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Abstract

The availability of affordable and portable depth sen-

sors has made scanning objects and people simpler than

ever. However, dealing with occlusions and missing parts

is still a significant challenge. The problem of reconstruct-

ing a (possibly non-rigidly moving) 3D object from a single

or multiple partial scans has received increasing attention

in recent years. In this work, we propose a novel learning-

based method for the completion of partial shapes. Unlike

the majority of existing approaches, our method focuses on

objects that can undergo non-rigid deformations. The core

of our method is a variational autoencoder with graph con-

volutional operations that learns a latent space for com-

plete realistic shapes. At inference, we optimize to find the

representation in this latent space that best fits the gener-

ated shape to the known partial input. The completed shape

exhibits a realistic appearance on the unknown part. We

show promising results towards the completion of synthetic

and real scans of human body and face meshes exhibiting

different styles of articulation and partiality.

1. Introduction

The problem of reconstructing 3D shapes from par-

tial observations is central to a broad spectrum of ap-

plications, ranging from virtual and augmented reality to

robotics and autonomous navigation. Of particular inter-

est is the setting where objects may undergo articulations

or more generally non-rigid deformations. While several

methods based on (volumetric) convolutional neural net-

works have been proposed for completing man-made rigid

objects (see [12, 51, 55, 61, 49]), they struggle at handling

deformable shapes. However, this is not a limitation spe-

cific to volumetric approaches. The same difficulties with

deformable shapes, irrespective of the completion task, are

present for other 3D shape representations utilized in deep

learning frameworks, such as view-based [52, 59] and point

clouds [42, 43].

The main reason for this is that for methods based on

Euclidean convolutional operations (e.g. volumetric or

view-based deep neural networks), an assumption of self-

similarity under rigid transformations (in most cases, axis-

aligned) is implied. For example a chair seat will always

be parallel to the floor. Non-rigid deformations violate

this assumption, effectively making each pose a novel ob-

ject. Thus, tackling such data with a standard CNN re-

quires many network parameters and a prohibitively large

amount of training. Although model-based methods such

as [2] have shown good performance, they are restricted to

a specific class of shape with manually constructed models.

To explicitly enable robustness towards non-rigid defor-

mations, the approach advocated in this paper adopts recent

advances for in CNNs on graphs which directly exploit the

3D mesh structure. This allows the learning of a powerful

non-rigid shape representation from data without an explicit

model.

Another shortcoming of deep learning shape completion

techniques stems from their end-to-end design. A network

trained to perform completion would be biased towards the

type of missing data introduced at training, and may not

generalize well to previously unseen types of missing infor-

mation. To allow generalization to any style of partiality we

choose to separate the task of completion from the training

procedure altogether. As a result, we also avoid a significant

amount of preprocessing and augmentation that is typically

done on the training data.

Finally, when a complete mesh is desired as the out-

put, producing a triangulation from point clouds or volu-

metric grids is itself a challenging problem and may in-

troduce undesired artifacts (although recent advances such

as [12] address this by directly producing implicit surfaces).

Conversely, by utilizing a mesh-convolutional network our

method will produce complete and plausible surfaces by de-

sign.

Contribution. The main contribution of this work is a

method for deformable shape completion that decouples the

task of partial shape completion from the task of learning

a generative shape model, for which we introduce a novel

graph convolutional autoencoder architecture. Compared

to previous works the proposed method has several advan-

tages. First, it can handle any style of partiality without

needing to see any partial shapes during training. Second,
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Figure 1. Schematic description of our approach. A variational autoencoder is first trained on full shapes with vertex-wise correspon-

dence to create a reference shape and a latent space parameterizing the embedding of its vertices in R
3. At inference, only the decoder

(bottom part) is used. A partially missing shape is given as the input together with the correspondence with the reference shape. Starting

at a random initialization, optimization is performed in the latent space to minimize the extrinsic dissimilarity between the input shape and

the generated output shape.

the method is not limited to a specific class of shapes (e.g.

humans) and can be applied to any kind of 3D data. Third,

shape completion is an inherently ill-posed problem with

potentially multiple valid solutions fitting the data (this is

especially true for articulated and deformable shapes), thus

making deterministic solutions inadequate. The proposed

method reflects the inherent ambiguities of the problem by

producing multiple plausible solutions.

