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Abstract

We propose the inverse problem of Visual question an-

swering (iVQA), and explore its suitability as a benchmark

for visuo-linguistic understanding. The iVQA task is to gen-

erate a question that corresponds to a given image and an-

swer pair. Since the answers are less informative than the

questions, and the questions have less learnable bias, an

iVQA model needs to better understand the image to be suc-

cessful than a VQA model. We pose question generation as

a multi-modal dynamic inference process and propose an

iVQA model that can gradually adjust its focus of attention

guided by both a partially generated question and the an-

swer. For evaluation, apart from existing linguistic metrics,

we propose a new ranking metric. This metric compares

the ground truth question’s rank among a list of distrac-

tors, which allows the drawbacks of different algorithms

and sources of error to be studied. Experimental result-

s show that our model can generate diverse, grammatically

correct and content correlated questions that match the giv-

en answer.

1. Introduction

As conventional object detection and recognition ap-

proach solved problems, we see a surge of interest in more

challenging problems that should require greater ‘under-

standing’ from computer vision systems. Image captioning

[31], visual question answering [2], natural language object

retrieval [20] and ‘visual Turing tests’ [11] provide multi-

modal AI challenges that are expected to require rich visual

and linguistic understanding, as well as knowledge repre-

sentation and reasoning capabilities. As interest in these

grand challenges has grown, so has scrutiny of the bench-

marks and models that appear to solve them. Are we mak-

ing progress towards these challenges, or are good results

the latest incarnation of horses [29, 30] and Potemkin vil-

lages [12], with neural networks finding unexpected corre-

lates that provide shortcuts to give away the answer?

Recent analyses of VQA models and benchmarks have

found that the reported VQA success is largely due to mak-

ing predictions from dataset biases and cues given away in
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Figure 1. Illustration of iVQA task: Input answers and images a-

long with the top questions generated by our model.

the question, with predictions being minimally dependent

on understanding image content. For example it turns out

that existing VQA models do not ‘look’ in the same places

as humans do to answer the question [6]; they do not give

different answers when the same question is asked of differ-

ent images [1]; and they can perform well given no image

at all [2, 17]. Moreover, VQA model predictions do not de-

pend on more than the first few words of the question [1],

and their success depends largely on being able to exploit

label bias [13]. These observations have motivated renewed

attempts to devise more rigorous VQA benchmarks [13].

In this paper we take a different approach, and explore

whether the task of inverse VQA provides an interesting

benchmark of multi-modal intelligence. The inverse VQA

(iVQA) task is to input a pair of image and answer, and then

ask (output) a suitable question for which the given answer

holds in the context of the given image. We conjecture that

iVQA, as illustrated in Fig. 1, is an interesting challenge for

several reasons: (i) There may be less scope for an iVQA

model to take advantage of question bias than for VQA to s-

core highly through answer bias (there is less question bias,

and exploiting it is harder than for categorical answers). (ii)

The answers themselves provide a very sparse cue in iVQA

compared to questions in VQA. So there may be less op-

portunity to deduce the question from the answer alone in
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iVQA than there is to deduce the answer from the question

alone in VQA. Thus the iVQA task relies more heavily on

understanding image content. (iii) From a knowledge repre-

sentation and reasoning perspective, iVQA may provide the

opportunity to test more complex inference strategies such

as counterfactual reasoning [4].

Although closely related to VQA, existing VQA model-

s do not provide a solution to the iVQA problem. This is

because much less information can be inferred from an an-

swer than from a question. In addition, although an answer

is often short consisting of a phrase or even a single word,

an iVQA model-generated question is a complete sentence

composed of a long sequence of words. The key to effec-

tive iVQA is thus to attend selectively and dynamically to

different regions of the image as the model progresses to

generate the next word. This dynamic attention mechanism

has to be conditioned on both the answer and the partial sen-

tence generated so far. To this end, a novel dynamic multi-

modal attention-based iVQA model is proposed which is

capable of generating diverse, grammatically correct and

content correlated questions that match the given answer.

Prior evaluations of question generation methods main-

ly use standard machine translation metrics, e.g., BLEU,

METEOR, etc. These automatic metrics are correlated with

human judgements for question generation [28]. Howev-

er they provide limited power to diagnose question genera-

tion models in terms of when and why they succeed or fail.

In this paper, we first propose an alternative and comple-

mentary ranking-based evaluation metric which is based on

ranking the ground truth question among alternative distrac-

tors using an iVQA model, given the image and the answer.

By controlling the types of distractors presented when us-

ing this metric, we can better understand the successes and

failures of different models. Second, we perform a human

study which is robust to iVQA’s one-to-many nature (multi-

ple possible questions can have the same answer). Reassur-

ingly our human study scores turn out to be highly correlat-

ed to our proposed new ranking metric.

The contributions of this paper are as follows: (1) The

novel iVQA problem is introduced as an alternative chal-

lenge for high-level multi-modal visuo-linguistic under-

standing. (2) We propose a multi-modal dynamic attention

based iVQA model. (3) We propose a question ranking

based evaluation methodology for iVQA that is helpful to

diagnose the strengths and weaknesses of different models.

