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Abstract

In this paper, we address the problem of video rain re-

moval by constructing deep recurrent convolutional net-

works. We visit the rain removal case by considering rain

occlusion regions, i.e. the light transmittance of rain streak-

s is low. Different from additive rain streaks, in such rain

occlusion regions, the details of background images are

completely lost. Therefore, we propose a hybrid rain mod-

el to depict both rain streaks and occlusions. With the

wealth of temporal redundancy, we build a Joint Recurrent

Rain Removal and Reconstruction Network (J4R-Net) that

seamlessly integrates rain degradation classification, spa-

tial texture appearances based rain removal and temporal

coherence based background details reconstruction. The

rain degradation classification provides a binary map that

reveals whether a location is degraded by linear additive

streaks or occlusions. With this side information, the gate

of the recurrent unit learns to make a trade-off between

rain streak removal and background details reconstruction.

Extensive experiments on a series of synthetic and real

videos with rain streaks verify the superiority of the pro-

posed method over previous state-of-the-art methods.

1. Introduction

Bad weather conditions cause a series of visibility degra-

dations and alter the content and color of images. Such sig-

nal distortion and detail loss lead to the failure of many out-

door computer vision applications, which generally rely on

clean video frames as their input. Rain streaks, as one of

the most common degradations in rain frames, make severe

intensity fluctuations in small regions, and thus obstruct and

blur the scene.

In the past decades, many researchers have been ded-

icated to rain image/video restoration. The rain removal

from a single image [18, 14, 27, 23] solves this problem by
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Figure 1. Demonstration for visual results of different methods on

a practical rain video. Compared with JORDER [32] and TCLR-

M [20], our method successfully removes most rain streaks and

enhances visibility significantly.

signal separation between rain streaks and background im-

ages (non-rain images), based on their texture appearances.

Frequency domain representation [18], sparse representa-

tion [23], Gaussian mixture model [21] and deep network-

s [32, 8] are adopted as basic models to differentiate rain

streaks and background images. Furthermore, video-based

methods [1, 2, 3, 5, 7, 9, 11, 12, 33] solve the problem based

on both spatial and temporal redundancies. Some work-

s [11, 9, 12] built on physical models, such as direction-

al and chromatic properties of rains. Others [5, 4, 20, 17]

further utilized temporal dynamics, including continuity of

background motions, randomly appearing of streaks among

frames, and explicit motion modeling, to facilitate video

rain removal.

These methods achieve good effects in some cases.
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However, they still neglect some important issues:

• In real-world scenarios, degradations generated by rain

streaks are more complex. The additive rain model

widely used in previous methods [18, 5] is insufficien-

t to cover visual effects of some important degrada-

tions in practice. When the light transmittance of rain

streaks is low, their corresponding background regions

are totally occluded, and the whole occlusion regions

only present the rain reliance.

• The spatial and temporal redundancies are considered

separately. These two kinds of information are intrin-

sically correlated and complementary. The potential of

jointly exploiting the information is not fully explored.

Low rank based methods [20, 31] have made some at-

tempts. However, they usually rely on the assumption

of a static background. Therefore, their results will be

ruined when large and violent motions are included.

• For learning-based video rain streak removal, training

for recovery purposes remains challenging. The train-

ing relies on the video pairs synthesized from a large-

scale high-quality video dataset with various scenes

and objects. It is cost-heavy to collect such a dataset to

synthesize rain frames.

Considering these limitations of existing works, our goal is

to build a novel video rain model that can describe various

rain streaks in practice, including both rain streaks and rain

occlusions. Then, based on this model, we further develop

a deep learning architecture to solve the corresponding in-

verse problem. We aim to develop a systematic approach to

train the network with a rain video dataset synthesized from

a medium-sized high-quality video set.

To achieve these goals, we explore possible rain models

and deep learning architectures that can effectively restore

clean frames even when rain occlusion regions appear.

First, we introduce a hybrid video rain model that is ca-

pable of describing rain occlusions. Starting from the sim-

plest additive rain model, we add an additional pixel-wise

map – to indicate whether a pixel is occluded or not. In

non-rain occlusion regions, the streaks and backgrounds are

combine linearly. In rain occlusion regions, the pixels are

replaced by rain reliance.

