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Abstract

Many high dimensional vector distances tend to a con-

stant. This is typically considered a negative “contrast-

loss” phenomenon that hinders clustering and other ma-

chine learning techniques. We reinterpret “contrast-loss”

as a blessing. Re-deriving “contrast-loss” using the law

of large numbers, we show it results in a distribution’s in-

stances concentrating on a thin “hyper-shell”. The hol-

low center means apparently chaotically overlapping dis-

tributions are actually intrinsically separable. We use this

to develop distribution-clustering, an elegant algorithm for

grouping of data points by their (unknown) underlying dis-

tribution. Distribution-clustering, creates notably clean

clusters from raw unlabeled data, estimates the number

of clusters for itself and is inherently robust to “outliers”

which form their own clusters. This enables trawling for

patterns in unorganized data and may be the key to enabling

machine intelligence.

1. Introduction

Who is thy neighbor? The question is universal and old

as the Bible. In computer vision, images are typically con-

verted into a high-dimensional vector known as image de-

scriptors. Neigborness of images is defined as distances

between their respective descriptors. This approach has

had mixed success. Descriptors excel at nearest-neighbors

retrieval applications. However, descriptor distances are

rarely effective in other neighbor based machine learning

tasks like clustering.

Conventional wisdom suggests poor clustering perfor-

mance is due to two intrinsic factors. a) Images are the

product of a complex interplay of geometric, illumination

and occlusion factors. These are seldom constant, caus-

ing even images of the same location to vary significantly

from each other. The extreme variability makes clustering

Distribution-clusters from a subset of Flickr11k [43]

Affinity matrix before and after clustering

Figure 1: Distribution-clustering on a set of random images.

Our technique captures even highly variable distributions

like flowers and scenery. The post-clustering affinity matrix

displays distinctive blocky patterns predicted by our theory.

difficult. This can be understood mathematically as each

image being an instance of some distribution. The variabil-

ity causes image data-sets to be chaotic. Here, chaotic is

defined as having distributions whose mean separation is
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significantly smaller than their standard deviation. Cluster-

ing chaotic data is ill-posed because data points of differ-

ent distributions mingle. This can be alleviated by enhanc-

ing invariance with higher dimensional image descriptors.

However, it leads to a second problem. b) As dimensions

increase, “contrast-loss” [3, 10, 17] occurs. Distances be-

tween points tend to a constant, with traditional clustering

metrics becoming ill-defined [3, 5]. This is considered part

of the curse of dimensionality [17, 1].

We offer a different perspective in which “contrast-loss”

is not a problem but the solution to clustering chaotic data.

The core idea is simple. What was previously interpreted as

“contrast-loss” is actually the law of large numbers causing

instances of a distribution to concentrate on a thin “hyper-

shell”. The hollow shells mean data points from apparently

overlapping distributions do not actually mingle, making

choatic data intrinsically separable. We encapsulate this

constraint into a second order cost that treats the rows of

an affinity matrix as identifiers for instances of the same

distribution. We term this distribution-clustering.

Distribution-clustering is fundamentally different from

traditional clustering as it can disambiguate chaotic data,

self-determine the number of clusters and is intrinsically ro-

bust to “outliers” that form their own clusters. This mind-

bending result provides an elegant solution to a problem

previously deemed intractable. Thus, we feel it fair to con-

clude that “contrast-loss” is a blessing rather than a curse.

1.1. Related Works

To date, there are a wide variety of clustering algo-

rithms [32, 26, 19, 15, 21, 38] customized to various tasks.

A comprehensive survey is provided in [9, 42]. Despite the

variety, we believe distribution-clustering is the first to uti-

lize the peculiarities of high dimensional space. The result

in a fundamentally different clustering algorithm.

This work is also part of on-going research in the proper-

ties of high dimensional space. Pioneering research began

with Beyer et al.’s [10] discovery of “contrast-loss”. This

was interpreted as an intrinsic hindrance to clustering and

machine learning [3, 10, 17], motivating the development of

sub-space clustering [35, 18], projective-clustering [2, 27],

and other techniques [44, 28, 20] for alleviating “contrast-

loss”. This simplistic view has begun to change, with recent

papers observing that “contrast-loss” can be beneficial in

detecting outliers [37, 47], cluster centroids [40] and scor-

ing clusters [40]. These results indicate a gap in our knowl-

edge but a high-level synthesis is still lacking.