(4) As the dual problem of VQA, we show that iVQA has

the potential to help improve VQA performance.

2. Related work

Image captioning Image captioning [31, 19] aims to de-

scribe, rather than merely recognise objects in images. It

encompasses a number of classic vision capabilities as pre-

requisites including object [15] and action [35] recognition,

attribute description [9] and relationship inference [24].

It further requires natural language generation capabilities

to synthesise open-ended linguistic descriptions. Popular

benchmarks and competitions have inspired intensive re-

search in this area. Captioning models have explicitly ad-

dressed these sub-tasks to varying degrees [19], but the most

common and successful approaches use neural encoders

(of images), and decoders (of captions), with little explic-

it knowledge representation and reasoning [31, 23]. The

iVQA task investigated here is related to captioning in that

we aim to produce natural language outputs, but distinct in

that the outputs are sharply conditioned on the required an-

swer, as illustrated in Fig. 1.

VQA Challenge Like captioning, VQA has gained atten-

tion as a synthesis challenge in AI, requiring both computer

vision and natural language understanding to succeed [2].

Based on an image, and a natural language question about

the image, a VQA system produces an answer. Unlike other

vision tasks (recognition, detection, description), the ques-

tion to be answered in VQA is dynamically specified at

runtime. Besides visuo-linguistic grounding, many VQA

examples seem to require extra information not contained

in the question or image, e.g., background common sense

about the world. Thus VQA is hoped to provide a long ter-

m goal for AI-complete multi-modal intelligence. However

increasing scrutiny has shown that learning systems excel

at finding shortcuts in terms of gaming the biases in answer

distributions, and giveaway correlations [1, 17], leading to

doubts about the level of visuo-linguistic intelligence im-

plied by current results [6]. Although some benchmarks

in principle require open-sentence answers, most answers

are simple one-word outputs, and therefore the most com-

mon approach has been to formalise answer generation as

a multi-class classification problem over the most frequen-

t answers [17, 10]. Although successful, this is somewhat

unsatisfactory as it is no longer an open-world challenge. In

this paper we explore a novel iVQA task as an alternative

open-world benchmark for visuo-linguistic understanding.

VQA Models Existing VQA models are commonly based

on two-branch neural networks, each consisting of a CNN

image encoder, a LSTM question encoder which are merged

before feeding to an answer decoder [2, 26]. Recently they

have been enhanced through various mechanisms including

better visuo-linguistic merging [21, 10], varying degrees of

explicit representation [3], reasoning with external knowl-

edge bases [32], and improving visual encoding through at-

tention [10, 33]. With most recent models treating answer

generation as a classification problem, these models cannot

be directly modified for iVQA by simply swapping the an-

swer and question encoder/decoder. The proposed iVQA

model is a marriage between captioning and VQA models

but with a dynamic and multi-modal attention mechanism

developed specificaly for iVQA.
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Figure 2. Overall architecture of the proposed iVQA model

Related Challenges Our proposed challenge is related to

emerging task of visual question generation (VQG): to gen-

erate a natural question about the content of an image [28].

Introduced in [28], VQG is further studied in [36] where

DenseCap [18] is used to generate region specific descrip-

tions before being translated into questions. VQG is a pre-

specified task unlike VQA and iVQA which are dynami-

cally determined at runtime. Importantly, VQG is easier in

terms of required understanding. Since VQG is not required

to be answer-conditional, it often generates very general

open questions that even humans cannot answer. It does not

need to understand the image clearly enough – and ground

the two domains richly enough – to correctly condition the

generated question on the answer. Another relevant chal-

lenge is visually grounded conversation (VGC) which aims

to generate natural-sounding conversations [7, 27]. VGC

typically starts with VQG, but the following responses and

further questions are generated primarily following conver-

sational patterns mined from social media text, and only

loosely grounded on the context of image content. In con-

trast, the image content grounding is much tighter in iVQA.

3. Methodology

3.1. Problem formulation

The problem of inverse visual question answering

(iVQA) is to infer a question q for which a given answer

a holds, in the context of a particular image I . Formally:

q∗ = max
q

p(q|I, a; Θ), (1)

where q is a sentence with words (w1, w2, ..., wn) and Θ is

the model parameters. As a sequence generation problem,

we can use a recurrent neural network language model, to

generate the sentence by maximising the likelihood:

q∗ = max
q

∏

t

p(wt|wt−1, ..., w1, I, a). (2)

Since the task is conditioned on both image I and answer a,

the visual information has to be integrated with the answers

appropriately to generate questions.

3.2. Model overview

The architecture of our iVQA model is shown in Fig. 2.

It is a deep neural network with three subnets: an image en-

coder, an answer encoder, and a question decoder. The two

encoders provide inputs for the decoder to generate a sen-

tence which fits to the conditioned answer and image con-

tent. A multi-modal attention module (detailed later) is also

a key component that directs image attention dynamically

given the outputs of both encoders and a partial question

encoder. We first describe the three subnets.