Second, based on this refined model, we analyze its solv-

ing paradigm, and construct a deep network. To jointly u-

tilize spatial and temporal redundancies, a recurrent neural

network (RNN) is constructed. The rain streaks appear ran-

domly among frames, whereas the motions of backgrounds

are tractable. RNN is capable of encoding the information

of adjacent background frames from their degraded obser-

vations, obtaining more representative features for derain-

ing.

Third, following the solving paradigm, the proposed RN-

N – Joint Recurrent Rain Removal and Reconstruction

Network (J4R-Net) – seamlessly integrates degradation

classification, spatial texture appearances based rain re-

moval and temporal coherence based background detail re-

construction. With the degradation classification map as

side information, the gate of the recurrent unit learns to

make a trade-off between rain streak removal and back-

ground detail reconstruction.

Finally, to train such an RNN network, besides the com-

monly used synthetic video pairs from natural videos, we

also propose to use synthetic videos from natural images

with artificially simulated motions to increase the diversity

of training data in scenes and objects.

In summary, our contributions are as follows,

• We are the first to visit the rain removal case including

rain occlusions. A novel hybrid video rain model is

proposed to adapt to these cases.

• We are the first to solve the problem of video rain re-

moval with deep networks. Specifically, a recurrent

neural network is used in our work.

• Based on the proposed refined hybrid rain model, a

Joint Recurrent Rain Removal and Reconstruction

Network (J4R-Net) is constructed to seamlessly in-

tegrate degradation classification, spatial texture ap-

pearances based rain removal and temporal coherence

based background detail reconstruction.

• We propose to use synthetic videos from natural im-

ages with artificially simulated motions to train derain-

ing networks, offering better performance.

2. Related Work

2.1. Single Image Rain Removal

Single image deraining is a highly ill-posed problem and

is addressed by a signal separation or texture classification

route. Huang et al. [18] attempted to separate rain streak-

s from the high frequency layer by sparse coding. Then,

a generalized low rank model [5] was proposed, where the

rain streak layer is assumed to be low rank. Kim et al. [19]

first detected rain streaks and then removed them with the

nonlocal mean filter. Luo et al. [23] proposed a discrimi-

native sparse coding method to separate rain streaks from

background images. In [21], Li et al. exploited Gaussian

mixture models to separate the rain streaks. The presence

of deep learning promoted the development of single image

deraining. In [8], a deep network that takes the image de-

tail layer as its input and predicts the negative residues was

constructed. It has a good capacity to keep texture detail-

s. But it cannot handle heavy rain cases where rain streaks

are dense. In [32], a deep joint rain detection and removal
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was proposed to recurrently remove rain streaks and accu-

mulations, obtaining impressive results in heavy rain cases.

However, rain streaks and textures of the background are

intrinsically overlapped in the feature space. Thus, the re-

maining weak streaks or over-smooth background textures

are usually presented in the results.

2.2. Video Rain Removal

Garg and Nayar were the first to focus on modeling rains,

e.g. the photometric appearance of rain drops [11] and ad-

dressing rain detection and removal based on dynamic mo-

tion of rain drops and irradiance constraint [9, 12]. In their

subsequent work [10], camera settings are explored to con-

trol the visibility of rain drops. These early attempts heavily

rely on the linear space-time correlation of rain drops, and

thus fail when rain streaks are diversified in scales and den-

sities. Later works formulate rain streaks with more flexible

and intrinsic models. In [33], the temporal and chromat-

ic properties of rain are visited to differentiate rain, back-

ground and moving objects. In [22], a theory of chromatic

property of rain is developed. Barnum et al. [1] utilized the

features in Fourier domain for rain removal. Santhaseelan

et al. [25] developed phase congruency features to detect

and remove rain streaks. Successive works make their ef-

forts in distinguishing fast moving edges and rain streaks.