While we do not agree with Aggarwal et al.’s [3] in-

terpretation of “contrast-loss”, we are inspired by their at-

tempts to develop a general intuition about the behavior of

algorithms in high-dimensional space. This motivates us to

analyze the problem from both intuitive and mathematical

perspectives. We hope it contributes to the general under-

standing of high dimensional space.

Within the larger context of artificial intelligence re-

search, our work can be considered research on similarity

functions surveyed by Cha [13]. Unlike most other similar-

ity functions, ours is statistical in nature, relying on extreme

improbability of events to achieve separability. Such statis-

tical similarity has been used both explicitly [11] and im-

plicitly [30, 14, 36, 46, 39] in matching and retrieval. Many

of these problems may be reformulatable in terms of the law

of large numbers, “contrast-loss” and high-dimensional fea-

tures. This is a fascinating and as yet unaddressed question.

Finally, distribution-clustering builds on decades of re-

search on image descriptors [33, 25, 6] and normaliza-

tion [24, 7]. These works reduce variation, making the law

of large numbers more impactful at lower dimensions. As

distribution-clustering is based on the law of large numbers,

its performance is correspondingly enhanced.

2. Visualizing High Dimensions

Our intuition about space was formed in two and three

dimensions and is often misleading in high dimensions. In

fact, it can be argued that the “contrast-loss” curse ulti-

mately derives from misleading visualization. This section

aims to correct that.

At low dimensions, our intuition is that solids with sim-

ilar parameters have significant volumetric overlap. This is

not true in high dimensions.

Consider two high dimensional hyper-spheres which are

identical except for a small difference in radius. Their vol-

ume ratio is

(

r −∆r

r

)k

=

(

1−
∆r

r

)k

→ 0, k → ∞ (1)

which tends to zero as the number of dimensions, k → ∞.

This implies almost all of a sphere’s volume is concentrated

at its surface. Thus, small changes in either radius or cen-

troid cause apparently overlapping spheres to have near zero

intersecting volume as illustrated in Fig. 2, i.e., they be-

come volumetrically separable! A more rigorous proof can

be found in [23].

Intriguingly, instances of a distribution behave similarly

to a hyper-sphere’s volume. Section 3.3 shows that when

distributions have many independent dimensions, their in-

stances concentrate on thin “hyper-shells”. Thus, instances

of apparently overlapping distributions almost never min-

gle. This makes clustering chaotic data by distribution a

well-posed problem, as illustrated in Fig. 3.

3. Distribution-Clustering (theory)

Images are often represented as high dimensional fea-

ture vectors, such as the 4096-dimensional NetVLAD [6]
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Figure 2: Almost all of a high dimensional sphere’s volume

is near its surface. Thus, small changes of radius or cen-

troid result in almost no volumetric overlap. The apparently

overlapping spheres are volumetrically separable!

Figure 3: Left: Traditional view of chaotic data as overlap-

ping spheres. Clustering such data is deemed an ill-posed

problem. Right: Our visualization. Each distribution’s in-

stances form hollow rings. Thus, clustering data by fitting

“hyper-shells” becomes a well-posed problem.

descriptor. This section shows how we can create indicators

to group images based on their generative distributions.

Definition 1.

• D(m,σ2) denotes a probability distribution with mean

m and variance σ2 ;

• Sn = { 1, 2, . . . , n } denotes a set of consecutive

positive integers from 1 to n;

• d(.) denotes a normalized squared ℓ2 norm operator,

i.e., for x ∈ R
k, d(x) = ‖x‖2

k
.

Let Z =
[

Z1, Z2, . . . , Zk

]T
denote a k dimen-

sional random vector where Zi is a random variable,

• d(.) operator can also be applied on a random vec-

tors Z. d(Z) = ‖Z‖2

k
is a random variable formed by

averaging Z’s squared elements.

• E(Z) =
[

E(Z1), E(Z2), . . . , E(Zk)
]T

is a

vector of each dimension’s expectation;

• With a slight abuse of notation, we define Var(Z) =
∑k

i=1
var(Zi)

k
, as the average variance over all dimen-

sions.

3.1. Passive Sensing Model

Many data sources (like cameras) can be modeled as pas-

sive sensors. Data points (like image descriptors) {x(i) : i ∈
Sn}, are instances of random vectors {X(i) : i ∈ Sn} rep-

resenting environmental factors that influence sensory out-

come, e.g., camera position, time of day, weather condi-

tions. As sensing does not influence the environment, all

random vectors are mutually independent. Our goal is to

cluster x(i) instances by their underlying X
(i) distributions.

