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Abstract

This paper proposes an encoder-decoder network to

disentangle shape features during 3D face reconstruction

from single 2D images, such that the tasks of reconstruct-

ing accurate 3D face shapes and learning discriminative

shape features for face recognition can be accomplished

simultaneously. Unlike existing 3D face reconstruction

methods, our proposed method directly regresses dense 3D

face shapes from single 2D images, and tackles identity

and residual (i.e., non-identity) components in 3D face

shapes explicitly and separately based on a composite 3D

face shape model with latent representations. We devise

a training process for the proposed network with a joint

loss measuring both face identification error and 3D face

shape reconstruction error. To construct training data we

develop a method for fitting 3D morphable model (3DMM)

to multiple 2D images of a subject. Comprehensive ex-

periments have been done on MICC, BU3DFE, LFW and

YTF databases. The results show that our method expands

the capacity of 3DMM for capturing discriminative shape

features and facial detail, and thus outperforms existing

methods both in 3D face reconstruction accuracy and in

face recognition accuracy.

1. Introduction

3D face shapes reconstructed from 2D images have

been proven to benefit many tasks, e.g., face alignment

or facial landmark localization [18, 41], face animation [9,

13], and face recognition [5, 12]. Many prior work have

been devoted to reconstructing 3D face shapes from a

single 2D image, including shape from shading (SFS)-based

methods [14, 20], 3D morphable model (3DMM) fitting-
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Figure 1. Comparison between the learning process of (a) existing

methods and (b) our proposed method. GT denotes Ground Truth.

(d) and (e) are 3D face shapes and disentangled identity shapes

reconstructed by our method for the images in (c) from LFW [15].

based methods [4, 5], and recently proposed regression-

based methods [22, 23]. These methods mostly aim to

recover 3D face shapes that are loyal to the input 2D images

or retain as much facial detail as possible (see Fig. 1).

Few of them explicitly consider the identity-sensitive and

identity-irrelevant features in the reconstructed 3D faces.

Consequently, very few studies have been reported about

recognizing faces using the reconstructed 3D face either by

itself or by fusing with legacy 2D face recognition [5, 33].

Using real 3D face shapes acquired by 3D face scanners
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for face recognition, on the other hand, has been extensive-

ly studied, and promising recognition accuracy has been

achieved [6, 11]. Apple recently claims to use 3D face

matching in its iPhone X for cellphone unlock [1]. All of

these prove the discriminative power of 3D face shapes.

Such a big performance gap between the reconstructed 3D

face shapes and the real 3D face shapes, in our opinion,

demonstrates that existing 3D face reconstruction methods

seriously undervalue the identity features in 3D face shapes.

Taking the widely used 3DMM fitting based methods as

example, their reconstructed 3D faces are constrained in the

limited shape space spanned by the pre-determined bases of

3DMM, and thus perform poorly in capturing the features

unique to different individuals [39].

Inspired by the latest development in disentangling fea-

ture learning for 2D face recognition [26, 34], we propose

to disentangle the identity and non-identity components of

3D face shapes, and more importantly, fulfill reconstructing

accurate 3D face shapes loyal to input 2D images and

learning discriminative shape features effective for face

recognition in a joint manner. These two tasks, at the

first glance, seem to contradict each other. On one hand,

face recognition prefers identity-sensitive features, but not

every detail on faces; on the other hand, 3D reconstruction

attempts to recover as much facial detail as possible, regard-

less whether the detail benefits or distracts facial identity

recognition. In this paper, however, we will show that

by exploiting the ‘contradictory’ objectives of recognition

and reconstruction, we are able to disentangle identity-

sensitive features from identity-irrelevant features in 3D

face shapes, and thus simultaneously robustly recognize

faces with identity-sensitive features and accurately recon-

struct 3D face shapes with both features (see Fig. 1).