In [3, 2], the size, shape and orientation of rain streaks are

used as discriminative features. In [5], the spatio-temporal

correlation of local patches are encoded by a low-rank mod-

el to separate rain streaks and natural frame signals. Jiang

et al. [17] further considered the overall directional tenden-

cy of rain streaks, and used two unidirectional total varia-

tion regularizers to constrain the separation of rain streaks

and background. The presence of learning-based method,

with improved modeling capacity, brings in new opportu-

nities. Chen et al. [4] proposed to embed motion segmen-

tation by Gaussian mixture model into rain detection and

removal. Tripathi et al. [28, 29] trained Bayes rain detec-

tor based on spatial and temporal features. In [20], Kim

et al. trained an SVM to refine the roughly detected rain

maps. Wei et al. [31] encoded rain streaks as patch-based

mixtures of Gaussian, which is capable of finely adapting a

wider range of rain variations.

3. Hybrid Video Rain Model

3.1. Additive Rain Model

The widely used rain model [21, 23, 15] is expressed as:

O = B+ S, (1)

where B is the background frame without rain streaks, and

S is the rain streak frame. O is the captured image with

rain streaks. Based on Eq. (1), rain removal is regarded

as a signal separation problem [21, 23, 32]. Namely, giv-

en the observation O, removing rain streaks is to estimate

Figure 2. Left and middle panels: two adjacent rain frames. Right

panel: the rain streaks in these rain frames, denoted in blue and

red colors, respectively. The presented streaks have similar shapes

and directions, and however, their distributions in spatial locations

are uncorrelated.

the background B and rain streak S, based on the different

characteristics of the rain-free images and rain streaks.

This single-frame rain synthesis model in Eq. (1) can be

extended to a multi-frame one by adding a time dimension

as follows,

Ot = Bt + St, t = 1, 2, ..., N, (2)

where t and N signify the current time-step and total num-

ber of the frames, respectively. Rain streaks St are as-

sumed to be independent identically distributed random

samples [26]. Their locations across frames are uncorre-

lated, as shown in Fig. 2.

Figure 3. Examples of rain occlusions in video frames. Compared

with additive rain streaks, the rain occlusions (denoted in red col-

or) contain little structural details of the background image.

However, in practice, degradations generated by rain

streaks are very complex. For example, when the rain level

is moderate or even heavy, the light transmittance of rain

drop becomes low and the rain region of Ot presents iden-

tical intensities, as shown in Fig. 3. In this case, the signal

superposition of rain frames includes rain streaks and rain

occlusions. Based on Eq. (1), the deduced St = Ot−Bt de-

viates from its original distribution and contains more struc-

ture details. Rain removal in rain occlusion regions needs

to remove the rain reliance and fill in the missing details.

Thus, it is harder to learn a mixture mapping that restores

signals in all regions without distinction. It is meaningful to

build a unified hybrid model that describes both two kinds

of degradation to guide solving the rain removal task.
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3.2. Occlusion­Aware Hybrid Rain Model

To address this issue, we propose a hybrid rain model

that is adaptive to model rain occlusions. In such a model,

all pixels in rain frames are classified into two groups: 1)

the ones following the additive rain model in Eq. (1); 2) the

others whose pixel values are just equal to the rain reliance.

The formulation of such a hybrid rain model is given as

follows,

Ot = (1− αt) (Bt + St) + αtAt, (3)

where At is the rain reliance map and αt is an alpha matting

map defined as follows,

αt (i, j) =

{
1, if (i, j) ∈ ΩS,
0, if (i, j) /∈ ΩS,

(4)

where ΩS is the region where the light transmittance of rain

drop is low, which is defined as rain occlusion region.

4. Joint Recurrent Rain Removal and Recon-

struction Network

4.1. From Formulation to Network Design

Video rain removal is to recover the background se-

quence {Bt}, given the input rain sequence {Ot}. We

rewrite all formulations into the pixel-wise form. Thus, E-

q. (3) is rewritten into:

O(i, j, t) = (1− α(i, j, t)) (B(i, j, t) + S(i, j, t))

+ α(i, j, t)A(i, j, t), (5)

where (i, j) indexes the spatial location, and t indexes the

temporal location.

To solve B(i, j, t), α(i, j, t) is the first to be addressed.