3.2. Quasi­ideal Features

An ideal feature descriptor has statistically independent

dimensions. However, this is hard to ensure in practice.

A more practical assumption is the quasi-independence in

condition 1.

Condition 1. Quasi-independent: A set of k random vari-

ables {X(i) : i ∈ Sk} are quasi-independent, if and only if,

as k → ∞, each random variable has finite number of pair-

wise dependencies. That is, let A be the set of all pairwise

dependent variables and 1 be an indicator function, there

exists t ∈ Z
+ such that

k
∑

j=1

1A({X
(i), X(j)}) ≤ t, ∀i ∈ Sk.

Quasi-independence is approximately equivalent to requir-

ing information increases proportionally with number of

random variables. When the random variables are concate-

nated into a feature, we term it quasi-ideal.

Condition 2. Quasi-ideal: A k-dimensional random vector

X is quasi-ideal, if and only if, as k → ∞, the variance

of all its elements are finite and the set of all its elements,

{Xi : i ∈ Sk}, is quasi-independent.

Treating the links of an infinitely long Markov chain as

feature dimensions would create a quasi-ideal feature. This

is useful in computer vision, as pixel values have Markov

like properties of some statistical dependence on neighbors

but long range statistical independence. Hence, many image

based descriptors can be modeled as quasi-ideal.

Practicality aside, quasi-ideal features have useful math-

ematical properties, as they permit the law of large numbers

to apply to distance metrics. This leads to interesting results

summarized in Lemmas 1 and 2.
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Lemma 1. Let X be a quasi-ideal random vector with di-

mension k → ∞. The normalized squared ℓ2 norm of any

instance is almost surely a constant:

d(X) =
‖X‖2

k
=

∑k

i=1 X
2
i

k
∼ D

(

m,σ2
)

, σ → 0, (2)

Proof. As X is quasi-ideal, the set of squared elements

{X2
1 , X

2
2 , . . . , X

2
k} form a covariance matrix where the sum

of elements in any row is bounded by some positive real

number t, i.e.,

k
∑

j=1

cov(X2
i , X

2
j ) ≤ t, ∀i ∈ Sk. (3)

This implies

Var(d(X)) =

∑k

i=1

∑k

j=1 cov(X
2
i , X

2
j )

k2
<

kt

k2
<

t

k
. (4)

Thus, as k → ∞, variance tends to zero.

Lemma 2. Let X and Y be statistically independent, quasi-

ideal random vectors. As the dimensions k → ∞.

d(X−Y) =
‖X−Y‖2

k
∼ D

(

m,σ2
)

, σ → 0, (5)

where m = Var(X) + Var(Y) + d(E(X)− E(Y)).

Proof. As X and Y are quasi-ideal, random vector X−Y

is also quasi-ideal. Using Lemma 1, we know d(X −Y)’s
variance tends to zero. The expression for its mean is:

m =E

(

‖X−Y‖2

k

)

=

k
∑

i=1

E
(

X2
i

)

k
+

E
(

Y 2
i

)

k
−

2E (XiYi)

k

=

k
∑

i=1

var (Xi) + var (Yi)

k

+

k
∑

i=1

E (Xi)
2 − 2E (Xi) E (Yi) + E (Yi)

2

k

=Var(X) + Var(Y) +

k
∑

i=1

(E (Xi)− E (Yi))
2

k

=Var(X) + Var(Y) + d(E(X)− E(Y)).

Lemma 2 is similar in spirit to Beyer et al.’s [10]

“contrast-loss” proof. However, it accommodates realiza-

tions from different distributions, introduces a more practi-

cal quasi-independence assumption and is simpler to derive.

Unlike [3], we consider “contrast-loss” an opportunity

not a liability. Lemma 2 proves that distance between in-

stances almost always depend only on the mean and vari-

ances of the underlying distributions and not on instances’

values. This makes distance between instances a potential

proxy for identifying their underlying distributions.

3.3. Distribution­clusters

Identifying data points from “similar” distributions re-

quires a definition of “similarity”. Ideally, we would follow

Lemma 2’s intuition and define “similarity” as having the

same mean and average variance. However, the definition

needs to accommodate dimensions tending to infinity. This

leads to a distribution-cluster based “similarity” definition.