Specifically, we represent 3D face shapes with a com-

posite model, in which identity and residual (i.e., non-

identity) shape components are represented with separate

latent variables. Based on the composite model, we propose

a joint learning pipeline that is implemented as an encoder-

decoder network to disentangle shape features during re-

constructing 3D face shapes. The encoder network converts

the input 2D face image to identity and residual latent

representations, from which the decoder network recovers

its 3D face shape. The learning process is supervised

by both reconstruction loss and identification loss, and

based on a set of 2D face images with labelled identity

information and corresponding 3D face shapes that are

obtained by an adapted multi-image 3DMM fitting method.

Comprehensive evaluation experiments prove the superiori-

ty of the proposed method over existing baseline methods in

both 3D face reconstruction accuracy and face recognition

accuracy. Our main contributions are summarized below.

(i) We propose a method which for the first time explic-

itly optimizes face recognition and 3D face reconstruction

simultaneously. The method achieves state-of-the-art 3D

face reconstruction accuracy via joint discriminative feature

learning and 3D face reconstruction.

(ii) We devise an effective training process for the

proposed network that can disentangle identity and non-

identity features in reconstructed 3D face shapes. The

network, while being pre-trained by 3DMM-generated data,

can surmount the limited 3D shape space determined by the

3DMM bases, in the sense that it better captures identity-

sensitive and identity-irrelevant features in 3D face shapes.

(iii) We leverage the effectiveness of disentangled iden-

tity features in reconstructed 3D face shapes for improving

face recognition accuracy, as being demonstrated by our

experimental results. This further expands the application

scope of 3D face reconstruction.

2. Related Work

In this section, we review existing work that is closely re-

lated to our work from two aspects: 3D face reconstruction

for recognition and Convolutional Neural Network (CNN)

based 3D face reconstruction.

3D Face Reconstruction for Recognition. 3D face

reconstruction was first introduced for recognition by Blanz

and Vetter [5]. They reconstructed 3D faces by fitting

3DMM to 2D face images, and used the obtained 3DMM

parameters as features for face recognition. Their em-

ployed 3DMM fitting method is essentially an image-based

analysis-by-synthesis approach, which does not consider

the features unique to different individuals. This method

was recently improved by Tran et al. [33] via pooling

the 3DMM parameters of the images of the same subject

and using a CNN to regress the pooled parameters. They

experimentally proved the improved discriminative power

of their obtained 3DMM parameters.

Instead of using 3DMM parameters for recognition,

Liu et al. [23] proposed to recover pose and expression

normalized 3D face shapes directly from 2D face landmarks

via cascaded regressors and match the reconstructed 3D

face shapes via the iterative closest point algorithm for

face recognition. Other researchers [31, 36] utilized the

reconstructed 3D face shapes for face alignment to assist

extracting pose-robust features.

To summarize, existing methods, when reconstructing

3D face shapes, do not explicitly consider recognition

performance. In [23] and [33], even though the identity of

3D face shapes in the training data is stressed, respectively,

by pooling 3DMM parameters and by normalizing pose and

expression, their methods of learning mapping from 2D

images to 3D face shapes are unsupervised in the sense of

utilizing identity labels of the training data (see Fig. 1).

CNN-based 3D Face Reconstruction. Existing CNN-

based 3D face reconstruction methods can be divided into

two categories according to the way of representing 3D
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Figure 2. Overview of the proposed encoder-decoder based joint learning pipeline for face recognition and 3D shape reconstruction.

faces. Methods in the first category use 3DMM parame-

ters [10, 27, 30, 32, 33, 41], while methods in the second

category use 3D volumetric representations. Jourabloo

and Liu [17–19] first employed CNN to regress 3DMM

parameters from 2D images for the purpose of large-pose

face alignment. In [41], a cascaded CNN pipeline was

proposed to exploit the intermediate reconstructed 3D face

shapes for better face alignment. Recently, Richardson et

al. [27] used two CNNs to reconstruct detailed 3D faces in

a coarse-to-fine approach. Although they showed visually

more plausible 3D shapes, it is not clear how beneficial the

reconstructed 3D facial details are to face recognition.

Jackson et al. [16] proposed to represent 3D face shapes

by 3D volumetric coordinates, and train a CNN to directly

regress the coordinates from the input 2D face image.

