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Abstract

Multi-instance learning (MIL) has demonstrated its use-

fulness in many real-world image applications in recent

years. However, two critical challenges prevent one from ef-

fectively using MIL in practice. First, existing MIL methods

routinely model the predictive targets using the instances of

input images, but rarely utilize an input image as a whole.

As a result, the useful information conveyed by the holistic

representation of an input image could be potentially lost.

Second, the varied numbers of the instances of the input im-

ages in a data set make it infeasible to use traditional learn-

ing models that can only deal with single-vector inputs. To

tackle these two challenges, in this paper we propose a nov-

el image representation learning method that can integrate

the local patches (the instances) of an input image (the bag)

and its holistic representation into one single-vector repre-

sentation. Our new method first learns a projection to pre-

serve both global and local consistencies of the instances of

an input image. It then projects the holistic representation

of the same image into the learned subspace for information

enrichment. Taking into account the content and character-

ization variations in natural scenes and photos, we develop

an objective that maximizes the ratio of the summations of

a number of ℓ1-norm distances, which is difficult to solve

in general. To solve our objective, we derive a new efficient

non-greedy iterative algorithm and rigorously prove its con-

vergence. Promising results in extensive experiments have

demonstrated improved performances of our new method

that validate its effectiveness.

1. Introduction

Learning images representations plays an important role

in many real-world applications due to the overwhelming

∗Corresponding author. This work was partially supported by NSF-IIS

1423591 and NSF-IIS 1652943.

amount of images and videos nowadays brought by modern

technologies. Recently, image representation techniques

using semi-local, or patch-based, features, such as SIFT and

geometric blur, have demonstrated some of the best perfor-

mance in image retrieval and object recognition application-

s. These algorithms choose a set of patches in an image, and

for each patch compute a fixed-length feature vector. This

gives a set of vectors per image, where the size of the set can

vary from image to image. Armed with these patch-based

features, image categorization and retrieval are recently for-

mulated as a multi-instance learning (MIL) problem with

improved retrieval, indexing and annotation performances

[19, 3, 40, 30, 28, 31]. Under the framework of MIL, an

image is viewed as a bag, which contains a number of in-

stances corresponding to the patches in the image. For ex-

ample, in the image in Figure 1 there exist a total of four

patches (surrounded by the yellow bounding boxes) that

represent a set of four different objects, including a car, a

bicycle, and two persons (one person is riding the bicycle

and the other one is standing aside). The image thereby is

a bag and each of the four patches, represented as a vec-

tor, in the image is consider as an instance. If any of these

instances is related to a semantic concept, the entire image

will be annotated with the corresponding semantic label.

Despite a number of successes in applying MIL in im-

age learning, there exist two critical challenges that prevent

one from effectively using available visual information in

an image as much as possible.

First, most, if not all, existing MIL methods only use

the instances of an input image to model the semantic con-

cepts, but not the entire image. For example, when a MIL

method [19, 3, 40, 30, 28, 31, 24, 35, 38] is used to study

the image in Figure 1, only the four instances are associ-

ated with some semantic concepts. However, these four

patches only occupy a small percent of the area of the en-

tire image, while the remained areas of the image that are

outside of the yellow bounding boxes are completely dis-
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Figure 1. Illustration of the proposed method to learn a multi-instance enriched image representation in the single-vector format.

carded, which, though, could potentially convey valuable

semantic information. For instance, a large area of this

picture is “ground”, which is closely correlated to “auto-

mobiles” and “bicycles” and could be used to improve the

image categorization accuracy [25, 26, 27]. Indeed, recent

studies have already demonstrated that holistic image rep-

resentations based upon global features are a necessity to

decode scene contents [10, 37]. Therefore, it is desirable

to learn an image representation that is able to capture both

instance-wise and holistic information of an input image.

Second, in MIL an image is represented as a set of vec-

tors and the numbers of the vectors in the images of a data

set are different in general. Although the multiple-vector

representation could describe the image details with better

granularity, varied data sizes make it infeasible to use tra-

ditional machine learning models that can only deal with

data represented by single-vectors, i.e., one vector per data

sample. Therefore, it would be beneficial to learn a single-

vector representation for an image that can integrate the

information from both its instances and its entire context.