2. Related work

3D shape completion. The application addressed in this

paper is a very active research area in computer vision and

graphics, ranging from completion of small holes [48] and

larger missing regions in individual objects [1, 45, 55, 61,

49], to entire scenes [51]. Completion guided by geometric

priors has been explored, for example Poisson filling [22]

and self-similarity [27, 48, 32]. However, such methods

work only for small missing regions, and dealing with big-

ger occlusions requires stronger priors. A viable alternative

is model-based approaches, where a parametric morphable

model describing the variability of a certain class of objects

can be fit to the observed data [4, 16].

The setting of non-rigid shape completion differs from

its rigid counterpart in that at inference, the input partial

shape may admit a deformation unseen in the training data.

This distinction becomes crucial as large missing regions

force the priors to become more complex (see for example

the human model designed in [2]).

Generative methods for non-rigid shapes. The state-of-

the-art in generative modeling has rapidly advanced with

the introduction of Variational Autoencoders (VAE [25]),

Generative Adversarial Networks [18], and related varia-

tions (e.g. VAEGAN [29]). These advances have been

adopted by the 3D shape analysis community for dynamic

surface generation through VAE [28] and image-to-shape

generation through VAEGAN [60]. In [53], a VAE for non-

rigid shapes is proposed. This work differs from ours in that

the core operations of our network are graph-convolutional

operations as opposed to fully-connected layers, and our

network operates directly on raw 3D vertex positions rather

than relying on hand-crafted features.

Geometric deep learning. This paper is closely related

to a broad area of active research in geometric deep learn-

ing (see [9] for a summary). The success of deep learning
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(in particular, convolutional architectures [30]) in computer

vision has brought a keen interest in the computer graphics

community to replicate this progress for applications deal-

ing with geometric 3D data. One of the key difficulties is

that for such data it requires great care to define the basic

operations constituting deep neural networks, such as con-

volution and pooling.

Several works avoid this problem by using a Euclidean

representation of 3D shapes, such as rendering a collection

of 2D views [52, 59], volumetric representations [61], or

point cloud [42, 43]. One of the main drawbacks of such

extrinsic deep learning methods is their difficulty to deal

with shape deformations as discussed earlier. Additionally,

voxel representations are often memory intensive and suf-

fer from poor resolution [61], although recent models have

been proposed to address these issues: implicit surface rep-

resentation [12], sparse octree networks [57, 44], encoder-

decoder CNN for patch-level geometry refinement [19],

and a long-term recurrent CNN for upsampling coarse

shapes [58]. Regarding point cloud representations, the

PointNet model [42] applies identical operations to the co-

ordinates of each point and aggregates this local infor-

mation without allowing for interaction between different

points which makes it difficult to capture local surface prop-

erties. PointNet++ [43] addresses this by proposing a spa-

tially hierarchical model. Additionally, for PointNet to be

invariant to rigid transformations the input point clouds are

aligned to a canonical space. This is achieved by a small

network that predicts the appropriate affine transformation,

but in general such an alignment would be difficult for ar-

ticulated and deformable shapes.

An alternative strategy is to redefine the basic ingre-

dients of deep neural networks in a geometrically mean-

ingful or intrinsic manner. The first intrinsic CNN-type

architectures for 3D shapes were based on local charting

techniques generalizing the notion of “patches” to non-

Euclidean and irregularly-sampled domains [35, 7, 36]. The

key advantage of this approach is that the generalized con-

volution operations are defined intrinsically on the mani-

fold, and thus automatically invariant to its isometric defor-

mations. As a result, intrinsic CNNs are capable of achiev-

ing correspondence results with significantly less parame-

ters and a very small training set. Related independent ef-

forts developed CNN-type architectures for general graphs

[10, 20, 13, 26, 36, 31].

Recently, [56] suggested a dynamic filter in which the

assignment of each filter to each member of the k-ring in a

graph neighborhood is determined by its feature values. Im-

portantly, this method demonstrated state-of-the-art perfor-

mance working directly on the embedding features. Thus,

in our work we build upon [56] as a basic building block for

convolution operations.

Partial shape correspondences. Dense non-rigid shape

correspondence [23, 11, 33, 47, 8] is a fundamental chal-

lenge as it is an enabler for many high level tasks like pose

or texture transfer across surfaces. We refer the interested

reader to [54, 3] for a detailed review of the literature. The

proposed method in this work builds upon correspondence

between a partial input and a canonical shape of the same

class, and related to this are several methods that explore

partial shape correspondence and matching [46, 36, 34].

The approaches demonstrating state-of-the-art performance

on partial human shapes (e.g. [36]) treat correspondence as

a vertex classification task. Recently [59] has shown im-

pressive results for correspondence across different human

subjects in varied pose and clothing.