Considering the high dimensionality of original 3D face

point clouds, as a compromise, they employed 3D volu-

metric representations. In consequence, the 3D face shapes

generated by their method are of low resolution, which are

apparently not favorable for face recognition.

3. Proposed Method

In this section, we first introduce a composite 3D face

shape model with latent representations, based on which our

method is devised. We then present the proposed encoder-

decoder based joint learning pipeline. We finally give the

implementation detail of our proposed method, including

network structure, training data, and training process.

3.1. A Composite 3D Face Shape Model

In this paper, 3D face shapes are densely aligned, and

each 3D face shape is represented by the concatenation of

its vertex coordinates as

s = [�1, �1, �1, �2, �2, �2, ⋅ ⋅ ⋅ , ��, ��, ��]
� , (1)

where � is the number of vertices in the point cloud of the

3D face, and ‘� ’ means transpose. Based on the assumption

that 3D face shapes are composed by identity-sensitive and

identity-irrelevant parts, we re-write the 3D face shape s of

a subject as

s = s̄+Δs�� +Δs���, (2)

where s̄ is the mean 3D face shape (computed across

all training samples with neutral expression), Δs�� is the

identity-sensitive difference between s and s̄, and Δs���

denotes the residual difference. A variety of sources could

lead to the residual difference, for example, expression-

induced deformations and temporary detail.

We further assume that Δs�� and Δs��� can be de-

scribed by latent representations, c�� and c���, respective-

ly. This is formulated by

Δs�� = ���(c��; ���), Δs��� = ����(c���; ����). (3)

Here, ��� (����) is the mapping function that generates

the corresponding shape component Δs�� (Δs���) from

the latent representation, with parameters ��� (����). The

latent representations can be obtained from the input 2D

face image I via another function ℎ:

[c��, c���] = ℎ(I; �), (4)

where � are the parameters involved in ℎ. Usually, the latent

representations c�� and c��� (∈ ℝ
�×1) are of much lower

dimension than the input 2D face image I as well as the

output 3D face shape point cloud s (see Fig. 3).

3.2. An Encoder-Decoder Network

The above composite model can be naturally implement-

ed as an encoder-decoder network, in which ℎ serves as an

encoder to extract latent representations of 2D face images,

and ��� and ���� are decoders to recover the identity and

residual shape components. As shown in Fig. 2, the

latent representation c�� is employed as features for face

recognition. In order to enhance the discriminative capabil-

ity of c��, we impose over c�� an identification loss that

can disentangle identity-sensitive from identity-irrelevant

features in 3D face shapes. Meanwhile, a reconstruction

loss is applied to the 3D face shapes generated by the
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Figure 3. Encoder in the proposed method is implemented based

on SphereFace [24]. It converts the input 2D image to latent

identity and residual shape feature representations.

decoders to guide c��� and ���� to better capture identity-

irrelevant shape components. Such an encoder-decoder

network enables us to jointly learn accurate 3D face shape

reconstructor and discriminative shape features. Next, we

detail the implementation of our proposed method.

3.3. Implementation Detail

3.3.1 Network Structure

Encoder Network. The encoder network, aiming at ex-

tracting latent identity and residual shape representations

of 2D face images, should have good capacity for dis-

criminating different faces as well as capturing abundant

detail on faces. Hence, we employ a state-of-the-art face

recognition network, i.e., SphereFace [24], as the base

encoder network. This network consists of 20 convolutional

layers and a fully-connected (FC) layer, and takes the 512-

dim output of the FC layer as the feature representation of

faces. We append another two parallel FC layers to the base

SphereFace network to generate 199-dim identity latent

representation and 29-dim residual latent representation,

respectively. Fig. 3 depicts the SphereFace-based encoder

network. Input 2D face images to the encoder network are

pre-processed as in [24]: The face regions are detected by

using MTCNN [40], and then cropped and scaled to 112 ×
96 pixels whose values are normalized to the interval from

−1 to 1. Each dimension in the output latent representations

is also normalized to the interval from −1 to 1.