Let ΩX = {X(i) : i ∈ Sn} be a set of independent k-

dimensional random vectors. k → ∞ such that the random

vectors satisfy quasi-ideal conditions.

Condition 3. Distribution-cluster: ΩX forms a

distribution-cluster if and only if:

• The normalized squared ℓ2 norm distance between any

two distribution mean is zero, i.e.,

d(E(X(i))− E(X(j))) = 0, ∀i, j ∈ Sn; (6)

• All distributions have the same average variance, i.e.,

Var(X(i)) = Var(X(j)), ∀i, j ∈ Sn. (7)

As dimensions tend to infinity, instances of a

distribution-cluster concentrate on a “thin-shell”. This is

proved in theorem 1 and validates Fig. 3’s intuition. The

“hollow-center” means data points from apparently overlap-

ping distributions almost never mingle, creating the poten-

tial for clustering chaotic data.

Theorem 1. If ΩX is a distribution-cluster with average

variance v, the normalized squared distance of its instances

from the cluster centroid will almost surely be v, i.e., ΩX’s

instances form a thin annulus about it’s centroid.

Proof. Without loss of generality, let m = E(X(1)). Let

X in Lemma 2 be X(i) and Y in Lemma 2 be a distribution

with mean m and variance 0. This gives an expression:

p
(

d(X(i) −m) = v
)

→ 1 ∀i ∈ Sn (8)

3.4. Grouping Data by Distribution

We seek to group a set of data points by their underlying

distribution-clusters. This is achieved by proving that data

points of a distribution-cluster share unique identifiers that

we term cluster-indicators.

Theorem 2. Cluster-indicator: Let Y be a quasi-ideal ran-

dom vector that is independent of all ΩX’s random vectors.

ΩX forms a distribution-cluster (c.f condition 3), if and

only if, for any valid random vector Y, there exists a real

number bY such that

p(d(Y −X
(i)) = bY) → 1, ∀i ∈ Sn. (9)
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Proof. First, the if part is proved. Given ΩX is a

distribution-cluster, Eq. (9) is a direct result of Lemma 2,

where the distance between instances of quasi-ideal distri-

butions are almost surely determined by the distributions’

mean and average variances.

Moving on to the only if proof, where it is given that

ΩX satisfies Eq. (9)’s cluster-indicator. W.l.o.g, we consider

only elements X(1),X(2). Let Y be independent but iden-

tically distributed with X
(1).

From Lemma 2, we know that

• p(d(Y −X
(1)) = m1) → 1, where

m1 = 2Var(X(1));

• p(d(Y −X
(2)) = m2) → 1, where

m2 = Var(X(1))+Var(X(2))+d(E(X(1))−E(X(2))).

Equation (9) means bY = m1 = m2, implying:

2Var(X(1))

=Var(X(1)) + Var(X(2)) + d(E(X(1))− E(X(2))).
(10)

Similarly, treating Y as independent but identically dis-

tributed with X
(2) implies

2Var(X(2))

=Var(X(1)) + Var(X(2)) + d(E(X(1))− E(X(2))).
(11)

Solving (10) and (11) yields

Var(X(1)) = Var(X(2)), d(E(X(1))− E(X(2))) = 0.

This proves that X(1),X(2) are members of a distribution-

cluster, (c.f condition 3). Repeating the process with all ele-

ment pairs of ΩX will show they belong to one distribution-

cluster. This completes the only if proof.

As argued in Sec. 3.1, image descriptors can be modeled

as instances of independent, quasi-ideal random vectors,

i.e., a set of image descriptors Ωx = {x(i) : i ∈ Sn} can

be considered instances of the respective random vectors

in ΩX. Theorem 2 implies that descriptors from the same

distribution-cluster will (almost surely) be equi-distance to

any other descriptor. Further, it is a unique property of de-

scriptors from the same distribution-cluster. This allows

descriptors to be unambiguously assigned to distribution-

clusters. In summary, distribution-clustering of images (and

other passive sensing data) is a well-posed problem, per the

definition in McGraw-Hill dictionary of scientific and tech-

nical terms [34]:

• A solution exist. This follows from Theorem 2’s if

condition where cluster-indicators almost surely (in

practice it can be understood as surely) identify all data

points of a distribution-cluster;

• A solution is unique. This follows from Theorem 2’s

only if condition which means cluster-indicators al-

most never confuse data points of different distribu-

tions. This can also be understood as proving intrin-

sic separability of instances from different distribution-

clusters;

• The solution’s behavior changes continuously with the

initial conditions. The bY cluster-indicator in Eq. (9)

vary continuously with the mean and average variance

of the underlying distribution-cluster. This follows

from Lemma 2’s expression for bY.