The mapping is signified as Fα (·), which can be learned by

a CNN/RNN network as follows,

α̂(i, j, t) = Fα ({O(x, y, z)|(x, y, z) ∈ ǫ (i, j, t)}) , (6)

where ǫ (i, j, t) is the neighboring pixels of (i, j, t).
Then, B(i, j, t) is derived in two cases, respectively.

When α̂(i, j, t) = 0, the rain streak can be estimated by

a CNN/RNN network, denoted by FS (·) as follows,

Ŝ(i, j, t) = FS ({O(x, y, z)|(x, y, z) ∈ ǫ (i, j, t)}) . (7)

Then, the background can be derived by

B̂(i, j, t) = O(i, j, t)− Ŝ(i, j, t), (8)

When α̂(i, j, t) = 1, O(i, j, t) contains no information re-

lated to B(i, j, t). We need to infer the missing information

from its neighboring pixels. Thus, Â(i, j, t) can be learned

by a CNN/RNN network, denoted by FA (·).

Â(i, j, t) = FA ({O(x, y, z)|(x, y, z) ∈ ǫ (i, j, t)}) . (9)

The recovery of B̂(i, j, t) is an reconstruction process,

B̂(i, j, t) = FB ( {O(x, y, z)|(x, y, z) ∈ ǫα0 (i, j, t)} ,

Â(i, j, t)), (10)

where ǫα0 (i, j, t) is the neighboring pixels in non-occlusion

regions whose α̂ value is zero. FB (·) can also be mod-

eled by a CNN/RNN network. Note that, compared with E-

qs. (7)-(9), Eq. (10) is quite different, because ideally one of

its two input branches ({O(x, y, z)|(x, y, z) ∈ ǫα0 (i, j, t)})

only uses the input from the non-occlusion regions. With

the information in ǫα0 (i, j, t), which is more reliable, the

lost details of background frames are better filled in.

Here, we argue that, the information inferred from

ǫα0 (i, j, t) can be well approximated by the temporally ag-

gregated features from adjacent frames. In rain videos,

based on the analysis in Sec. 3.1, the rain streaks or rain

occlusions appear continuously in spatial locations and ran-

domly among frames. Thus, the temporal redundancy a-

mong frames is usually more reliable than the spatial one.

Based on this point, we will use the spatial features to per-

form rain streak removal and temporally aggregated fea-

tures for background video reconstruction.

In summary, we need to build four mappings to estimate

Â(i, j, t), α̂(i, j, t), Ŝ(i, j, t) (with B̂(i, j, t) in the case that

α̂(i, j, t) = 0) and B̂(i, j, t) (in the case that α̂(i, j, t) = 1),

respectively.

4.2. Network Architecture of J4R­Net

Based on the solution paradigm in the last subsection,

we build the J4R-Net network. The network architecture

is illustrated as Fig. 4. Briefly, we first extract the features

of each frame by a residual CNN. Its output features are

expected to estimate rain streaks Ŝt. Then, a small two-

layer CNN is built to estimate α̂t. Guided by α̂t, the gat-

ed recurrent units are used to fuse the spatial and temporal

information. At each time-step, with two inputs – spatial

features from the current input frame Ot, and the temporal-

ly aggregated memory from adjacent frames (approximat-

ed as the inferred information from ǫα0

t−1
) – the gated RNN

outputs the fused features (expected to restore B̂t) and the

updated temporally aggregated memory (approximated as

the inferred information from ǫα0

t ).The updated temporally

aggregated memory is constrained to recover the details of

the current background frame E(B̂t). The details of each

component of our network are presented in the following.

Single Frame CNN Extractor (CNN Extractor). The

residual learning architecture [13, 32] is used for single

frame CNN feature extraction. As shown in Fig. 5, residual

blocks are stacked to build a CNN network. In formulation,

let f c
t,k,in denote the input feature map of the k-th residual

block. The output feature map of the k-th residual block,
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Figure 4. The framework of Joint Recurrent Rain Removal and Reconstruction Network (J4R-Net). We first employ a CNN to extract

features of t-th frame Ot. Then, in degradation classification network (D-Net), based on Ft and the aggregated feature Ht−1 from previous

frames, the degradation classification map αt is detected. Then, in Fusion Network (F-Net), a gated recurrent neural network, based on