Decoder Network. Taking the identity and residual

latent representations as input, the decoder network recov-

ers the identity and residual shape components of 3D face

shapes. Since both the input and output of the decoder

network are vectors, we use a multilayer perception (MLP)

network to implement the decoder. More specifically, we

use two FC layers to convert the latent representations

to corresponding shape components, one for identity and

the other for the residual. Fig. 4 shows the detail of

the implemented decoder network. As can be seen, the

generated 3D face point clouds have 29, 495 vertices, and

the output of the MLP-based decoder network thus is

88, 485-dim. By analogy with the 3DMM of 3D faces, the

weights of the connections between one entry in c�� or c���

FC

esR secR s sId
cId

FC

29 88485 199 88485

Figure 4. Decoders in the proposed method are implemented as a

fully connected (FC) layer. They convert the latent representations

to corresponding shape components.

and the output neurons can be considered as one basis of

3DMM. Thanks to the joint training strategy, the capacity of

the ‘bases’ learnt here is much beyond that of the classical

3DMM, as we will show in the experiments.

Loss Functions. We use two loss functions, 3D shape

reconstruction error and face identification error, as the

supervisory signals during the end-to-end training of the

encoder-decoder network. To measure the 3D shape recon-

struction error, we use the Euclidean loss, ��, to evaluate

the deviation of the reconstructed 3D face shape from

the ground truth one. The reconstructed 3D face shape

is obtained according to Eq. (2) based on the decoder

network’s output Δs�� and Δs��� (see Fig. 2). The face

identification error is measured by using the softmax loss,

�� , over the identity latent representation. The overall loss

to the proposed encoder-decoder network is defined by

� = ���� + �� , (5)

where �� is the weight for the reconstruction loss.

3.3.2 Training Data

To train the encoder-decoder network, we need a set of

data that contain multiple 2D face images of same subjects

with their corresponding 3D face shapes, i.e., {I�, ��, s�}��=1
.

�� ∈ {1, 2, ⋅ ⋅ ⋅ ,�} is the subject label of the 2D face

image I
� and 3D face s

�. � is the total number of 2D

images, and � is the total number of subjects in the training

set. However, such a large-scale dataset is not publicly

available. Motivated by prior work [33], we construct the

training data from CASIA-WebFace [37], a widely-used 2D

face recognition database, via a multi-image 3DMM fitting

method, which is adapted from the method in [29, 42].

Faces on the images in CASIA-WebFace are detected by

using the method in [40], and 68 landmarks are located by

the method in [7]. We discard images where either detection

or alignment fails, which results in 488, 848 images of

10, 575 different subjects in our training data. On average,

each subject has ∼ 46 images. Given the face images

and their facial landmarks, we apply the following multi-

image 3DMM fitting method to estimate for each subject an

identity 3D shape component that is common to all its 2D
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face images, and different residual 3D shape components

that are unique to each of the subject’s 2D images.

The 3DMM represents a 3D face shape as

s = s̄+A����� +A�������, (6)

where A�� and A��� are, respectively, the identity and

expression shape bases, and ��� and ���� are the corre-

sponding coefficients. In this paper, we use the shape

bases given by the Basel Face Model [25] as A��, and the

blendshape bases in FaceWarehouse [8] as A���.

To fit the 3DMM to � images of a subject, we attempt to

minimize the difference between u, the landmarks detected

on the images, and û, the landmarks obtained by projecting

the estimated 3D face shapes onto the images, under the

constraint that all the images of the subject share the same

���. û is computed from the estimated 3D face shape ŝ (let

ŝ� denote the vertices in ŝ corresponding to the landmarks)

by û = � ⋅P⋅R⋅(ŝ�+t), where � is the scale factor, P is the

orthographic projection, R and t are the rotation matrix and

translation vector in 3D space. Mathematically, our multi

image 3DMM fitting optimizes the following objective:

min
���,{�� ,R� ,t� ,�

�
���}

�
�=1

�∑

�=1

∥u� − û
�∥2

2
. (7)

We solve the optimization problem in Eq. (7) in an

alternating way. As an initialization, we set both ��� and

���� to zero. We first estimate the projection parameters

{� � ,R� , t�}��=1
, then expression parameters {��

���}
�=�
�=1

,

and lastly identity parameters ���. When estimating one of

the three sets of parameters, the rest two sets of parameters

are fixed as they are. The optimization is repeated until the

objective function value does not change. We have typically

found this to converge within seven iterations.

