the hyperplane in (4) should

target at separating positive and negative samples. We pro-

pose to learn the set of enclosing spheres such that positive

and negative examples are separated by a margin ∆. There-

fore, by the equivalence of (5) and (6) and the arguments

given above, we formulate the algorithm with negative set

mining as:

min
w, ρ, ξ

1

2
‖w‖

2
+ C

∑

ξz

s.t. wTΨθ(z)− ρ ≥ ∆− ξz, ∀z ∈ V (x),

wTΨθ(z)− ρ ≤ −∆+ ξz,∀z ∈ V −(x),

ξz ≥ 0, ∀z.

(12)

Note that ∆ is not a hyperparameter since we can divide

both sides of the constraints by ∆ and obtain a large margin

formulation with L1 normalization.

4. Evaluation and Discussion

In this section, we evaluate the proposed clustering ap-

proach on YouTube Faces Database (YTF), Labeled Faces

in the Wild (LFW) and IARPA JANUS Benchmark B (IJB-

B) datasets. The datasets are briefly described as follows:

• YouTube Faces Database (YTF) [30]: The dataset

contains 3,425 videos of 1,595 different people. We

choose the first 41 subjects from the YTF dataset as

in [33, 7].

• Labeled Faces in the Wild (LFW) [10]: It is a well-

known and standard dataset for unconstrained face

recognition which contains 13,233 images of 5749

subjects. Note that 4169 subjects of the dataset have

only one image. We evaluate the proposed approach

using the entire dataset.
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• IARPA JANUS Benchmark B (IJB-B) [29]: The

IJB-B dataset contains 1,845 subjects with 11,754 im-

ages, 55026 video frames and 10,044 nonface images.

It contains a clustering protocol, which consists of

seven subtasks. These subtasks differ in the number

of distinct identities and the number of face images.

Many face images are in extreme poses or of low qual-

ity, making the dataset more challenging than YTF and

LFW. We evaluate clustering algorithms on four sub-

tasks with number of identities 128, 256, 1024 and

1845. The results for the remaining three subtasks are

presented in the supplementary materials.

Dataset # Samples # Subjects

YTF 10,000 41

LFW 13,233 5,749

IJB-B-128 5,224 128

IJB-B-256 9,867 256

IJB-B-1024 36,575 1,024

IJB-B-1845 68,195 1,845

Table 1: Datasets used in the experiments.

4.1. Implementation Details

Deep Face Representation. We adopt the network

architecture presented in [36]. The network is first trained

on the CASIA-WebFace dataset [34] using SGD for 750K

iterations with a standard batch size 128 and momentum

0.9. Then, the model is finetuned for 230K iterations using

the MSCeleb-1M dataset [9]. The inputs to the networks

are 100×100×3 RGB images. Data augmentation is

performed by randomly cropping and horizontally flipping

face images. Given a face image, the deep representation

is extracted from the pool5 layer with dimension 320.

The training and preprocessing details are provided in the

supplementary materials.

Parameter Selection. There are two main hyperparam-

eters in the proposed approach: ǫ for constructing neigh-

borhoods and η for mining hard negatives. To select ǫ,
we follow (2) by randomly sampling 100 subjects from the

training dataset and computing cosine distance between all

matched pairs. The red curve in Figure 5 represents the fit-

ted distribution. The ML estimate is therefore ǫ ≈ 0.23.

The green curve in Figure 5 represents the distribution of

the cosine distance between mismatched pairs among the

100 subjects. From Figure 5, it is clear that η ≈ 0.40 mini-

mizes the Bayesian risk of selecting false positives and false

negatives.

We use the default parameters provided with the code 1

1https://www.csie.ntu.edu.tw/˜cjlin/

libsvmtools/

when solving (3) or (12).

Cosine Distance
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Figure 5: Distribution of cosine distance from the training

dataset.

4.2. Evaluation Metrics

To evaluate clustering algorithms, we adopt two mea-

sures: normalized mutual information (NMI) and BCubed

F-measure [1].

NMI is a widely used metric that measures the normal-

ized similarity between the ground truth labels and the la-

bels decided by the clustering algorithms. NMI is suitable

for evaluation when the number of clusters is assumed to be

a known quantity. However, when the number of clusters is

unknown or is the quantity we are trying to estimate, NMI

may fail to penalize algorithms that yield over-clusterings.

We use NMI mainly for comparing with other state-of-the-

art unsupervised image clustering methods.

BCubed F-measure [1] is the harmonic mean of BCubed

precision and BCubed recall. BCubed precision calculates

the fraction of points in the same cluster that belong to the

same class. BCubed recall calculates the fraction of points

in the same class that are assigned to the same cluster. For-

mally, for an item e, C(e) and L(e) are used to denote its

cluster and ground truth label, respectively. For a pair of

items e and e′, the relation Correct(e, e′) is defined as:

Correct(e, e′) =

{

1, if C(e) = C(e′) and L(e) = L(e′),

0, otherwise.