4. Distribution-Clustering (practical)

Our goal is to use theorem 2’s cluster-indicators to group

data points by their underlying distributions. From theo-

rem 2, we know that if x(i),x(j) are instances of the same

distribution-cluster, the affinity matrix’s i, j rows/ columns

will be near identical. To exploit this, we define second or-

der features as columns of the affinity matrix. Clustering is

achieved by grouping second-order features.

4.1. Second­order Affinity

Let Ωx = {x(i) : i ∈ Sn} be a set of realizations, with

an associated affinity matrix An×n:

A(i, j) = d(x(i) − x
(j)). (12)

The columns of A are denoted as a(i) = A(:, i). Treat-

ing columns as features yields a set of second-order features

{a(i) : i ∈ Sn}. The elements of a(i) encodes the distance

between vector x(i) and all others in Ωx.

From theorem 2, we know that if and only if the distribu-

tions underlying a
(i),a(j) come from the same distribution-

cluster, all their elements, except the ith and jth entries, are

almost surely identical. This is encapsulated as a second-

order distance:

d′(a(i),a(j)) =
∑

k∈Sn\{i,j}

(

a
(i)
k − a

(j)
k

)2

. (13)

which should be zero if i, j belong to the same distribution-

cluster. The presence of clusters of identical rows causes the

post-clustering affinity matrix to display a distinctive blocky

pattern shown in Fig. 1.

Second order distance can be embedded in exist-

ing clustering algorithms. For techniques like spectral-

clustering [45] which require an affinity matrix, a second-

order affinity matrix is defined as A′
n×n:

A
′(i, j) = d′

(

a
(i),a(j)

)

.

If n is large, d′
(

a
(i),a(j)

)

≈ ‖a(i) − a
(j)‖2. This allows

second order {a(i)} features to be used directly in clustering

algorithms like k-means, which require feature inputs.
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Incorporating second-order constraints into a prior clus-

tering algorithm does not fully utilize theorem 2. This is

because realizations of the same distribution-cluster have

zero second-order-distance, while most clustering algo-

rithms only apply a distance penalty. This motivates an al-

ternative solution we term distribution-clustering

4.2. Implementing Distribution­clustering

Distribution-clustering can be understood as identifying

indices whose mutual second-order distance is near zero.

These are grouped into one cluster and the process repeated

to identify more clusters.

An algorithmic overview is as follows. Let i, j be the in-

dices of its smallest off-diagonal entry of affinity matrix A.

If {x(i),x(j)} are instances of a distribution-cluster, Lemma

2 states the average cluster variance is A(i, j)/2. Thus

they are the data-set’s lowest average variance distribution-

cluster. Initialize {x(i),x(j)} as a candidate distribution-

cluster. New members are recruited by finding vectors

whose average second-order distance from all distribution-

cluster candidates is less than threshold τ . If a candidate

distribution-cluster grows to have no less than m members,

accept it. Irrespective of the outcome, remove {x(i),x(j)}
from consideration as candidate clusters. Repeat on un-

clustered data till all data points are clustered or it is im-

possible to form a candidate cluster. Some data may not

be accepted in any cluster and remain outliers. Details are

in Algorithm 1. For whitened descriptors [24, 7], typical

parameters are τ = 0.07,m = 5.

Relative to other clustering techniques, distribution-

clustering has many theoretical and practical advantages:

• Clustering chaotic data is a well-posed problem (c.f .

Sec. 3.4);

• No pre-definition of cluster numbers is required;

• Innate robustness to “outliers” which form their own

clusters.

5. Clustering

Simulation Results use quasi-ideal features created from

a mixture of uniform and Gaussian distributions. To eval-

uate the effect of increasing dimensionality, the number of

dimensions is increased from 1 to 4000. Two sets are eval-

uated. The “Easy” set has wide separation of underlying

distributions while the “Difficult” set has little separation.