3.3.3 Training Process

With the prepared training data, we train our encoder-

decoder network in three phases. In Phase I, we train

the encoder by setting the target latent representations as

c�� = ��� and c��� = ���� and using Euclidean loss. In

Phase II, we train the decoder for the identity and residual

components separately. In Phase III, the end-to-end joint

training is conducted based on the pre-trained encoder and

decoder. Considering that the network already has good

performance in reconstruction after pre-training, we first lay

more emphasis on recognition in the joint loss function by

setting �� to 0.5. When the loss function gets saturated

(usually within 10 epochs), we continue the training by

updating �� to 1.0. The joint training concludes in about

another 20 epochs.

It is worth mentioning that the recovered 3DMM param-

eters are directly used as the latent representations during

pre-training. This provides a good initialization for the

encoder-decoder network, but limits the network to the

capacity of the pre-determined 3DMM bases. The joint

training in Phase III alleviates such limitation by utiliz-

ing the identification loss as a complementary supervisory

signal to the reconstruction loss. As a result, the learnt

encoder-decoder network can better disentangle identity

from non-identity information in 3D face shapes, and thus

enhance face recognition accuracy without impairing the

3D face reconstruction accuracy.

4. Experiments

Two sets of experiments have been done to evaluate

the effectiveness of the proposed method in 3D face re-

construction and face recognition. The MICC [2] and

BU3DFE [38] databases are used for experiments of 3D

face reconstruction, and the LFW [15] and YTF [35]

databases are used in face recognition experiments. Next,

we report the experimental results 1.

4.1. 3D Shape Reconstruction Accuracy

The 3D face reconstruction accuracy is assessed by using

3D Root Mean Square Error (RMSE) [33], defined as

RMSE = 1

��

∑��

�=1
(∥s∗� − ŝ�∥/�), where �� is the total

number of testing samples, s∗� and ŝ� are the ground truth

and reconstructed 3D face shape of the �th testing sample.

To compute the RMSE, the reconstructed 3D faces are first

aligned to ground truth via Procrustes global alignment

based on 68 3D landmarks as suggested by [3], and then

cropped at a radius of 95�� around the nose tip.

We compare our method with four state-of-the-art

3D face reconstruction methods, 3DDFA [42], 3DMM-

CNN [33], 3D shape regression based (3DSR) method [23],

and VRN [16]. Among them, the first two methods

reconstruct 3D face shapes via estimating 3DMM

parameters, while the other two directly regress 3D face

shapes from either landmarks or 2D images. 3DMM-

CNN method is the only existing method that takes into

consideration the discriminative power of the estimated

3DMM parameters. 3DSR method generates pose and

expression normalized 3D face shapes that are believed to

be more beneficial to face recognition. For those methods

that need facial landmarks on 2D images, we use the

method in [7] to automatically detect the landmarks.

Results on MICC. The MICC database contains three

challenging face videos and ground-truth 3D models ac-

quired using a structured-light scanning system for each

of 53 subjects. The videos span the range of controlled

indoor to unconstrained outdoor settings. The outdoor

videos are very challenging due to the uncontrolled lighting

conditions. In this experiment, we randomly select 5, 000

1More experimental results are provided in the supplementary material.
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Table 1. 3D face reconstruction accuracy (RMSE) under different yaw angles on the BU3DFE database.

Method ±90
∘ ±80

∘ ±70
∘ ±60

∘ ±50
∘ ±40

∘ ±30
∘ ±20

∘ ±10
∘

0
∘ Avg.