Ft, Ht−1 and α̂t, the new aggregated feature Ht is generated. Ft is inputted into Removal Network (R-Net) to estimate the rain streak

Ŝt. This path makes Ft separate rain streaks based on spatial appearances. The aggregated feature Ht−1 from previous frames is inputted

into reConstruction Network (C-Net) to predict the details of the current frame E(B̂t), where E(·) is a high-pass filter. This path makes

Ht−1 capable of filling in structural details in rain occlusion regions of the current frame. The new aggregated feature Ht combines the

information of two paths. It goes through Joint Removal and reConstruction Network (JRC-Net) to estimate the background image B̂t,

which is the final output of J4R-Net. The specific network configuration is provided in the supplementary material. (Best viewed in color)

f
c
t,k,out, is progressively updated as follows:

f
c
t,k,out = max

(
0,Wc

t,k,mid ∗ f
c
t,k,mid + b

c
t,k,mid + f

c
t,k,in

)
,

f
c
t,k,mid = max

(
0,Wc

t,k,in ∗ f
c
t,k,in + b

c
t,k,in

)
, (11)

where ∗ signifies the convolution operation. W and b

with subscripts and superscripts denote the weight and

bias of the corresponding convolution layers, respectively.

f
c
t,k,in = f

c
t,k−1,out is the output features of (k − 1)-th resid-

ual block. There is a by-pass connection here between f
c
t,k,in

and f
c
t,k,out. This architecture is proven effective in increas-

ing the network depth and improving network training. The

output feature map is denoted as Ft, where t is the time-step

of the frame. Ft encodes the spatial information of Ot.

Figure 5. The CNN architecture for single frame CNN feature ex-

traction. R-Net, C-Net and JRC-Net adopt this network architec-

ture as well.

Degradation Classification Network (D-Net). Compared

with rain removal in a single frame, video rain removal con-

tains temporal sequential information. For rain occlusion

regions, the temporal context makes it possible to regard

the rain removal as a video reconstruction task, to restore

the lost information from adjacent frames. Thus, we detec-

t the degradation type of rain frames explicitly, providing

useful side information for successive spatial and temporal

redundancy fusion. D-Net takes Ft and Ht−1 as its input,

and predicts α̂t in the middle layer as follows,

fdt,0 = [Ft,Ht−1] ,

fdt,1 = W
d
t,1 ∗ fdt,0 + b

d
t,1,

fdt,2 = W
d
t,2 ∗ fdt,1 + b

d
t,2, (12)

α̂t (k) =
exp

(
f
d
t,2 (k)

)
∑

j=1,2 exp
(
fdt,2 (j)

) ,

where Ht−1 is the aggregated memory from the last frame,

which jointly encodes previous frames. Then, two layers

of convolutions are used to transform α̂t (k) into the output

feature map fdt,4 as follows,

fdt,3 = W
d
t,3 ∗ α̂t + b

d
t,3,

fdt,4 = W
d
t,4 ∗ fdt,3 + b

d
t,4. (13)

Fusion Network (F-Net). After obtaining degradation-

dependent features fdt,4, spatial features Ft, and temporal-

ly aggregated memory Ht−1, we then consider to fuse them

together. Gated recurrent unit (GRU) [6], an advanced RNN

architecture, is used. With gate functions, the neuron choos-

es to read and reset at a time-step. This architecture updates

and aggregates internal memory progressively, which facil-

itates its modeling of long-term temporal dynamics of se-
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quential data. The formulations are presented as follows,

H
j
t =

(
1− z

j
t

)
H

j
t−1

+ z
j
tH̃

j
t ,

H̃
j
t = tanh

(
WhFt +Uh

(
r
j
t ⊙Ht−1

))j

,

z
j
t = σ

(
WzFt +UzH

j
t−1

+Vzfdt,4

)j

, (14)

r
j
t = ReLU

(
WrFt +UrHt−1 +Vrfdt,4

)j

,

where j indexes the layer number of GRUs. For simplicity,

we only show a one-layer GRU in Fig. 4. In fact, sever-

al layers of GRUs can be stacked. H
j
t is interpreted as the

aggregated memory, representing the accumulated informa-

tion at the t-th time-step from adjacent frames. H
j
t is also

the output of the unit. r
j
t is the read gate, controlling the

input information from adjacent frames to the current one.

z
j
t is the update gate, deciding how much information of

the current frame should be updated to the hidden state. H̃
j
t

is the new memory information generated at the t-th time-

step.