The image encoder is a CNN that generates a feature

representation of the image. Both global and local features

are exploited for image representation. The res5c features

computed using the ResNet-152 model [15] are utilised as

local features. More specifically, The local feature collec-

tion I = {vij} is defined as local feature vij ∈ R
2048 over

all 14×14 spatial locations. To extract the local features, we

resize the image to 448×448 before feeding it to the feature

extractor as in [10]. As for the global feature, the semantic

concept [23] feature Is ∈ R
1000 is used. These 1,000 se-

mantic concepts are mined from the most frequents words

in a set of image captions. A concept classifier is learned to

predict Is as classification scores for the concepts.

For the answer encoder, a long-short memory (LSTM)

network with 512 cells [14] is used, and the concatenation

of the final hidden state and cell state provides the answer

representation a ∈ R
1024. With the described CNN image

encoder and LSTM based answer encoder as input, a LSTM

question decoder can be used to generate questions condi-

tioned on both the images and answer. The detailed decod-

ing processing together with the proposed attention module

will be detailed next.

3.3. Dynamic multi­modal attention

Given the sparse information contained in the answer,

having an effective attention model to focus on the right

region of the image is critical for iVQA. Attention model-

s have been widely studied in image captioning [25] and

VQA [33]. However, our iVQA problem has some unique

characteristics, and thus needs a tailor-made attention mod-

ule. Specifically, compared with VQA, iVQA requires mul-

tiple decoding steps and the focus of attention therefore

needs to be dynamically changed accordingly. Also un-

like image captioning, the generation process has multi-

modal conditions: i.e., image and answer, both of which

need to be integrated in every decoding step in a dynamic

manner. Consider the following question-answer pair: “Q:

What colour is the dress the girl is wearing?”; “A: Pink”.

Given the answer, the model can infer that the question is

about colour. After the model has predicted type specific

partial question qt = {what, colour, is, the}, the attention

network will integrate the partial question qt with the an-

swer a = {pink}, and search for all objects with the pink

colour and output attended features. Based on these attend-
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ed features the next word wt+1 is predicted. Motivated by

these unique characteristics, we propose an attention model

that can perform inference based on image, partial question

and answer jointly and dynamically. It is composed of the

the following sub-modules:

Initial glimpse The initial glimpse should provide an

overview cue of the input image-answer pair, to establish a

good starting point for the decoding process. We use seman-

tic concept prediction Is as a global visual cue, which cap-

tures 1-gram information that may be relevant to the ques-

tion [23]. The encoded answer a is taken as the textual cue,

which determines the set of likely initial words of the target

question. The two cues are integrated as

h0 = δ(WihIs +Waha), (3)

where Wih and Wah are embedding weights1, and δ(·) is a

tanh activation function. This joint representation is directly

used as the initial memory of the decoding network.

Encoding of partial question The partial question en-

coder sequentially encodes the partial question generated

thus far qt = {w1, w2, ..., wt} to a hidden representation

ht. A LSTM network with 512 cells is used to encode the

partial question to a hidden representation ht as

xt = Ewt,

ht,mt = LSTM(xt,ht−1,mt−1),
(4)

where wt is the one-hot coding of word wt; E is the word

embedding matrix; xt is the embedded word vector which

serves as an input to the LSTM. LSTM(·) takes previous

states (ht−1,mt−1) and xt as input to generate the next

states. For the computation of the LSTM, readers are re-

ferred to [16] for details.

Multi-modal attention network The attention network

takes local features I , partial question coding ht, and an-

swer coding a as input, and outputs the joint embedding of

attended visual features ct specified by the partial question-

answer context zt. To obtain the partial question-answer

context, the partial question coding ht and answer coding a

are fused as

zt = ReLU(Wqht +Waa) (5)

where Wq and Wa are the embedding weights for question

and answer respectively.

Then the visual features I and textual context zt are s-

patially matched via soft attention: The visual features vi,j

and context vector zt are fused by a multi-modal low rank

bilinear pooling (MLB) [21], and then the fused feature fij

1In all equations, we omit the bias term for simplicity.

is used for attention map computation as follows:

fij = δ(Uδ(Wvvi,j)⊙ δ(Wzzt))

αt
ij = softmax(pT [fij ])

ct =
∑

ij

αt
ijvij ,

(6)

where ct is the attended visual feature; αt = [αt
ij ] is the

attention map; and U , Wv , Wz , p are the corresponding

embedding weights.

The attended visual feature ct is further fused with the

textual context zt via MLB, which can be interpreted as co-

attention between vision and language [37].

gt = δ(U ′δ(Wcct)⊙ δ(W ′

zzt)), (7)

where U ′,Wc,W
′

z are embedding weights of the pooling.

Word predictor The next-word predictor is a softmax

classifier, which generates a distribution over the next word-

s, leveraging the multi-modal attention network’s output gt:

wt+1 ∼ softmax(Wogt), (8)

where Wo are the classifier weights. The next word wt+1

is sampled from the softmax classifier’s distribution.

4. iVQA Evaluation

We explore three of iVQA evaluation metrics including

standard language-generation metrics, a new ranking-based

metric, and a human validation study.