VRN 6.96 6.20 6.14 6.01 5.91 5.50 4.93 3.86 3.70 3.66 5.29

3DDFA 2.90 2.88 2.81 2.82 2.77 2.79 2.76 2.73 2.55 2.48 2.75

3DMM-CNN - - - - 2.30 2.26 2.23 2.22 2.19 2.17 2.23

3DSR 2.11 2.11 2.12 2.13 2.16 2.14 2.12 2.10 2.10 2.09 2.12

Proposed 2.09 2.04 2.03 2.03 2.00 1.99 2.03 2.01 1.97 1.93 2.01

Figure 5. Reconstruction results for three MICC subjects. The first

column shows the input images, and the rest columns show the

reconstructed 3D shapes that have the same expression as the input

images, using the methods of VRN [16], 3DDFA [42], 3DMM-

CNN [33], 3DSR [23] and the proposed method.

Table 2. 3D face reconstruction accuracy on the MICC database.

Method VRN 3DDFA 3DMM-CNN 3DSR Proposed

RMSE 5.34 2.73 2.20 2.07 2.00

images from 31, 466 outdoor video frames of 53 subjects.

Table 2 shows the 3D face reconstruction error of different

methods on the MICC database. As can be seen, our

proposed method obtains the best accuracy due to its fine-

grained processing of features in 3D face shapes. Note that

VRN, the first method in the literature that regresses 3D

face shapes directly from 2D images, has relatively high

reconstruction error in terms of RMSE, mainly because

it generates low-resolution 3D face shapes as volumetric

representations. In contrast, we reconstruct high-resolution

(dense) 3D face shapes as point clouds with help from low

dimensional latent representations.

Results on BU3DFE. The BU3DFE database contains

3D faces of 100 subjects displaying expression of neutral

(NE), happiness (HA), disgust (DI), fear (FE), anger (AN),

surprise (SU) and sadness (SA). All non-neutral expressions

were acquired at four levels of intensity. We select neutral

and the first intensity level of the rest six expressions as

testing data, resulting in 700 testing samples. Further, we

render another set of testing images of neutral expression at

different poses, i.e., −90∘ to 90∘ yaws with a 10∘ interval.

These two testing sets evaluate the reconstruction across

AN DI FE HA NE SA SU
Expression

0

1

2

3

4

5

R
M

SE
 (m

m
) VRN 3DDFA Proposed

Figure 6. Reconstruction accuracy of 3D face shapes under

different expressions on the BU3DFE database. The mean RMSEs

of thee methods over all expressions are 4.68, 2.56, and 2.19

respectively.

AN DI FE HA NE SA SU
Expression

1

1.5

2

2.5

Id
en

tit
y 

R
M

SE
 (m

m
) 3DMM-CNN 3DSR Proposed

Figure 7. Reconstruction accuracy of the identity component of 3D

face shapes under different expressions on the BU3DFE database.

The mean RMSEs of thee methods over all expressions are 2.21,

2.10, and 2.00 respectively.

expressions and poses, respectively.

Table 1 shows the reconstruction error across poses (i.e.,

yaw) of different methods. It can be seen that the RMSE

of the proposed method is lower than that of baselines.

Moreover, as the pose angle becomes large, the error of

our method does not increase substantially. This proves

the robustness of the proposed method to pose variations.

Figure 6 shows the reconstruction error across expressions

of VRN, 3DDFA, and the proposed method based on their

reconstructed 3D face shapes that have the same expression

as the input images. Figure 7 compares 3DMM-CNN,

3DSR, and the proposed method in terms of RMSE of

their reconstructed identity or expression-normalized 3D

face shapes. These results demonstrate the superiority of the

proposed method over baselines in handling expressions.

Some example 3D face reconstruction results are shown

in Fig. 5 and Fig. 8. From these results, we can clearly

see that the proposed method not only performs well in

reconstructing accurate 3D face shapes for in-the-wild 2D

images, but also disentangles identity and non-identity (e.g.,
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Table 3. Face recognition accuracy on the LFW and YTF databases.