Inpainting. The 3D shape completion task is closely re-

lated to the analogous structured prediction task of image

inpainting [41, 62]. However, our proposed optimization

scheme is more reminiscent of style transfer [15] tech-

niques. In our setting we optimize only for the best com-

plete shape with no constraints on the internal feature rep-

resentation.

3. Method

We propose a shape completion method that detaches the

process of learning to generate 3D shapes from the task

of partial shape completion. Our method requires a gen-

erative model for complete 3D shapes which we construct

by training a graph-convolutional variational autoencoder

(VAE [25]). Partial shapes can be completed by identifying

the shape in the output space of the VAE’s generator which

best aligns with the partial input. We propose an optimiza-

tion in the latent space that iteratively deforms (non-rigidly)

a randomly generated shape to align with a partial input.

In what follows, we describe in more detail both ingredi-

ents of our process, the VAE generator and the partial shape

completion scheme. A schematic rendition of the method is

depicted in Figure 1.

3D shape generator. We fix the number of vertices N and

the topology of a reference shape and refer to the three-

dimensional vertex embedding X ∈ R
3×N as to a shape.

The VAE consists of two networks: the encoder that en-

codes 3D shape inputs X to a latent representation vector

z = enc(x), and the decoder that decodes the latent vec-

tors into 3D shapes X′ = dec(z). The variational distri-

bution q(z|X) is associated with a prior distribution over

the latent variables, and the usual choice which we follow

here is a centered multivariate Gaussian with unit variance

N (0, I). Our VAE loss combines the shape reconstruction

loss Lr = ||dec ◦ enc(X)−X||2 encouraging the encoder-

decoder pair to be a nearly identity transformation, and a
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regularization prior loss measured by the Kullback-Leibler

divergence, Lp = DKL(q(z|X)||p(z)). The total VAE loss

is computed as L = Lr + λLp, where λ ≥ 0 controls the

similarity of the variational distribution to the prior.

The choice to measure shape reconstruction loss with

pointwise distances is not the only option. For example, the

VAE can be combined with a Generative Adversarial Net-

work (VAE-GAN) as in [29, 60], thus introducing an ad-

ditional discriminator loss on the reconstructed shape. We

do not consider a discriminator in the scope of this work

to avoid additional model complexity but leave it as future

work to investigate different loss functions that can be im-

posed on reconstructed shapes.

The internal details of the VAE encoder enc(X) and de-

coder dec(z) are largely influenced by the choice of the

3D shape representation. As discussed in Section 2, many

representations have been explored ranging from voxels to

raw point clouds. Our desire to focus on shape comple-

tion for deformable object classes leads us to consider in-

trinsic mesh and surface models that have shown promising

results for deformable shape correspondence among other

applications (e.g. [35, 36]). Multiple approaches have been

proposed to perform convolution on spatial meshes. The

primary factor which distinguishes spatial graph convolu-

tional operations is how correspondence is determined be-

tween convolutional filters and the local graph neighbor-

hoods. Rather than relying on properties of the underlying

geometry to map filters to surface patches, we adopt data-

adaptive models which learn the mapping from the neigh-

borhood patch to filters weights. Specifically, our VAE is

primarily composed of the dynamic filtering convolutional

layers proposed in FeaStNet [56]. The input to the layer is

a feature vector field on the mesh vertices, attaching to a

vertex i a vector xi. The output is also a vector field yi,

possibly of a different dimension, computed as

yi = b+

M∑

m=1

1

|Ni|

∑

j∈Ni

qm(xi,xj)Wmxj , (1)

where Ni denotes a patch around the vertex i, and

qm(xi,xj) ∝ exp(uT
m(xi − xj) + cm) are positive edge

weights in the patch normalized to sum to one over m. The

trainable weights of the layer are Wm, um, cm and b, while

the number of weight matrices M is a fixed design param-

eter. Note that the mapping from neighborhood patch to

weights is translation invariant in the input feature space, as

q operates only on the differences xi − xj . Refer to Figure

1 and [56] for further details.

Partial shape completion. Once the encoder-decoder

pair has been trained, the encoder is essentially tossed away,

while the decoder acts as a complete shape generator, asso-

ciating to each input latent vector z an R
3 embedding of the

reference shape, X = dec(z). Importantly, this acts as a

strong shape prior, generating plausible looking shapes (see

Figure 2).