Linguistic Metrics Standard linguistic measures [5] in-

cluding CIDEr, BLEU, METEOR and ROGUE-L can be

used to evaluate the generated questions. Given an image,

question, answer tuple, we use the ground-truth question as

the reference sentence, and compare the generated question

based on the given image and answer. The similarity be-

tween the machine generated questions and the reference

questions can be measured by these metrics. Even though

generating humanlike questions is relatively easy, doing so

in a correct image+answer conditional way to get a high s-

core is challenging, since the model has to capture all the

semantic concepts and high-order interactions.

Ranking Metric We also develop a ranking based evalu-

ation metric for the iVQA problem. For an image-answer

pair (I, a), and a candidate question q, the conditioning s-

core p(q|I, a; Θ) is used for ranking. If one of the correc-

t (ground truth) questions is ranked the highest then this

image-answer pair is regard as correct at Rank-1. In this

way, accuracy over a testing set can be computed as the per-

centage of the times that correct questions are ranked at the

top (denoted Acc.@1). Similarly, we can measure cumula-

tive ranking accuracy at other ranks, e.g., Acc.@3 measures

the percentage of times correct questions are ranked in top
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3. This is related to the multiple-choice setting of VQA

[2]. However, the difference is that we can explore specif-

ic choices of candidate question subsets to form a question

pool in order to reveal insights about model strengths and

weaknesses.

Question Pool For a particular image-answer pair, the

candidate ranking questions are collected from the follow-

ing subsets. Correct questions (GT): given image-answer

pair (I, a), the correct (ground truth) questions are defined

as all the questions with answer a in image I2. Contrastive

questions (CT): these are questions associated with visu-

ally similar images to I (including I) but having different

answers. The similarity of the images is measured using the

image CNN feature. Plausible questions (PS): These test

whether the model can tell the subtle difference between

questions and maintain grammar correctness. They are ob-

tained by randomly replacing one of the key words (e.g.,

verbs, nouns, adjective, and adverb) in the ground truth

question. Popular questions (PP): Popular questions are

chosen to be the most popular questions with the same an-

swer type as a across the whole dataset. These diagnose the

extent to which the model is relying on label-bias. Answer-

related (RN): These are chosen to be the random questions

having answer a but from other images. These diagnose

the extent to which the model is relying on visual features,

which did not always happen in VQA [13]. We manual-

ly checked all generated distractor questions, and removed

any which were also correct for their corresponding image

answer.

Human study iVQA is open-ended and one-to-many in

that there can be many correct questions for one image and

answer. Therefore, given an image and an answer, the cor-

rect questions may not be annotated exhaustively in exist-

ing datasets. The proposed ranking metric computed on the

selected question pool ameliorates the effects of the open-

ended/one-to-many questions generated by an iVQA mod-

el. However, it does not measure directly how ‘correct’ the

generated questions are, when they differ from the human

annotations originally provided. To evaluate iVQA in a way

that awards ‘credit’ for correct questions that are not an-

notated originally, we perform a human evaluation study.

Image-answer pairs are randomly selected from the test set,

and annotators assess the generated questions, scoring them

from 0 (complete nonsense) to 4 (perfect). The mean score

is used as the metric.

5. Experiments

5.1. Datasets and settings

Dataset: We repurpose the VQA dataset [2] to investi-

gate the iVQA task. The VQA dataset uses images from M-

2There can be multiple correct questions corresponding to a given an-

swer, since multiple questions may have the same answer for one image.

S COCO [5], including 82,783 training, 40,504 validation

and 81,434 test images. Three question-answer pairs are

collected for each image. Since the test set answers are not

available, we adopt the commonly used off-line data split in

[19, 25] for image captioning: 82,783 images are used for

training, and 5,000 for validation and test each.

Training: The model is trained by minimising the cross

entropy loss between machine generated questions and

ground truth questions. The Adam [22] optimiser is em-

ployed with a batch size 32 for 30 epochs. The initial learn-

ing rate is set to be 5e-4, and it is annealed 0.83 times per

epoch with an exponential decay.

Inference: Beam search with max sentence length 20 is

used to generate questions. We use beam size 3 for quanti-

tative and 10 for qualitative results.

Question Pool: For the proposed ranking accuracy met-

ric, given each image-answer pair, the question pool con-

tains 24 questions, of which 1-3 are GT, 3-5 are CT (so that

the total of GT+CT is 6), 6 are PP, 6 are PS, and 6 are RN .

5.2. Baseline models

Answer only (A): It uses a LSTM encoder to encode to-

kenised answers to a fixed 512-dimensional representation,

then a LSTM decoder to generate questions.

Image only (I, VQG): The visual only model is similar

to the GRNN model in [28], however, we use a more power-

ful image feature: the same res5c feature of ResNet-152

[15] used in our model. This feature is fed into a LSTM

decoder as the initial state.

Image+Answer Type (I+AT): VQG models [28] gener-

ate questions purely based on visual cues. To make VQG

more competitive in our answer-conditional iVQA setting,

we also provide one-hot encoding of the answer type. This

hint helps a VQG model generate the right question type

(e.g.,‘is...’, ‘what...’).