Method Shape Texture Accuracy 100%-EER AUC TAR-10% TAR-1%

Labeled Faces in the Wild (LFW)

3DMM

√
× 66.13± 2.79 65.70± 2.81 72.24± 2.75 35.90± 3.74 12.37± 4.81

×
√

74.93± 1.14 74.50± 1.21 82.94± 1.14 60.40± 3.15 28.73± 7.17√ √
75.25± 2.12 74.73± 2.56 83.21± 1.93 59.40± 4.64 29.67± 4.73

3DDFA
√

× 66.98± 2.56 67.13± 1.90 73.30± 2.49 36.76± 6.27 10.00± 3.22

3DMM-CNN

√
× 90.53± 1.34 90.63± 1.61 96.60± 0.79 91.13± 2.62 58.20± 12.14

×
√

90.60± 1.07 90.70± 1.17 96.75± 0.59 91.23± 2.42 52.60± 8.14√ √
92.35± 1.29 92.33± 1.33 97.71± 0.64 94.20± 2.00 65.57± 6.93

Proposed
√

× 94.43± 1.47 94.40± 1.52 98.12± 0.90 95.07± 2.39 74.54± 4.33

YouTube Faces (YTF)

3DMM

√
× 73.26± 2.51 73.08± 2.65 80.41± 2.60 51.36± 5.11 24.04± 4.56

×
√

77.34± 2.54 76.96± 2.64 85.32± 2.63 63.16± 5.07 31.36± 5.21√ √
79.56± 2.08 79.20± 2.07 87.35± 1.92 69.08± 5.00 34.56± 6.89

3DDFA
√

× 68.10± 2.93 67.96± 3.12 74.95± 3.04 40.52± 3.65 12.20± 2.67

3DMM-CNN

√
× 88.28± 1.84 88.32± 2.16 95.95± 1.38 86.60± 3.95 51.12± 8.86

×
√

87.56± 2.56 87.68± 2.25 94.44± 1.38 84.80± 4.89 40.92± 8.26√ √
88.80± 2.21 88.84± 2.40 95.37± 1.43 87.92± 4.18 46.56± 6.20

Proposed
√

× 88.74± 1.03 88.70± 1.15 96.28± 0.63 89.00± 2.40 53.44± 4.51

Figure 8. Reconstruction results for an BU3DFE subject under

seven different expressions. The first column shows the input

images. In the blue box, we show the reconstructed 3D shapes that

have the same expression as the input images, using the methods of

VRN [16], 3DDFA [42] and the proposed method. In the red box,

we show the reconstructed identity 3D shapes obtained by 3DMM-

CNN [33], 3DSR [23] and the proposed method. Our composite

3D shape model enables us to generate two types of 3D shapes.

expression) components in 3D face shapes. As we will

show in the following face recognition experiments, the

disentangled shape features contribute to face recognition.

4.2. Face Recognition Accuracy

To evaluate the effectiveness of our shape features (i.e.,

the identity representations) to face recognition, we com-

pute the similarity of two faces using the cosine distances

between their shape features extracted by the encoder of our

method. To investigate the complementarity between our

learnt shape features and existing texture features, we also

fuse our method with existing methods via summation at

the score level [21]. The counterpart methods we consider

here include 3DMM [28], 3DDFA [42], 3DMM-CNN [33],

and SphereFace [24]. We compare the methods in terms

of verification accuracy, 100%-EER (Equal Error Rate),

AUC (Area Under Curve) of ROC (Receiver Operating

Characteristic) curves, and TAR (True Acceptance Rate) at

FAR (False Acceptance Rate) of 10% and 1%.

Results on LFW. The Labeled Faces in the Wild (LFW)

benchmark dataset contains 13, 323 images collected from

Internet. The verification set consists of 10 folders, each

with 300 same-person pairs and 300 different-person pairs.

The recognition accuracy of different methods on LFW is

listed in Tab. 3. Among all the 3D face reconstruction

methods, when using only shape features, our proposed

method achieves the highest accuracy, improving TAR@1%
FAR from 58.20% to 74.54% with respect to the latest

3DMM-based method [33].

Results on YTF. The YouTube Faces (YTF) database

contains 3, 425 videos of 1, 595 individuals. Face images

(video frames) in YTF have lower quality than those in

LFW, due to larger variations in pose, illumination and

expression, and low resolution as well. Table 3 summarizes

the recognition accuracy of different methods on YTF. De-

spite the low-quality face images, our proposed method still

outperforms the baseline methods in the sense of extracting

discriminative shape features. By fusing with one of the

state-of-the-art texture-based face recognition methods (i.e.,
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(a) Bases of Identity Shape Decoder (b) Bases of Residual Shape Decoder

Figure 9. Comparing the pre-trained 3DMM-like and our jointly-learnt bases defined by the weights of identity and residual shape decoders.