To address the above two challenges in multi-instance

image learning, in this paper we present a novel image

representation learning method. It first learns a projection

from the instances of an input image. Then it projects its

holistic image representation into the learned subspace. A

schematic illustration of our new method is shown in Fig-

ure 1. Through these procedures, the learned image rep-

resentation simultaneously captures the information from

both multi-instance image patches and the holistic summa-

rization of the entire image. In the proposed objective to

learn the projection from the instances of an input image,

we aim to preserve both global and local consistencies of

the instances in the projected subspace, which leads to an

optimization problem that maximizes the ratio of matrix

traces. By further recognizing the variations of the con-

tent and visual characterization in natural scenes and pho-

tos, we further develop the proposed objective by replacing

the squared ℓ2-norm distances by the ℓ1-norm distances in

our formulation, such that the robustness of the learned im-

age representations against outlying samples and features is

promoted [2, 4, 9, 15, 16, 36, 20, 34].

Despite its clear motivations to integrate the informa-

tion of an input image from both its local instances and its

holistic representation, the proposed objective ends up to

be an optimization problem that simultaneously maximizes

and minimizes the summations of a number of ℓ1-norm dis-

tances, which is difficult to solve in general. To solve this

challenging optimization problem, we derived an efficien-

t iterative algorithm with theoretically guaranteed conver-

gence. It is worth noting that, different from many previous

works, our new solution algorithm is a non-greedy algorith-

m, such that it has better chance to find the global optima.

To the best of our knowledge, our new algorithm solves the

general optimization problem that maximizes the ratio of

the summations of the ℓ1-norm distances in a non-greedy

way for the first time in literature, which can find many ap-

plications to improve a number of machine learning models.

Finally, we performed extensive experiments on three

benchmark multi-instance image data sets, the promising

experimental results have demonstrated the effectiveness of

our new method in image learning applications.

2. Learning multi-instance enriched image

representations in the single-vector format

In this section, first we formalize the representation

learning problem for images with semantic patches, where

we introduce the notations used in this paper. Then we grad-

ually develop the proposed objective to learn a single-vector

representation of an input image that captures both global

and local consistencies of the image patches and integrates

the holistic information conveyed by the entire image.

2.1. Notations and problem formalization

Throughout this paper, we write matrices as bold upper-

case letters and vectors as bold lowercase letters. The trace
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of the matrix M = [��� ] is defined as tr (M) =
∑

� ���,

and the ℓ1-norm of M is defined as ∥M∥1 =
∑

�

∑

� ∣��� ∣.
The ℓ1-norm of a vector v is defined as ∥v∥1 =

∑

� ∣��∣ and

the ℓ2-norm of v is defined as ∥v∥2 =
√

∑

� �
2
� .

In image retrieval and annotation tasks, we study a set of

images and every image contains a collection of semantical-

ly meaningful patches. For a given image, we represent it as

� = {x,X}, where x ∈ ℜ� denotes the holistic representa-

tion of the entire image and X = [x1, . . . ,x�] ∈ ℜ�×� de-

notes a collection of � semantic patches, respectively. Here

x� ∈ ℜ� (for � = 1, 2, . . . , �) represents a patch of the in-

put image, which can be illustrated as a yellow box in the

image in Figure 1. Under this framework, every image is

considered as a bag of instances (patches). In general, the

numbers of the semantic patches in the images of a data are

different from one to another. In order to tackle the two crit-

ical challenges analyzed before in Section 1, different from

existing MIL studies that model the associations between

the instances of input images and the predictive targets di-

rectly, in this paper we aim to learn from an input image � a

single-vector representation of y = � (� ) that captures the

information in both local patches and the entire image. Be-

cause the new representations of the images in a data set are

of the same length, they can be readily used by traditional

learning models in various image learning tasks. In the fol-

lowing, we use instance and image patches interchangeably

when there is no risk of ambiguity.