Rain Removal Network (R-Net). R-Net aims to separate

rain streaks based on spatial features, which makes Ft good

at distinguishing rain streaks and normal textures.

Reconstruction Network (C-Net). C-Net aims to fill in

missing rain occlusion regions based on temporal redundan-

cy, which makes the network capable of modeling motions

and temporal dynamics of background among frames.

Joint Rain Removal and Reconstruction Network (JRC-

Net). JRC-Net aims to estimate the background frame with

both kinds of information. Note that, R-Net, C-Net, and

JRC-Net use the same architecture of single-frame CNN

network.

Loss Function. Let B̂t, α̂t and Ŝt denote the estimated

background layer, degradation type mask, and streak lay-

er. Let Bt, αt and St denote the ground-truth background

frame, degradation type mask, and streak layer. The loss

function of the network includes four terms,

lall = ljoint + λdldetect + λclrect + λrlremoval,

ljoint =
∥∥∥B̂t − bt

∥∥∥
2

2

,

ldetect = log




∑

k=1,2

exp
(
f
d
t,2 (k)

)

− αt, (15)

lrect =
∥∥∥E

(
B̂t

)
− E (bt)

∥∥∥
2

2

,

lremoval =
∥∥∥Ŝt − st

∥∥∥
2

2

,

where E(·) is a high-pass filter. λd, λc, and λr are set to

0.001, 0.0001, and 0.0001, respectively.

4.3. Removal or Reconstruction: An Intuitive Ex­
planation

We take a closer look at our GRU-based F-Net. If r
j
t = 0

and z
j
t = 1, the network ignores accumulated memory from

previous time-steps and just focuses on the current frame:

H
j
t = tanh (WhFt)

j
. (16)

In this case, the network works as a single frame rain re-

moval network. If r
j
t is large and z

j
t = 0, Uh

(
r
j
t ⊙Ht−1

)

plays a dominant role in H̃
j
t , and then H

j
t is more depended

on accumulated memory from adjacent frames:

H
j
t = tanh

(
Uh

(
r
j
t ⊙Ht−1

))j

. (17)

In this case, the network performs multi-frame background

reconstruction. Therefore, learned two gates r
j
t and z

j
t con-

trol practical functions of the network, and trade-off the

benefits between them.

5. Experimental Results

We perform extensive experiments to demonstrate the

superiority of J4R-Net, as well as effectiveness of its each

component. Due to the space limit, some results are pre-

sented in the supplementary material.

Datasets. We compare J4R-Net with state-of-the-art

methods on a few benchmark datasets:

• RainSynLight25, which is synthesized by non-rain se-

quences with the rain streaks generated by the proba-

bilistic model [11];

• RainSynComplex25, which is synthesized by non-rain

sequences with the rain streak generated by the proba-

bilistic model [11], sharp line streaks [32] and sparkle

noises;

Figure 6. Top left panel: one example of RainSynLight25. Top

right panel: one example of RainSynComplex25. Bottom panel:

two examples of RainPractical10.
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(a) Rain image (b) Ground truth (c) TCLRM (d) DetailNet (e) JORDER (f) SE (g) J4R-Net

Figure 7. Results of different methods on an example of RainSynLight25. From top to down: whole image, local regions of the estimated

background layer, and local regions of the estimated rain streak layer.

(a) Rain image (b) Ground truth (c) TCLRM (d) DetailNet (e) JORDER (f) SE (g) J4R-Net

Figure 8. Results of different methods on an example of RainSynComplex25. From top to down: whole image, local regions of the estimated

background layer, and local regions of the estimated rain streak layer.

• RainPractical10, ten rain video sequences we collect-

ed from practical scenes from Youtube website1, GI-

PHY2 and movie clips.