(a) For the bases of identity shape decoder, the weights associated with each entry in c�� are added to the mean shape, reshaped to a point

cloud (∈ ℝ
3×�), and shown as polygon meshes. (b) For the bases of residual shape decoder, the weights associated with each entry in

c��� are reshaped to a point cloud (∈ ℝ
3×�), and shown as a heat map that measures the norm value of each vertex (i.e., the deviation

from the identity shape). Red colors in the heat maps indicate larger deviations. It is important to note that the conventional 3DMM bases

are trained from 3D face scans, while our bases are learnt from 2D images.

Table 4. Efficiency comparison of different methods.

Method VRN 3DDFA 3DMM-CNN 3DSR Proposed

Time (ms) 55.68 39.17 30.12 29.80 4.79

SphereFace [24]), our proposed method further improves

the face recognition accuracy on YTF from 94.78% to

95.18%. This proves the complementarity of properly

reconstructed shape features to texture features in face

recognition. This is a notable result especially considering

the 2D face recognition method of SphereFace [24] has

already set a very high baseline (i.e., 94.78%).

4.3. Computational Efficiency

To assess the computational efficiency, we run the meth-

ods on a PC (with an Intel Core i7-5930K @ 3.5GHz, 32GB

RAM and an GeForce GTX 1080) for 700 images, and

calculate the average runtime per image in Tab. 4. Note that

3DDFA and 3DMM-CNN estimate the 3DMM parameters

in the first step, and we report their runtime of obtaining

the final 3D faces. For VRN, 3DDFA and 3DMM-CNN,

despite stand-alone landmark detection is required, the

reported time does not include the landmark detection time.

Our proposed method needs only 4.79 milliseconds (ms)

per image, which is an order of magnitude faster than

baseline methods. This is owing to the light-weight network

in our method. In contrast, baseline methods use either very

deep networks [33], or cascade approaches [23, 27].

4.4. Analysis and Discussion

To offer insights into the learnt decoders, we visualize

their weight parameters in Fig. 9. The weights associating

one entry in the latent representations with all the neurons

in the FC layer in the decoders are analogous to a 3DMM

basis (see Fig. 4). Both pre-trained bases and jointly-learnt

bases are shown for comparison in Fig. 9, from which the

following observations can be made.

(i) The pre-trained identity bases approximate the con-

ventional 3DMM bases [4] that are ordered with latter bases

capturing less shape variations. In contrast, our jointly-

learnt identity bases all describe rich shape variations.

(ii) Some basis shapes in the jointly-learnt bases do not

look like regular face shapes. We believe this is due to

the employed joint reconstruction and identification loss

function. The bases trained from a set of 3D scans as

in 3DMM, while optimal for reconstruction, might limit

the discriminativeness of shape parameters. Our bases are

trained with the classification in mind, which ensures the

superior performance of our method in face recognition.

(iii) The pre-trained residual bases, like the expression

shape bases [8], appear symmetrical. The jointly-learnt

residual bases display more diverse shape deviation pat-

terns. This indicates that the residual shape deformation

captured by the jointly-learnt bases is much beyond that

caused by expression changes, and proves the effectiveness

of our method in disentangling 3D face shape features.

5. Conclusions

We have proposed a novel encoder-decoder-based

method for jointly learning discriminative shape features

from a 2D face image and reconstructing its dense

3D face shape. To train the encoder-decoder network,

we implement a multi-image 3DMM fitting method to

construct training data, and develop an effective training

scheme with a joint reconstruction and identification loss.

We show with comprehensive experimental results that the

proposed method can effectively disentangle identity and

non-identity features in 3D face shapes and thus achieve

state-of-the-art 3D face reconstruction accuracy as well as

improved face recognition accuracy.
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