2.2. Our objective

In this subsection, we will develop the proposed objec-

tive to learn a new single-vector representation for an input

image from its holistic representation and its semantic in-

stances. When we integrate the holistic representation and

the semantic instances of the input image, we aim to pre-

serve both global and local consistencies among the seman-

tic instances in the learned projected subspace.

Learning with global consistency via PCA. With recent

advances in digital imaging techniques, one can easily have

a camera with very high resolution. As a result, the derived

visual descriptors from a raw picture are usually of high di-

mensionality. When the image dimensionality grows, most

image retrieval and annotation methods will fail due to “the

curse of dimensionality” [8] and intractable computational

costs. Thus, learning a lower-dimensional image represen-

tation while maintaining the original geometrical structures

of the input image is valuable for practical use. To achieve

this goal, principal component analysis (PCA) [14] is the

right tool to preserve as much information as possible by

learning a projection W ∈ ℜ�×� (usually � ≪ �) from the

semantic instances X of the input image � , which maps x�

in the high �-dimensional space into a vector y� in a lower

�-dimensional space by computing y� = W�x�, such that

the overall variance of the input data in the projected space

ℜ� is maximized. Formally, let the global mean vector of

the input data X as x̄ = 1
�

∑�

�=1 x�, PCA seeks the projec-

tion W by maximizing the following objective:

�Global (W) = tr
(

W�S�W
)

=

�
∑

�=1

∥

∥W� (x� − x̄)
∥

∥

2

2
,

�.�. W�W = I , (1)

where S� =
∑�

�=1 (x� − x̄) (x� − x̄)
�

is the covariance

matrix of X and the constant factor 1
�

is omitted for brevi-

ty. Because �Global maximizes the global variance of the

instances of the input image in the projected subspace, the

projected instances via the learned projection W are glob-

ally consistent in terms of information preservation.

Learning with local consistency via neighborhood vari-

ances. Besides taking advantage of the global consistency

of the semantic instances of the input image, we further take

into account the local geometric structures of these semantic

instances in the projected subspace and consider their local

consistency. Ideally, in the learned subspace the instances

with similar semantic labels should be close to each oth-

er, while those with different semantic labels should be far

away from each other. In other words, in contrast to maxi-

mizing the projected global variance, we also want to min-

imize the local variance around every instance in the pro-

jected subspace. Mathematically, denoting the �-nearest

neighbors of x� as �� and the local mean vector of x� as

x̄� = 1
�+1

∑

x�∈{��∪{x�}}
x� , we can achieve the overall

local consistency by minimizing the following objective:

�Local (W) = tr
(

W�S�W
)

�.�. W�W = I , (2)

where, following our previous work [33], we define:

S� =

�
∑

�=1

S��; S�� =
∑

x�∈{��∪{x�}}

(x� − x̄�) (x� − x̄�)
�

.

Obviously, S�� computes the local covariance matrix of the

data points around x�. Thus minimizing tr
(

W�S��W
)

ensures the local consistency around x� and minimizing

�Local in Eq. (2) ensures the overall local consistency around

all the instances in a bag. Here, again the constant factor
1

�+1 is omitted for brevity.

Our objective to integrate the global and local consisten-

cies of the semantic instances. Armed with the objectives

that can capture the global and local consistencies of the

semantic instances of an input image separately, we can de-

velop a combined objective to capture both of them simulta-

neously. Among several possible ways to combine the two

objectives in Eqs. (1-2), we can formulate our new objective

using the trace ratio of matrices [12], which maximizes the
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following objective:

�ℓ2 (W) =
tr
(

W�S�W
)

tr (W�S�W)

=

∑�

�=1

∥

∥W� (x� − x̄)
∥

∥

2

2
∑�

�=1

∑

x�∈{��∪{x�}}
∥W� (x� − x̄�)∥

2
2

,

�.�. W�W = I . (3)