NN: We adapt the nearest neighbour (NN) image caption-

ing method [8] to our problem. As iVQA is conditioned on

both image and answer, we averaged the distance computed

from both modalities for NN computation.

SAT: Show attend and tell (SAT) [34] is a strong atten-

tional captioning method. To provide a strong competitor

to our approach, we modify SAT to take input from both

modalities by setting the initial state of the decoding LSTM

as the joint embedding of image and answer.

VQG+VQA: The VQG+VQA baseline uses the VQG

model above to generate question proposals from the image,

and then uses VQA to select the question with maximum

conditioning score. We use VQG to generate 10 candidates

for each image for VQA re-ranking, and the retrained multi-

modal low-rank bilinear attention network [21] is used as

the VQA model.

Ours: Our model processes images with local and glob-

al semantic features, and dynamic multi-modal attention
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(I+A+Att+Is). The global semantic feature is obtained fol-

lowing [23] by learning a concept predictor on the training

split using the 1,000 most frequent caption words.

5.3. Results

Overall In the first experiment we report the overal-

l iVQA performance on the test split. The results are shown

in Table 1 with both the standard linguistic metrics, as

well as our ranking accuracy metric. From the table, we

can make the following observations: (i) Unlike VQA the

margin between the no-image case (A), and the full model

(Ours) is dramatic. The ranking accuracies are more than

doubled, and the language metrics show similarly striking

improvements. This demonstrates that unlike conventional

VQA [13], the ‘V’ does matter in iVQA. (ii) The margin

between the image + answer type (I+AT) and image-only (I)

setting exists, but is less significant. This shows that while

it is a useful hint for an iVQA model to know the question

type, it still really needs the actual semantic answer to gen-

erate the right questions. E.g., rather than just knowing that

it was counting something (answer type), the model does

need to know how many objects were counted (answer) in

order to generate the right question specifying what object

type needs to be counted – as there may be other objects that

could be counted. (iii) The margins between (I) and (I+AT)

and the full model are also striking. This demonstrates that

as a test of multi-modal intelligence, iVQA reassuringly re-

quires both modalities in order to do well. (iv) VQG+VQA

indeed performs better than the vanilla VQG model by mak-

ing the generated question more answer conditional, but it

is still weaker than the captioning adapted models (NN and

SAT) or our proposed model. The reason is that the VQG

model has too low sensitivity, thus is unable to provide the

right question candidates for VQA model to select. Also,

VQA model can be easily fooled by similar questions not

relevant to the image because VQA models are trained to

distinguish different answers rather than questions. (v) The

captioning adapted models (NN and SAT) perform well, but

are still inferior to the proposed model which is specifically

designed for iVQA.

Human study The human study is applied on a subset of

1000 samples, and evaluates the models in a way that is ro-

bust to open-ended question generation. Results in Table 1

show that (i) our model performs the best among all com-

petitors; (ii) the human study scores are highly correlated

with the proposed ranking metric. Specifically, the Pear-

son correlation coefficient between manually labelled s-

cores and the proposed acc@1 and acc@3 metrics are 0.917

and 0.981 separately, while the best performing linguistic

measure (CIDEr) can only reach 0.898, which demonstrates

the effectiveness of the proposed ranking metric. Since hu-

man evaluation is expensive, the proposed ranking metric is

a reasonable and cost-effective alternative.

Qualitative Results Examples of questions generated by

our model are shown in Fig. 3. The results illustrate a few

interesting points: (i) The generated questions are highly

conditional on both images and answers. Particularly, the

same answers generate different questions for different im-

ages, unlike the situation in VQA [1]; and the same images

generate very different questions when paired with differ-

ent answers, showing richer reasoning than in VQG [28].

(ii) Unlike VQA, there are multiple reasonable questions

that correspond to one image-answer pair. This is both due

to alternative phrasing of the same question (‘where is the

bear?’,’where is the teddy bear?’,‘what is the teddy bear

sitting on?’), as well as multiple semantically distinct ques-

tions having the same answer (e.g., ‘are the children eat-

ing?’,‘is the child wearing a shirt?’,‘is the child wearing

a hat?’). Since the annotation is not exhaustive, the stan-

dard linguistic metrics could be misleading: the generated

questions can be correct but just have never been asked by

the annotators. Our proposed ranking metric is more ro-

bust to this, as models are only scored according to how

plausibly they rate the true question, rather than whether

their open-world estimate of the question matches annotat-

ed ground-truth. Our human study evaluates the methods

in a way that credits open-world question generation. The

open-ended question generation formulation of our model

means it is straightforward to sample the distribution over

questions given images and answers, in order to explore the

model’s beliefs.

5.4. Further analysis

Analysis by Failure Type The proposed new evaluation

metric enables us to understand the mistakes each mod-

el makes. The results in Fig. 4 show the Rank-1 pre-

dictions of each model (highest scoring question) broken

down according to the category of that prediction. It again

shows the much superior performance of our iVQA model

(I+A+Att+Is): 32.67% of the top ranked prediction is cor-

rect, which almost doubles that of the VQA model (16.4%).