Some examples of RainSynLight25, RainSynComplex25,

and RainPractical10 are provided in Fig. 6. Our syn-

thesized training and testing data is from CIF testing se-

quences, HDTV sequences3 and HEVC standard testing se-

quences4. The augmented video clips are synthesized based

on BSD500 [24], with the artificially simulated motions,

including rescaling and displacement. More information

about training data and training details are provided in the

supplementary material.

Comparison Methods. We compare J4R-Net with six

1https://www.youtube.com/
2https://giphy.com/
3https://media.xiph.org/video/derf/
4http://ftp.kw.bbc.co.uk/hevc/hm-10.0-anchors/bitstreams/

state-of-the-art methods: discriminative sparse coding (D-

SC) [23], layer priors (LP) [21], joint rain detection and re-

moval (JORDER) [32], deep detail network (DetailNet) [8],

stochastic encoding (SE) [31], temporal correlation and

low-rank matrix completion (TCLRM) [20]. DSC, LP,

JORDER and DetailNet are single frame deraining method-

s. SE and TCLRM are video derainig methods. JORDER

and DetailNet are deep-learning based methods.

For the experiments on synthesized data, two metrics

Peak Signal-to-Noise Ratio (PSNR) [16] and Structure Sim-

ilarity Index (SSIM) [30] are used as comparison criteria.

Following previous works, we evaluate the results only in

the luminance channel, since human visual system is more

sensitive to luminance than chrominance information.

Quantitative Evaluation. Table 1 shows the results

of different methods on RainSynLight25 and RainSynCom-

plex25. As observed, our method considerably outperforms
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Rain images TCLRM DetailNet JORDER SE J4R-Net

Figure 9. Results of different methods on practical images.

Table 1. PSNR and SSIM results among different rain streak removal methods on RainSynLight25 and RainSynComplex25.

Dataset Rain Images DetailNet TCLRM JORDER

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Light 23.69 0.8058 25.72 0.8572 28.77 0.8693 30.37 0.9235

Heavy 14.67 0.4563 16.50 0.5441 17.31 0.4956 20.20 0.6335

Dataset LP DSC SE Ours

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Light 27.09 0.8566 25.63 0.8328 26.56 0.8006 32.96 0.9434

Heavy 17.65 0.5364 17.33 0.5036 16.76 0.5293 24.13 0.7163

other methods in terms of both PSNR and SSIM. The P-

SNR of J4R-Net is higher than that of JORDER, the state-

of-the-art sinlge image rain removal method, with margins

at more than 3dB and 5dB on RainSynLight25 and Rain-

SynComplex25, respectively. J4R-Net also obtains higher

SSIM values than JORDER, with margins at about 0.03

and 0.14 on RainSynLight25 and RainSynComplex25, re-

spectively. Compared with SE and TCLRM, J4R-Net also

achieves higher PSNR and SSIM. The gains of PSNR are

about 5dB and 8dB on RainSynLight25 and RainSynCom-

plex25, respectively. The gains of SSIM are more than 0.08

and 0.25 on RainSynLight25 and RainSynComplex25, re-

spectively.

Qualitative Evaluation. Fig. 9 shows the results of

practical images. Due to the space limit, we here only

present the zooming-in local results. Their corresponding

full results are provided in the supplementary material. T-

CLRM and J4R-Net remove the majority of rain streaks

successfully. However, the result of TCLRM may contain

artifacts in the area with large motions, as denoted by the

red arrows. J4R-Net achieves superior performance in both

removing rain streaks and avoiding artifacts.

6. Conclusion

In this paper, we proposed a hybrid rain model to depic-

t both rain streaks and occlusions. Guided by this mod-

el, a Joint Recurrent Rain Removal and Reconstruction

Network (J4R-Net) was built to seamlessly integrate rain

degradation classification, spatial texture appearances based

rain removal and temporal coherence based background de-

tails reconstruction. With a binary mask generated by rain

degradation classification to denote the degradation type,

the gate of the recurrent unit made a trade-off between rain

streak removal and background details reconstruction. Ex-

tensive experiments on a series of synthetic and practical

videos with rain streaks verified the superiority of the pro-

posed method over previous state-of-the-art methods.
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