(13)

The BCubed Precision, BCubed Recall, and BCubed F-

measure are defined as:

Precision = Avge[Avge′:C(e′)=C(e)[Correct(e, e′)]], (14)

Recall = Avge[Avge′:L(e′)=L(e)[Correct(e, e′)]]. (15)

F-measure =
2× Precision × Recall

Precision + Recall
. (16)

BCubed Precision and Recall can be used to evaluate clus-

tering algorithms that yield different number of clusters.
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Methods DDC-NEG DDC PAHC DBSCAN AHC

YTF

0.70 1.000 1.000 0.168 1.000 1.000

0.75 1.000 1.000 0.144 1.000 1.000

0.80 0.999 1.000 0.120 1.000 0.999

0.85 0.958 0.966 0.098 0.990 0.948

LFW

0.70 0.994 0.992 0.976 1.000 1.000

0.75 0.991 0.991 0.956 0.995 1.000

0.80 0.991 0.991 0.919 0.936 0.994

0.85 0.990 0.990 0.822 0.664 0.990

IJB-B-128

0.70 0.966 0.960 0.431 0.842 0.947

0.75 0.913 0.857 0.253 0.705 0.913

0.80 0.786 0.504 0.172 0.461 0.679

0.85 0.411 0.225 0.156 0.275 0.253

IJB-B-256

0.70 0.937 0.901 0.169 0.725 0.915

0.75 0.893 0.760 0.132 0.592 0.868

0.80 0.620 0.396 0.102 0.395 0.524

0.85 0.181 0.126 0.079 0.230 0.139

IJB-B-1024

0.70 0.798 0.616 0.087 0.485 0.735

0.75 0.459 0.210 0.053 0.347 0.307

0.80 0.105 0.101 0.038 0.241 0.055

0.85 0.050 0.066 0.022 0.157 0.025

IJB-B-1845

0.70 0.771 0.610 0.059 0.492 0.690

0.75 0.341 0.204 0.045 0.350 0.235

0.80 0.083 0.081 0.031 0.233 0.052

0.85 0.068 0.051 0.018 0.151 0.019

Table 2: BCubed precision evaluated at different BCubed

recall values. The best performance is reported using bold

red, and the second best is reported using bold blue.

They satisfy several formal constraints on evaluation met-

rics, and is shown to be more suitable than metrics based on

set matching, pair counting, entropy or editing distance [1].

4.3. Baseline Methods

We compare the proposed DDC algorithm, DDC with

negative set mining (DDC-NEG), with the following meth-

ods: Agglomerative Hierarchical Clustering (AHC) [8], K-

means [16], Density-Based Spatial Clustering of Applica-

tions with Noise (DBSCAN) [4], Affinity Propagation (AP)

[5], Sparse Subspace Clustering using Orthogonal Match-

ing Pursuit (SSC-OMP) [35], Joint Unsupervised Learning

of deep representations and clusters (JULE) [33], Deep Em-

bedded Regularized Clustering (DEPICT) [7], Proximity-

Aware Hierarchical Clustering (PAHC) [14], Approximate

Rank-Order Clustering (ARO) [17], and Conditional Pair-

wise Clustering (ConPaC) [25].

Precision and Recall Comparisons. Table 2 shows

the BCubed precision measured at different BCubed recall

for methods that yields different number of clusters. On

the YTF and LFW datasets, all methods except PAHC and

DBSCAN attains near-perfect performance. On the more-

challenging IJB-B dataset, the proposed approach performs

the best across several subtasks. It should be noted that the

proposed approach has consistent behavior across different

operating points and dataset scales, while the basic AHC

achieves degraded performance at higher recall regions for

larger scale data, and DBSCAN is inferior at lower recall

regions.

F-measure and NMI Comparisons. Table 4 reports the

F-measure and NMI comparisons. Some experiments for

SSC-OMP do not finish within the cut-off threshold of ten

hours and are replaced by double dash marks (- -). Results

reported from the original papers are marked by asterisks

(*). As shown in the table, the proposed DDC and DDC-

NEG outperforms other methods. Although AHC achieves

high F-measure and NMI using the oracle supplied thresh-

old, it is inferior at other operating points as discussed in

the previous section.

Note that we view JULE, DEPICT and DDC as solving

a complete different problem. Given a collection of unseen

face images, it is not practical to assume the number of sub-

jects to be a known quantity. Furthermore, the number of

classes reflects the complexity of the data at hand. Without

this information, methods such as JULE and DEPICT may

suffer from tuning network structures. Therefore, the pro-

posed algorithm is more suitable for applications in which

the number of clusters is not known.