A critical problem of �ℓ2 in Eq. (3) lies in that it computes

the ratio of the summations of a number of squared ℓ2-norm

distances, which are notoriously known to be sensitive to

both outlying sample and outlying features [4, 34]. Many

images from natural scenes and photos often have clustered

objects. This is particularly true when there exist a crowd

of people in a picture, where each individual people may

not characterize the the semantic category of “person” ap-

propriately and many instances have to be considered as

outlying samples. Similarly, due to cropped objects and

(partially) shaded objects in pictures, such as the car in the

image in Figure 1, outlying features also inevitably exist

in real image data sets. Following many previous works

[2, 4, 9, 15, 16, 36, 29, 32, 21, 34], to deal with the feature

and content variances in natural images, we propose to learn

the projection by maximizing the following objective:

� (W) =

∑�

�=1

∥

∥W� (x� − x̄)
∥

∥

1
∑�

�=1

∑

x�∈{��∪{x�}}
∥W� (x� − x̄�)∥1

,

�.�. W�W = I , (4)

in which we compute the summations of the ℓ1-norm dis-

tances, because the ℓ1-norm distance can promote the ro-

bustness against both outlier samples and outlier features.

Upon solving the optimization problem in Eq. (4), the

learned W not only preserves the global variance of the se-

mantic instances of an input image, but also rewards the

local geometric structures of the semantic instances, which

thereby is both globally and locally consistent in the learned

subspace. Then we enrich the holistic representation x of

the input image � by computing y = W�x, which is a

fixed-length single-vector representation and can be readi-

ly used by any traditional single-instance machine learning

models. This indeed is the main contribution of this paper.

3. An efficient solution algorithm

Our new objective in Eq. (4) maximizes the ratio of the

summations of a number of the ℓ1-norm distances, which is

obviously not smooth and thus difficult to solve in general.

To solve the general problem that maximizes the ratio of the

summations of the ℓ1-norm distances, such as our objective

in Eq. (4), in this section we will derive an efficient itera-

tive algorithm that is non-greedy. We will also prove the

convergence of our new solution algorithm.

3.1. Solving a general ratio maximization problem

We first generalize the objectives in Eq. (3) and Eq. (4)

into the following general optimization problem and then

derive its solution algorithm:

�opt = argmax
�∈Ω

ℎ(�)

�(�)
,

∀� ∈Ω

{

�2 ≥ �(�) ≥ �1 > 0 ,

�4 ≥ ℎ(�) ≥ �3 > 0 .

(5)

where Ω is the feasible domain.

Motivated by our previous works [34, 33, 24], we pro-

pose a simple, yet efficient, iterative framework in Algo-

rithm 1 to solve the objective in Eq. (5), whose convergence

is rigorously guaranteed by Theorems 1.

Algorithm 1: Algorithm to solve Eq. (5).

1. Randomly initialize �0 ∈ Ω and set � = 1.

while not converge do

2. Calculate �� = ℎ(��−1)

�(��−1)
.

3. Find a �� ∈ Ω satisfying

ℎ(��)− ���(��) > ℎ(��−1)− ���(��−1) = 0.

4. � = � + 1.

Output: �.

Theorem 1. In Algorithm 1, for each iteration we have (1)
ℎ(��)
�(��)

≥ ℎ(��−1)
�(��−1)

; and (2) ∀�, there exists a �̂ such that

∀� > �̂ ℎ(��)
�(��)

− ℎ(��−1)
�(��−1)

< �.

Proof. In Algorithm 1, from step 3, we have ℎ(��) −
���(��) > 0. Because ∀� ∈ Ω �(�) > 0, we can get
ℎ(��)
�(��)

> �� = ℎ(��−1)
�(��−1)

, which completes the proof of the

first statement of Theorem 1.

Suppose that for the �-th iteration, there exists a �� such

that ℎ(��)− ���(��) = �� > 0. We have:

ℎ(��)

�(��)
=

ℎ(��−1)

�(��−1)
+

��
�(��)

, (6)

by which we can derive:

ℎ(��)

�(��)
=

ℎ(�0)

�(�0)
+

�
∑

�=1

��

�(��)
. (7)

From Eq. (7), we can derive:

ℎ(�0)

�(�0)
+

1

�2

�
∑

�=1

�� ≤
ℎ(��)

�(��)
≤

ℎ(�0)

�(�0)
+

1

�1

�
∑

�=1

�� . (8)

Suppose that there exist a positive constant � such

that lim�→∞
∑�

�=1 �
� = �. If this is not true, we have
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lim�→∞
∑�

�=1 �
� = ∞, by which, together with Eq. (8),

we can derive lim�→∞
∑�

�=1
ℎ(��)
�(��)

= ∞. This, howev-

er, contradicts the fact that
ℎ(��)
�(��)

is bounded as defined in

Eq. (5), which means that lim�→∞
∑�

�=1 �
� = � holds.