But the main objective here is to analyse which distractor

types are mistakenly ranked high: (i) Without being able to

condition on the answers, the image-only method (I) makes

predictions dominated by contrastive (CT) distractor ques-

tions taken from similar looking images. (ii) The answer-

only (A) and image+answer type (I+AT) methods make pre-

dictions that are dominated by distractor questions of the

popular (PP) type. This suggests that these models are try-

ing to rely on unconditional distribution of label statistics

in order to solve iVQA. (iii) The VQA-based baseline in-

stead is dominated by answer-related (RN) distractor. This

suggests that the VQA model fails to correctly take into

account image context (the ‘V’ is not being accounted for

[1, 13]), and is simply picking questions that generate the

corresponding answer independently of the required condi-

tioning on image context. (iv) The nearest neighbour (NN)
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(GT)	are	the	children	playing?

A:	Yes	(GT)

Q:

are	the	children	happy?	

(-4.75)

are	the	children	eating?	

(-5.20)

are	the	children	having	

fun? (-5.54)

is	there	a	child	in	the	

picture? (-5.73)

are	there	any	children	in	

the	picture?	(-5.88)

A:	Purple

Q:

what	color	is	the	child	's	

shirt?	(-2.97)

what	color	is	the	girls	shirt?	

(-3.36)

what	color	is	the	girl	's	

shirt?	(-3.49)

what	color	is	the	kids	shirt?	

(-3.89)

what	color	is	the	little	boy	

's	shirt?	(-4.54)

A:	Red

Q:

what	color	is	the	child	's	

shirt?	(-3.72)

what	color	is	the	boy	's	

shirt?	(-4.31)

what	color	is	the	child	's	

hat?	(-4.58)

what	color	is	the	baby	's	

shirt?	(-4.69)

what	color	is	the	girl	's	

shirt?	(-4.71)

A:	No

Q:

are	the	children	eating?	

(-5.44)

are	these	children	in	the	

wild?	 (-6.87)

is	the	child	wearing	a	shirt?	

(-7.01)

are	these	children	in	a	

park?	(-7.44)

is	the	child	wearing	a	hat?	

(-7.52)

(GT)	what	color is	the	couch	

the	bear	is	on?

A:	Brown	(GT)

Q:

what	color is	the	bear?	

(-2.39)

what	color is	the	couch?	

(-2.52)

what	color is	the	teddy	

bear?	(-2.81)

what	color is	the	table?	

(-2.97)

what	color is	the	

bedspread?		(-3.47)

A:	Bow	tie

Q:

what	is	the	bear	wearing?	

(-2.92)

what	is	the	teddy	bear	

wearing?	 (-3.08)

what	kind	of	bear	is	this?	

(-4.20)

what	is	on	the	bear	's	neck?	

(-4.77)

what	kind	of	tie	is	the	bear	

wearing?	(-4.84)

A:	Couch

Q:

what	is	the	bear	sitting	on?

(-2.01)

where	is	the	bear?	

(-2.36)

where	is	the	teddy	bear?

(-2.61)

what	is	the	teddy	bear	

sitting	on?	(-2.86)

where	is	the	bear	sitting?	

(-2.87)

A:	No

Q:

is	the	bear	alive?	

(-4.06)

is	this	a	real	bear?	

(-4.09)

is	the	bear	real?	

(-4.45)

is	the	bear	sleeping?

(-4.74)

is	that	a	real	bear?

(-4.79)

Figure 3. Qualitative results of iVQA. Larger numbers in brackets mean higher confidence. The attention of generating the questions in

purple is further visualised in Fig. 5.

CIDEr BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE-L METEOR Acc@1 Acc@3 Human

A 0.952 0.146 0.192 0.265 0.371 0.408 0.161 14.589 28.795 1.92

I 0.652 0.086 0.121 0.179 0.280 0.310 0.117 13.012 28.644 2.04

I+AT 0.904 0.122 0.164 0.234 0.350 0.397 0.151 20.277 36.134 2.65

NN 1.372 0.175 0.223 0.294 0.404 0.428 0.183 26.783 48.755 3.01

SAT 1.533 0.192 0.241 0.311 0.417 0.456 0.195 29.722 48.118 3.19

VQG+VQA 1.110 0.147 0.193 0.261 0.371 0.396 0.165 16.529 41.655 2.79

Ours 1.714 0.208 0.256 0.326 0.430 0.468 0.205 32.899 51.418 3.31

Table 1. Overall question generation performance on the testing set.

approach performs well and has an evenly distributed set of

error types, but it is weaker than the proposed in correctly

capturing the visual and answer conditions. It is reflected on

the larger portion of CT and RN errors. (v) Our full model

(I+A+Att+Is) has the largest fraction of correct predictions

and manage to suppress the plausible (PS) and contrastive

(CT) errors. It still makes some mistakes of ranking the

popular (PP) questions at the top, but still fewer than an-

swer (A) and image+answer type (I+AT) alternatives.