At inference, a partial shape Y is given. We first use

an off-the-shelf method (MoNet) [36] to compute a dense

partial intrinsic correspondence between Y and the refer-

ence shape. Representing this correspondence as a partial

permutation matrix Π and applying it to any shape X gen-

erated by the decoder produces a subset of points in R
3,

XΠ), ordered compatibly with their counterparts in Y. We

therefore define an extrinsic dissimilarity between the input

shape and the generated full shape as D(X,Y) = ‖X−Y‖,

possibly weighed by the confidence of the correspondence

at each point.

Inference consists essentially of finding a latent vector

z∗ minimizing the dissimilarity between the input and the

output shape,

min
z,T∈SE(3)

D(dec(z)Π,TY), (2)

where T denotes a rigid transformation. Alternating steps

are performed over z (non-rigid deformation) and T (rigid

registration). When the ℓ2 norm is used to define the shape

dissimilarity, the rigid registration step has a closed-form

solution via the singular value decomposition of the covari-

ance matrix of Y and XΠ, while the non-rigid deformation

step is performed using stochastic gradient descent.

Shape completion is an inherently ill-posed problem that

can have multiple plausible solutions. In cases where there

exists more than one solution consistent with the data, sam-

pling a result from our proposed generative model allows

us to explore this space. The results in Section 4.2 illus-

trate the variability in completed shapes when repeating the

optimization procedure (2) with random initializations.

4. Experiments

Dataset. The majority of our experiments are performed

on human shapes. The VAE is trained on registered 4D

scans from the DFAUST dataset [6] comprising 10 human

subjects performing 14 different activities. Scans are cap-

tured at a high frame rate and registered to a canonical

topology. Due to the high frame rate, we subsample the

data temporally by a factor of 4. We consistently subsample

each mesh by the factor of 2 down to N = 3446 vertices.

Refer to the supplemental info for details on the data pro-

cessing. The training set is created by holding out all scans

for two human subjects and two activities leaving approxi-

mately 7000 training shapes. Details for additional experi-

ments with face meshes is provided in Section 4.6.

Network parameters. The structure of our graph-

convolutional VAE is illustrated in Figure 1. We evaluated a

number of model parameters on a subset of the training set
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to inform our final design choices. We use M = 8 and la-

tent dimensionality of 128 for all our DFAUST experiments.

A more important and delicate decision is the selection of

the parameter λ controlling the emphasis on pushing the

variational latent distribution towards the Gaussian prior.

Our experiments show, as expected, that a higher weight

for the Gaussian prior causes randomly sampled latent vec-

tors to generate realistic shapes more likely, while a lower

λ improves reconstruction accuracy over a wider variety of

shapes. In the context of our problem, it is more important

for the latent space to represent and for the decoder to be

able to generate a wide variety of shapes accurately. Sam-

pling from the latent space is less important since the final

latent vectors are obtained by means of solving the opti-

mization problem (2). Consequently, we selected λ = 10−8

at training (see supplemental material for empirical analysis

motivating these choices).

Implementation details. We train the model directly on

the 3 × N input meshes from the DFAUST dataset as de-

scribed above; the sparse adjacency matrices (we use a ver-

tex 2-ring as the neighborhood size) are passed as side in-

formation to define the graph convolutional layers. Data are

augmented by adding normally distributed noise to the ver-

tex positions as well as a global planar translations and scal-

ings. We use the ADAM [24] optimizer with the learning

rate set to 10−4, momentum to 0.9, batch size to 2, Xavier

initialization [17] for all weights, and train for 3× 105 iter-

ations. For shape completion optimization we use an SGD

optimizer with a 0.1 learning rate. All additional data for

training and evaluation will be provided on the authors’

websites.

4.1. Representation quality

To understand the generative capabilities of the VAE we

show several examples related to shape generation as well

as explore the structure of the learned latent space. Fig-

ure 2 depicts shapes generated by the decoder fed with la-

tent variables randomly sampled from N (0, I). As we have

explicitly relaxed the Gaussian prior on the latent variables

(small λ) during training. As discussed earlier, the tradeoff

is that samples coming from the prior may generate slightly

unrealistic shapes.

Figure 3 depicts generated shapes as the result of lin-

ear interpolation in the latent space. The source and tar-

get shapes are first passed through the encoder to obtain la-

tent representations; applying the decoder to convex com-

binations of these latent vectors produces a highly non-

linear interpolation in R
3. The top two rows of Figure 3

show interpolation for networks trained with λ = 10−6 and

λ = 10−8, respectively. The bottom row of Figure 3 high-

lights the interesting structure of the learned latent space

through arithmetic. Applying the difference of a subject

Figure 2. Random human shapes generated by the VAE. We

have explicitly relaxed the Gaussian prior on the latent variables

during training. The tradeoff is that samples coming from the prior

may generate slightly unrealistic shapes.