Thus, we have lim�→∞ �� = 0, i.e., lim�→∞
��

�(��)
= 0,

which indicates that ∀� > 0, there must exist a �̂ such that:

∀� > �̂
��

�(��)
< � , (9)

by which and Eq. (6), we have:

∀� > �̂
ℎ(��)

�(��)
−

ℎ(��−1)

�(��−1)
< � , (10)

which indicates that Algorithm 1 converges to a local op-

timum and completes the proof of the second statement of

Theorem 1.

3.2. Our algorithm to solve the objective in Eq. (4)

To solve our objective in Eq. (4), according to Step 3 in

Algorithm 1, we need find a solution that satisfy the con-

straint of W�W = I and the following inequality:

� (W) = �(W)− ���(W) > 0 , (11)

where �� is computed by

�� =

�
∑

�=1

∥

∥(W�−1)� (x� − x̄)
∥

∥

1

�
∑

�=1

∑

x�∈{��∪{x�}}

∥(W�−1)� (x� − x̄�))∥1

, (12)

and W�−1 denotes the projection matrix in the (� − 1)-th
iteration, which is already known in the �-th iteration. Here,

for notation brevity, we define:

�(W) =

�
∑

�=1

∥

∥W� (x� − x̄)
∥

∥

1
, (13)

�(W) =

�
∑

�=1

∑

x�∈{��∪{x�}}

∥

∥W� (x� − x̄�)
∥

∥

1
. (14)

Now we need solve the problem in Eq. (11), for which

we first introduce the following two lemmas.

Lemma 1. [18, Theorem 1] For any vector � =
[�1, ⋅ ⋅ ⋅ , ��]

� ∈ ℜ�, we have ∥�∥1 = max
�∈ℜ�

(sign(�))
�
�,

where the maximum value is attained if and only if � =
�× �, where � > 0 is a scalar.

Lemma 2. [11, Lemma 3.1] For any vector � =

[�1, ⋅ ⋅ ⋅ , ��]
� ∈ ℜ�, we have ∥�∥1 = min

�∈ℜ�
+

1

2

�
∑

�=1

�2�
��

+

1

2
∥�∥1, where the minimum value is attained if and only if

�� = ∣�� ∣, � ∈ {1, 2, ⋅ ⋅ ⋅ ,�}.

First, motivated by Lemma 1 and Lemma 2, we construct

the following objective:

�(W,W�−1) = �(W)− ���(W) , (15)

where �(W) and �(W) are defined as:

�(W) =
�

∑

�=1

w�
� B sign

(

B�w�−1
�

)

, (16)

�(W) =
1

2

�
∑

�=1

w�
� A�w� +

(

w�−1
�

)�
A�w

�−1
� . (17)

Here w� and w�−1
� denote the �-th column of matrices W

and W�−1, respectively; B and A� for � = 1, 2, ⋅ ⋅ ⋅ , � are

defined as follows:

B = [x̄1 − x̄, x̄2 − x̄, ⋅ ⋅ ⋅ , x̄� − x̄] , (18)

A� =
�
∑

�=1

∑

x�∈{��∪{x�}}

(x� − x̄�) (x� − x̄�)
�

∣

∣

∣

(

w�−1
�

)�
(x� − x̄�)

∣

∣

∣

, (19)

and sign(�) is the sign function.

Then, using the definition of �(W,W�−1) in Eq. (15)

and Lemmas 1—2, we can prove the following theorem.

Theorem 2. For any W ∈ ℜ�×�, we have

�(W,W�−1) ≤ � (W) . (20)

The equality holds on if and only if W = W�−1.