Ablation study We evaluate the contributions of our key

technical components: dynamic attention, and multi-modal

inference with both local and global semantic image fea-

tures. The results in Table 2 verify that each of these com-

ponents contributes to the final result, and the biggest con-

tribution comes from the proposed dynamic attention mod-

el.

How dynamic attention helps To illustrate our dynam-

ic attention in iVQA, we visualise attention maps comput-

ed during question generation in Fig. 5. From the exam-

ples, we see that focus of attention varies over time in an

CIDEr BLEU-4 Acc@1 Acc@3

I+A 1.541 0.196 29.929 48.356

I+Att+A 1.698 0.208 32.547 51.024

I+Att+A+Is 1.750 0.214 33.636 52.344

Table 2. Ablation study on the contributions of key model compo-

nents. The results are obtained on the validation set.

appropriate way according to the partially generated ques-

tion as well as the answer. For example, Fig. 5 shows that

the model focuses on regions on and below the bear at the

point of generating the words ‘on’ and ‘wearing’ respective-

ly. These examples also demonstrate that the learned iVQA

model has achieved some degree of multi-modal visuo-

linguistic understanding and implicit reasoning capability.

Can iVQA help VQA? The problem of iVQA can be

seen as a dual problem of VQA, so we investigate whether

VQA performance can be boosted by applying iVQA to

obtain a second opinion. Specifically, we conduct the ex-

periments on the more challenging VQA 2.0 dataset and

MLB-att [21] trained on the training set is employed as the
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16.4

1.82

32.46

9.13

40.19

VQA

14.26

2.03
2.39

48.49

32.83

A

12.76

50.63
0.5

27.38

8.73

I

20

11.93

1.13

51.85

15.1

I+AT

26.07

19.15

5.97

16.48

32.33

NN

32.67

5.43

1.97

31.44

28.49

I+A+Att+Is

GT

CT

PS

PP

RN

Figure 4. Comparison of effects of different distractors on different models on the test set.

what is the bear wearing ?

what is the bear sitting on
.

Figure 5. Dynamic attention maps generated by the proposed model. Input answer: ‘Bowtie’ (top), ‘Couch’ (bottom). Because the

conditioning answer is different the model generates totally different attention maps in producing the output question.

VQA model. During testing, the top 3 answers with the

largest VQA score are served as answer candidates, then

a second score is computed from the iVQA model. They

are further combined by a score fusion network, whose out-

put is utilised as the confidence of final prediction. Before

the VQA-iVQA fusion, the VQA model alone can achieve

a validation accuracy of 57.85, while after the final model

reaches an accuracy of 58.86, where the performance gain is

mainly from the challenging number type (improved from

34.94 to 38.71). These results thus show that iVQA can

indeed assist VQA. Actually iVQA can also be used as a

diagnosis tool to extract the belief set of an existing VQA

model, which is part of the ongoing work.

Contrasting VQA and iVQA as benchmarks Finally,

we discuss iVQA’s interest as a benchmark compared to the

conventional VQA. Two of the main kinds of bias that a

VQA/iVQA model could use to cheat the benchmark are

the output Prior bias (Ignore both inputs and predict on-

ly the most likely answer on VQA; use question frequency

in iVQA), and Language bias (ignore the image and use

only the input – question for VQA, answer for iVQA – to

predict the output). A good multimodal intelligence bench-

mark should require understanding and mutual grounding

of both modalities, and should be hard to game by exploit-

ing those biases. To analyses these issues we compare per-

formance on iVQA and VQA benchmarks using Prior-alone

and Language-alone (LSTM Q for VQA and Answer only

for iVQA) baselines versus the full multi-modal model in

each case (DeeperLSTM+Norm I for VQA [2], and I+A

model for iVQA). The results in Table 3 show that for VQA

the bias-based baselines approach the performance of a full

multi-modal model much more closely than the correspond-

ing baselines do for iVQA. This suggests that VQA is easier

to ‘game’ (achieve an apparently high score without any im-

age understanding or multimodal grounding), compared to

iVQA. Thus we propose that iVQA makes a distinct and

interesting benchmark for multimodal intelligence.

split Prior Language Language+Visual

iVQA (acc@1) test 3.94 14.59 28.44

VQA (accuracy) test-dev 29.66 48.76 57.75

Table 3. VQA vs. iVQA on bias-based gameability.

6. Conclusion

We have introduced the novel task of inverse VQA as an

alternative multi-modal visual intelligence challenge to the

popular VQA paradigm. The analyses suggest that iVQA

is appealing in terms of being less game-able via exploiting

label-bias, more clearly requiring the mutual grounding and

understanding of both visual and linguistic modalities, and

naturally providing an open-world prediction setting.
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D. M. Chickering, E. Portugaly, D. Ray, P. Simard, and E. S-

nelson. Counterfactual reasoning and learning systems: The

example of computational advertising. JMLR, 2013. 2

[5] X. Chen, H. Fang, T. Lin, R. Vedantam, S. Gupta, P. Dollár,

and C. L. Zitnick. Microsoft COCO captions: Data collec-

tion and evaluation server. CoRR, abs/1504.00325, 2015. 4,

5

[6] A. Das, H. Agrawal, C. L. Zitnick, D. Parikh, and D. Batra.