Z + α ( X − Y ) α = 0.5 α = 0.7 α = 1

Figure 3. Latent space interpolation. Interpolation between two

poses (left- and right-most shapes) obtained as convex combina-

tions of the respective representations the the latent space. Bottom

row: latent space arithmetic.

with left knee raised and lowered to the same subject with

right knee raised results in a lowering of the right knee. The

network learned this symmetry without any explicit model-

ing.

4.2. Completion variability

As explained in Section 3, given a partial input with more

than one solution consistent with the data, we may explore

this space of completions by sampling the initialization of

problem 2 at random from the Gaussian prior. For evalua-

tion we consider several test subjects with removed limbs.

Figure 4 shows unique plausible completions of the same

partial input achieved by random initializations.
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Input Completions

Figure 4. Completion variability. When large contiguous regions

(e.g. limbs) are missing, the solution to shape completion is not

unique. Shown here are different reconstructions with our method

obtained using random initializations.

4.3. Synthetic range scans completion

The following experiment considers the common practi-

cal scenario of range scan completion. We utilize a test-set

of 200 virtual scans produced from 10 viewpoints around

2 human subjects exhibiting 10 different poses. The full

shapes were taken from FAUST [5], and are completely

disjoint from our train set, as they contain novel subjects

and poses. Furthermore, the data is suitable for quantitative

comparison as sufficient information is given in the partial

shape to make the completion problem nearly deterministic.

Keeping the ground truth correspondence from each view

to the full shape, we report the mean completion error in

table 1 as Ours (ground truth). More interesting are the re-

sults of end-to-end completion using partial correspondence

obtained by MoNet [36] (reported as Ours (MoNet)). For

reference we report the performance of other shape com-

pletion methods: 3D-EPN [12] which has shown state-of-

the-art performance for shape completion using volumetric

networks, Poisson reconstruction [22], and nearest neigh-

bor (NN). Note, in order to comply with the architecture of

3D-EPN, we also provide viewpoint information, which is

unknown for our method. For NN the completion is consid-

ered to be the closest shape from the entire training using

the ground truth correspondences. Results in table 1 show

mean Euclidean distance (in cm) and relative volumetric er-

ror (in %) for the missing region. More results are shown in

Figures 5 and 6.

Robust optimization. Our method is able to general-

ize well to partial shapes in poses unseen during training.

Error Euclidean Volumetric err.

distance [cm] mean � std [%]

Poisson [22] 7.3 24.8 � 23.2

NN (ground truth) 5.4 34.01 � 9.23

3D-EPN [12] 4.43 89.7 � 33.8

Ours (MoNet) 3.40 12.51 � 11.1

Ours (MoNet with ref. 300) 3.01 10.00 � 8.83

Ours (MoNet with refinement) 2.84 9.24 � 8.62

Ours (ground truth) 2.51 7.48 � 5.64

Table 1. Synthetic range scans completion. Comparison of

different methods with respect to errors in vertex position and

shape volume. Our method is evaluated using ground truth and

MoNet [36] correspondences, as well as with and without refine-

ment (details in Section 4.3).
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Figure 5. Reconstruction error as a function of view angle. Our

method produces a consistently accurate reconstruction indepen-

dent of the view angle.

However, there is a gap in performance when using cor-

respondences from an oracle versus an off-the-shelf tech-

nique (MoNet). To handle noisy correspondences better,

we propose a robust enhancement to (2). Observing that

our method may not converge to the ideal completion if the

alignment is guided by poor correspondences. However, if

the partial shape is somewhat well aligned with the gener-

ated shape we can recalculate the correspondence Π using

a simple Euclidean closest-vertex assignment. We find that

recalculating when SGD plateaus leads to improved com-

pletions (results are reported in Table 1 as Ours (MoNet with

refinement)). A pleasant side-effect of this refinement step

is that our shape completion method can be used to obtain

a de-noised (albeit sparser) set of correspondences (see the

supplemental material for analysis). We also evaluate shape

completion when the optimization steps are capped at 300

(reported as Ours (MoNet with refinement 300)) as opposed

to running until convergence. Note, for simplicity we did

not explore tuning different aspects of the method (learning

rate, different reconstruction losses, etc).

4.4. Dynamic Fusion

A common use case of depth scanners is object recon-

struction form multiple viewpoints. For static scenes, this

problem was explored extensively, e.g., in [38, 39, 14].

Non-rigid deformations pose a much bigger challenge. The
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