Results are presented in Fig. 4. We compare three differ-

ent distance measures on k-means clustering [31, 8]: ℓ2
norm, ℓ1 norm and our proposed second-order distance in

Eq. (13). We also compare spectral clustering [45] with ℓ2
and second-order distance. Finally, we provide a system

to system comparison between our distribution-clustering,

k-means and spectral-clustering. At low dimensions, the

Input: Affinity matrix An×n

Output: Vector of cluster labels L

Initialization: 1) Set of un-assigned image indices:

Sn = {1, 2, . . . , n}; 2) Set of non-diagonal elements

of A: E = {A(i, j)}, i 6= j; 3) Initialize L = 0n×1;

4) Set label counter c = 1;

while Sn 6= ∅ do

Find i and j corresponding to min(E);
Create candidate cluster H = {i, j};

for s ∈ Sn do

if 1
|H|

∑

h∈H d′(a(s),a(h)) < τ , then

insert s into H
end

end

if |H| < m then

delete A(i, j) from E ;

else
accept cluster H and assign its elements a

unique label;

L(h) = c, ∀h ∈ H;

c := c+ 1;

for h ∈ H do

delete A(:, h) and A(h, :) from set E ;

delete h from set Sn.
end

end

end

Algorithm 1: Distribution-clustering

second-order distance gives results comparable to other al-

gorithms. However, performance steadily improves with

number of dimensions. Notably, only algorithms which em-

ploy second-order distance are effective on the “Difficult”

set. This validates the theoretical prediction that (the previ-

ously ill-posed problem of) clustering chaotic data is made

well-posed by the second-order distance.

To study the effect of mean separation on clustering per-

formance, we repeat the previous experiment under similar

conditions, except the number of dimensions are kept con-

stant and the mean separation progressively reduced to zero.

Results are presented in Fig. 5. Note that second-order dis-

tance ensures clustering performance is relatively invariant

to mean separation.

Real Images with NetVLAD [6] as image descriptors are

used to evaluate clustering on 5 data-sets: Handwritten

numbers in Mnist [29]; A mixture of images from Google

searches for “Osaka castle”’ and “Christ the redeemer

statue”; 2 sets of 10 object types from CalTech 101 [22];

And a mixture of ImageNet [16] images from the Lion,

Cat, Tiger classes. Distribution-clustering is evaluated

against five baseline techniques: K-means [31, 8], spectral-
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Figure 4: Simulation with increasing number of dimen-

sions. Left: k-means with ℓ2 norm, k-means with ℓ1
norm and our second-order distance. Center: Spec-

tral clustering with automatic detection of cluster num-

bers [45], given number of clusters [45] and second-order

distance (Eq. (13)). Right: System to system comparison

of distribution-clustering, k-means and spectral clustering.

Only high dimensional, second-order distance algorithms

are effective on “Difficult” data.
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Figure 5: Simulation with increasing separation of distribu-

tion centers. Algorithms are the same as in Fig. 4. Only

second-order distance algorithms are performance invariant

with separation of distribution centers.

clustering [45], projective-clustering [4], GMM [12] and

quick-shift [41]. For k-means and GMM, the number of

clusters is derived from distribution-clustering. This is typ-

ically 20− 200. Spectral and projective-clustering are pro-

hibitively slow with many clusters. Thus, their cluster num-

bers are fixed at 20.

Cluster statistics are reported in Tab. 1. On standard sil-

houette and purity scores, distribution-clustering’s perfor-

mance is comparable to benchmark techniques. The perfor-

mance is decent for a new approach and validates Theorem

2’s “contrast-loss” constraint in the real-world. However,

an interesting trend hides in the average statistics.

Breaking down the purity score to find the percentage

of images deriving from pure clusters, i.e., clusters with no

wrong elements, we find that distribution-clustering assigns

a remarkable fraction of images to pure clusters. On aver-

age, it is 1.5 times better than the next best algorithm and
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Figure 6: Clustering real images. Clusters are ranked by

variance. Unlike prior methods where “outliers” are ran-

domly scattered in clusters, distribution-clustering concen-

trates “outliers” in high variance clusters, making identifi-

cation of pure clusters easy.

in some cases can nearly double the performance. This is

important to data-abstraction where pure clusters allow a

single average-feature to represent a set of features. In addi-

tion, distribution-clustering ensures pure clusters are read-

ily identifiable. Figure 6 plots percentage error as clusters

are processed in order of variance. Distribution-clustering

keeps “outliers” packed into high-variance clusters, leav-

ing low-variance clusters especially pure. This enables con-

cepts like image “over-segmentation” to be transferred to

unorganized image sets.