Human attention in visual question answering: Do humans

and deep networks look at the same regions? In EMNLP,

2016. 1, 2

[7] A. Das, S. Kottur, K. Gupta, A. Singh, D. Yadav, J. M.

Moura, D. Parikh, and D. Batra. Visual dialog. In CVPR,

2017. 3

[8] J. Devlin, S. Gupta, R. Girshick, M. Mitchell, and C. L. Zit-

nick. Exploring nearest neighbor approaches for image cap-

tioning. arXiv preprint arXiv:1505.04467, 2015. 5

[9] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing

objects by their attributes. In CVPR, 2009. 2

[10] A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell, and

M. Rohrbach. Multimodal compact bilinear pooling for vi-

sual question answering and visual grounding. In EMNLP,

2016. 2, 3

[11] D. Geman, S. Geman, N. Hallonquist, and L. Younes. Visual

turing test for computer vision systems. PNAS, 2015. 1

[12] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and

harnessing adversarial examples. In ICLR, 2015. 1

[13] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and

D. Parikh. Making the v in vqa matter: Elevating the role of

image understanding in visual question answering. In CVPR,

2017. 1, 5, 6

[14] A. Graves, A. Mohamed, and G. Hinton. Speech recognition

with deep recurrent neural networks. In ICASSP, 2013. 3

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 2, 3, 5

[16] S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural computation, 1997. 4

[17] A. Jabri, A. Joulin, and L. van der Maaten. Revisiting visual

question answering baselines. In ECCV, 2016. 1, 2

[18] J. Johnson, A. Karpathy, and L. Fei-Fei. Densecap: Fully

convolutional localization networks for dense captioning. In

CVPR, 2016. 3

[19] A. Karpathy and L. Fei-Fei. Deep visual-semantic align-

ments for generating image descriptions. In CVPR, 2015.

2, 5

[20] S. Kazemzadeh, V. Ordonez, M. Matten, and T. L. Berg.

Referit game: Referring to objects in photographs of natu-

ral scenes. In EMNLP, 2014. 1

[21] J.-H. Kim, K. W. On, W. Lim, J. Kim, J.-W. Ha, and B.-T.

Zhang. Hadamard product for low-rank bilinear pooling. In

ICLR, 2017. 2, 4, 5, 7

[22] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. In ICLR, 2015. 5

[23] F. Liu, T. Xiang, T. M. Hospedales, W. Yang, and C. Sun.

Semantic regularisation for recurrent image annotation. In

CVPR, 2017. 2, 3, 4, 6

[24] C. Lu, R. Krishna, M. Bernstein, and L. Fei-Fei. Visual re-

lationship detection with language priors. In ECCV, 2016.

2

[25] J. Lu, C. Xiong, D. Parikh, and R. Socher. Knowing when

to look: Adaptive attention via a visual sentinel for image

captioning. In CVPR, 2017. 3, 5

[26] M. Malinowski, M. Rohrbach, and M. Fritz. Ask your neu-

rons: A neural-based approach to answering questions about

images. In ICCV, 2015. 2

[27] N. Mostafazadeh, C. Brockett, B. Dolan, M. Galley, J. Gao,

G. P. Spithourakis, and L. Vanderwende. Image-grounded

conversations: Multimodal context for natural question and

response generation. In IJCNLP, 2017. 3

[28] N. Mostafazadeh, I. Misra, J. Devlin, M. Mitchell, X. He,

and L. Vanderwende. Generating natural questions about an

image. In ACL, 2016. 2, 3, 5, 6

[29] O. Pfungst. Clever Hans (The Horse of Mr. Von Osten): A

Contribution to Experimental Animal and Human Psycholo-

gy. H. Holt and company, New York, 1911. 1

[30] B. L. Sturm. A simple method to determine if a music infor-

mation retrieval system is a horse. TMM, 2014. 1

[31] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and

tell: A neural image caption generator. In CVPR, 2015. 1, 2

[32] P. Wang, Q. Wu, C. Shen, A. Dick, and A. van den Hengel.

Fvqa: Fact-based visual question answering. TPAMI, 2017.

2

[33] H. Xu and K. Saenko. Ask, attend and answer: Exploring

question-guided spatial attention for visual question answer-

ing. In ECCV, 2016. 2, 3

[34] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudi-

nov, R. Zemel, and Y. Bengio. Show, attend and tell: Neural

image caption generation with visual attention. In ICML,

2015. 5

[35] B. Yao and L. Fei-Fei. Recognizing human-object interac-

tions in still images by modeling the mutual context of ob-

jects and human poses. TPAMI, 2012. 2

[36] S. Zhang, L. Qu, S. You, Z. Yang, and J. Zhang. Automatic

generation of grounded visual questions. In IJCAI, 2017. 3

[37] L. Zhou, C. Xu, P. Koch, and J. J. Corso. Image caption

generation with text-conditional semantic attention. arXiv

preprint arXiv:1606.04621, 2016. 4

8619