Discussion. We observe from the statistics in Table 1

that LFW contains a large number of singleton clusters and

YTF consists of multiple large clusters. Since the AHC al-

gorithm uses cosine similarity as the underlying measure,

in LFW, it exploits the discriminative power of deep fea-

tures in 1-1 comparisons (verification) and hence high per-

formance is achieved. However, AHC exhibits inferior per-

formance in YTF, since it ignores local structures as pre-

sented in Section 3.1.

Both DBSCAN and PAHC are aware of local neighbor-

hoods with fixed sizes. DBSCAN attains improved per-

formance for larger clusters, and PAHC performs well on

template-based data [14]. However, since the neighborhood

sizes are not adaptive to local density variations, DBSCAN

has degraded performance on LFW, and PAHC does not

achieve comparable performance with other methods. The

proposed algorithm attains improved performance by bal-

ancing discriminative power and density-aware property.

Running Time Comparisons. We compare the running

time performance using IJB-B-1024 and IJB-B-1845 sub-

tasks which contain 36,575 and 68,195 faces respectively.

The results are reported in Table 3.

Dataset IJB-B-1024 IJB-B-1845

K-means [16] 00:00:17 00:01:00

AHC [8] 00:00:29 00:01:32

DBSCAN [4] 00:07:49 00:49:31

AP [5] 03:55:42 08:42:50

PAHC [14] 00:01:19 00:03:56

ARO [17] 00:00:37 00:00:73

ConPaC [25] 00:20:06 02:53:58

DDC 00:02:17 00:05:32

DDC-NEG 00:01:55 00:05:39

Table 3: Running Time Comparisons (HH:MM:SS).
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Dataset YTF LFW IJB-B-128 IJB-B-256 IJB-B-1024 IJB-B-1845

F NMI F NMI F NMI F NMI F NMI F NMI

K-means [16] 0.815 0.915 0.688 0.922 0.628 0.835 0.585 0.838 0.551 0.851 0.532 0.854

AHC [8] 0.908 0.960 0.940 0.987 0.824 0.925 0.805 0.922 0.736 0.919 0.729 0.921

AP [5] 0.312 0.795 0.618 0.906 0.439 0.822 0.426 0.836 0.411 0.854 0.405 0.858

DBSCAN [4] 0.923 0.967 0.868 0.973 0.777 0.893 0.762 0.895 0.675 0.894 0.672 0.895

SSC-OMP [35] 0.142 0.174 - - - - 0.177 0.476 0.136 0.483 - - - - - - - -

JULE* [33] - 0.848 - - - - - - - - - -

DEPICT* [7] - 0.802 - - - - - - - - - -

PAHC [14] 0.360 0.734 0.857 0.958 0.695 0.863 0.648 0.865 0.639 0.890 0.610 0.890

ARO* [17] - - 0.870 - 0.482 - 0.423 - 0.352 - 0.317 -

ConPaC* [25] - - 0.922 - 0.563 - 0.493 - 0.452 - 0.429 -

DDC 0.906 0.960 0.943 0.988 0.810 0.918 0.788 0.916 0.723 0.913 0.725 0.919

DDC-NEG 0.919 0.965 0.955 0.991 0.829 0.927 0.816 0.926 0.751 0.922 0.746 0.925

Table 4: BCubed F-measure and NMI performance comparisons. For linkage-based approaches, scores are reported using

optimal (oracle-supplied) threshold. The best performance is reported in bold.

4.4. Determining Operating Point

The reported performance on different operating points

is obtained by thresholding the pairwise similarity matrix

at different levels: large thresholds result in several tiny

clusters which correspond to high precision and low recall

operating points, while small thresholds result in a few gi-

gantic clusters which correspond to low precision and high

recall operating points. Neither of the two cases provide

desirable clustering results. In real-world applications, we

are often interested in generating high precision and recall

clustering assignments and at the same time know the ap-

proximate number of distinct identities. This requires one

to find proper operating points. In this section, we investi-

gate the influences of different operating thresholds on the

resulting number of clusters. Results on the YTF and LFW

datasets are reported. From Figures 6a and 6b, we observe

kinks and clear fall-offs from the proposed methods. The

kinks provide hints to the number of distinct identities and

reduce the dynamic range of generated number of clusters.
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Figure 6: Qualitative evaluations on YTF and LFW.

5. Conclusion

In this paper, we proposed a novel algorithm to clus-

ter unconstrained face images without knowing the num-

ber of subjects. Based on a local compact representation

and a density-based similarity measure, the proposed ap-

proach adaptively models the neighborhood structure for

each sample and yield a more discriminative neighborhood

similarity measure. We theoretically show that the repre-

sentation is asymptotically a Parzen window density esti-

mator. The proposed approach achieves improved perfor-

mance than other state-of-the-art approaches on challenging

face datasets. The results also show that the density-aware

property reduces the difficulty of finding proper operating

points in clustering.
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