K-means and GMM are the closest alternative to

distribution-clustering. However, their clusters are less pure

and they are dependent on distribution-clustering to ini-

tialize the number of clusters. This makes distribution-

clustering one of the few (only?) methods effective on

highly chaotic image data like Flickr11k [43] demonstrated

in Fig. 1.

Timing excludes feature extraction cost which is com-

mon to all algorithms. Experiments are on an i7 machine,
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Silhouette Score

Dataset K-Means Spectral PROCLUS GMM QS Ours

[31, 8] [45] [4] [12] [41]

MNIST 0.0082 0.0267 -0.0349 0.0076 0.0730 0.038

Internet 0.084 0.041 -0.038 0.0963 0.0488 0.003

CalTech1 0.027 0.02 -0.0045 0.0373 0.0999 0.074

CalTech2 0.028 0.084 -0.0186 0.0248 0.0350 0.042

Cats 0.007 0 -0.002 0.0236 0.0752 0.0239

Average 0.0308 0.034 -0.020 0.0379 0.0532 0.036

Purity Score

Dataset K-Means Spectral PROCLUS GMM QS Ours

MNIST 0.77 0.45 0.41 0.81 0.55 0.79

Internet 0.96 0.90 0.86 0.97 0.82 0.97

CalTech1 0.71 0.44 0.36 0.80 0.31 0.82

CalTech2 0.84 0.83 0.41 0.88 0.29 0.87

Cats 0.88 0.63 0.50 0.90 0.35 0.93

Average 0.83 0.65 0.51 0.87 0.46 0.88

% of images in pure clusters (excluding singletons)

Dataset K-Means Spectral PROCLUS GMM QS Ours

MNIST 0.28 0 0 0.32 0.059 0.49

Internet 0.83 0.82 0.40 0.83 0.031 0.92

CalTech1 0.08 0.02 0.01 0.30 0.081 0.52

CalTech2 0.47 0.24 0 0.52 0.16 0.65

Cats 0.34 0 0 0.40 0.017 0.72

Average 0.40 0.22 0.082 0.47 0.070 0.66

% of pure clusters (excluding singletons)

Dataset K-Means Spectral PROCLUS GMM QS Ours

MNIST 0.43 0 0 0.44 0.62 0.49

Internet 0.80 0.90 0.8 0.83 0.40 0.93

CalTech1 0.30 0.20 0.09 0.46 0.75 0.52

CalTech2 0.54 0.20 0 0.57 0.67 0.67

Cats 0.57 0 0 0.55 0.50 0.74

Average 0.53 0.32 0.178 0.57 0.59 0.67

Table 1: Cluster Statistics. Distribution-clustering ensures

a large percentage of images belong to pure clusters.

with 4096 dimension NetVlad [6] features computed over

the 400 images of Internet data-set. Our single core, Mat-

lab implementation of distribution-clustering takes 23 sec-

onds, of which 4.5 seconds was spent computing the affin-

ity matrix. Timing for other algorithms are as follows. K-

means [31, 8]: 0.73 seconds, Quick Shift [41] (Python): 1.5
seconds, spectral clustering [45] (20 clusters): 2 seconds,

GMM1 [12]: 4 minutes and PROCLUS [4] (20 clusters on

OpenSubspace V3.31): 9 minutes.

Qualitative inspection of distribution-clusters show they

have a purity not captured by quantitative evaluation. Fig-

ure 7 illustrates this on Colosseum images crawled from

the web. Quantitatively, both distribution-clustering and k-

means are nearly equal, with few clusters mixing Colos-

seum and “outlier” images. However, distribution-clusters

are qualitatively better, with images in a cluster sharing a

clear, generative distribution.

Other things readers may want to note. More qualitative

evaluation of clustering is available in the supplementary.

Code is available at http://www.kind-of-works.com/.

1GMM’s timing is with covariance estimation. Fixed covariance matrix

permits convergence in seconds but is inappropriate on some data.

Distribution-clustering K-means clustering

Figure 7: Distribution-clustering provides fine intra-cluster

consistency, with images of a cluster sharing a clear, gener-

ative distribution. This qualitative improvement is not cap-

tured in evaluation statistics.

6. Conclusion

We have shown that chaotically overlapping distributions

become intrinsically separable in high dimensional space

and proposed a distribution-clustering algorithm to achieve

it. By turning a former curse of dimensionality into a bless-

ing, distribution-clustering is a powerful technique for dis-

covering patterns and trends in raw data. This can impact

a wide range of disciplines ranging from semi-supervised

learning to bio-informatics.
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