Proof. First, according to Lemma 1 we can compute:

�(W) =

�
∑

�=1

∥

∥W� (x� − x̄)
∥

∥

1

=

�
∑

�=1

�
∑

�=1

∥

∥w�
� (x� − x̄)

∥

∥

1

≥
�

∑

�=1

�
∑

�=1

sign
[

(w�−1
� )� (x� − x̄)

] [

w�
� (x� − x̄)

]

=
�

∑

�=1

w�
� B sign

(

B�w�−1
�

)

= �(W) . (21)

Then, according to Lemma 2 we have:

�
∑

�=1

∑

x�∈{��∪{x�}}

{

1

2

�� (x� − x̄�) (x� − x̄�)
�
�

�� (x� − x̄�)

+
1

2

∥

∥

∥
�� (x� − x̄�)

∥

∥

∥

1

}

≤
�
∑

�=1

∑

x�∈{��∪{x�}}

{

1

2

�� (x� − x̄�) (x� − x̄�)
�
�

�� (x� − x̄�)

+
1

2

∥

∥�� (x� − x̄�)
∥

∥

1

}

,

(22)
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which indicates that:

�(W) =

�
∑

�=1

∑

x�∈{��∪{x�}}

∥

∥W� (x� − x̄�)
∥

∥

1
(23)

=
�

∑

�=1

�
∑

�=1

∑

x�∈{��∪{x�}}

{

1

2

w�
� (x� − x̄�) (x� − x̄�)

�
w�

w�
� (x� − x̄�)

+
1

2

∥

∥w�
� (x� − x̄�)

∥

∥

1

}

≤
�

∑

�=1

�
∑

�=1

∑

x�∈{��∪{x�}}

{

1

2

w�
� (x� − x̄�) (x� − x̄�)

�
w�

(

w�−1
�

)�
(x� − x̄�)

+
1

2

∥

∥

∥

(

w�−1
�

)�
(x� − x̄�)

∥

∥

∥

1

}

=
1

2

�
∑

�=1

w�
� A�w� +

(

w�−1
�

)�
A�w

�−1
� = �(W) .

Combining Eq. (21) and Eq. (23), we can derive:

�(W,W�−1) = �(W)− ���(W)

≤ �(W)− ���(W) = � (W) .
(24)

According to Lemma 1 and Lemma 2, it is easy to verify

that equality holds in Eq. (21) and Eq. (23) if and only if

W = W�−1. Thus, equality holds in Eq. (24) if and only if

W = W�−1. This completes the proof of Theorem 2.

Now we continue to solve our objective. Let W =
W�−1, by substituting it into the objective, we have:

�(W�−1,W�−1) = � (W�−1) = 0 . (25)

In the �-th iteration in solving the objective in Eq. (4), W★

satisfies:

�(W★,W�−1) ≥ �(W�−1,W�−1) = 0 . (26)

Then, we have:

� (W★) ≥ �(W★,W�−1)

≥ �(W�−1,W�−1) = � (W�−1) = 0 .
(27)

Theorem 2 and Eq. (27) indicate that the solution of

the objective function in Eq. (11) can be transformed to

solve the objective function �(W,W�−1) ≥ 0, which can

be easily solved by the projected subgradient method with

Armijo line search [23]. The subgradient of �(W,W�−1)
at W is computed as:

∂�(W,W�−1) = B sign
(

B�W�−1
)

− �� [A1w1,A2w2, ⋅ ⋅ ⋅ ,A�w�] .
(28)

Note that, for any matrix W the operator � (W) =

W
(

W�W
)− 1

2 can project it onto an orthogonal cone.

Algorithm 2: Algorithm to maximize � (W).

Input: W�−1 and Armijo parameter 0 < � < 1.

1. Calculate �� by Eq. (12) the subgradient

G
�−1 = ∂�(W�−1,W�−1) by Eq. (28) and set � = 1.

while not � (W�) > � (W�−1) = 0 do

2. Calculate W
� = � (W�−1 + ��

G
�−1).

3. Calculate � (W�) by Eq. (11).

4. � = �+ 1.

Output: W�.

This guarantees the orthogonality constraint of the projec-

tion matrix, i.e.
(

W�
)� (

W�
)

= I. Algorithm 2 summa-

rizes the algorithm to maximize � (W) in Eq. (11).

Finally, based on Algorithm 2, we can derive a simple

yet efficient iterative algorithm as summarized in Algorith-

m 3 to solve ratio maximization problem for the ℓ1-norm

distances, i.e., our objective in Eq. (4).

Algorithm 3: Algorithm for non-greedy ratio maxi-

mization of the ℓ1-norm distances.

1. Randomly initialize W
0 satisfying

(

W
0
)�

W
0 = I and

set � = 1.

while not converge do

2. Calculate �� by Eq. (12).

3. Find a W
� satisfying � (W�) > � (W�−1) = 0 by

Algorithm 2.

4. � = � + 1.

Output: W.

3.3. Convergence analysis of our algorithm

Theorem 3. If W� is the solution of the objective function

in Eq. (11) and satisfies
(

W�
)� (

W�
)

= I, then we have

� (W�) ≥ � (W�−1).

Proof. Since W� is the solution of the objective function

in Eq. (11), we have

� (W�) =
�
∑

�=1

∥

∥

∥

(

W�
)�

(x� − x̄)
∥

∥

∥

1

− ��

�
∑

�=1

∑

x�∈{��∪{x�}}

∥

∥

∥

(

W�
)�

(x� − x̄�))
∥

∥

∥

1

≥ 0 , (29)

from which we can easily derive:

� (W�) =

�
∑

�=1

∥

∥

∥

(

W�
)�

(x� − x̄)
∥

∥

∥

1

�
∑

�=1

∑

x�∈{��∪{x�}}

∥

∥

∥
(W�)

�
(x� − x̄�))

∥

∥

∥

1

≥ �� . (30)

7732



Now by substituting Eq. (12) into Eq. (30), we have

� (W�)

=

�
∑

�=1

∥

∥

∥

(

W�
)�

(x� − x̄)
∥

∥

∥

1

�
∑

�=1

∑

x�∈{��∪{x�}}

∥

∥

∥
(W�)

�
(x� − x̄�))

∥

∥

∥

1

≥

�
∑

�=1

∥

∥(W�−1)� (x� − x̄)
∥

∥

1

�
∑

�=1

∑

x�∈{��∪{x�}}

∥(W�−1)� (x� − x̄�))∥1

= � (W�−1) , (31)

which completes the proof of Theorem 3.

Theorem 4. The objective in Eq. (4) is upper bounded.

Proof. First, using Cauchy-Schwarz inequality we have the

following for the numerator of our objective in Eq. (4):

�
∑

�=1

∥

∥W� (x� − x̄)
∥

∥

1
=

�
∑

�=1

�
∑

�=1

∥

∥w�
� (x� − x̄)

∥

∥

1
(32)

≤
�
∑

�=1

�
∑

�=1

∥

∥w�
�

∥

∥

2
∥(x� − x̄)∥2 =

�
∑

�=1

� ∥(x� − x̄)∥2 .

Obviously, given an input data set,
∑�

�=1 � ∥(x� − x̄)∥2 is

a constant, which indicates that the numerator of our objec-

tive in Eq. (4) is upper bounded for a given data set.

Second, it can be verified that
√

∑�

�=1 �
2
� ≤

∑�

�=1 ∣��∣,
i.e., ∀v ∈ ℜ� ∥v∥2 ≤ ∥v∥1, by which we can derive the

following for the denominator of our objective in Eq. (4):

�
∑

�=1

∑

x�∈{��∪{x�}}

∥

∥W� (x� − x̄�)
∥

∥

1

≥
�
∑

�=1

∑

x�∈{��∪{x�}}

√

∥W� (x� − x̄�)∥
2
2

≥

√

√

√

⎷

�
∑

�=1

∑

x�∈{��∪{x�}}

∥W� (x� − x̄�)∥
2
2

=
√

tr (W�S�W) ≥

√

√

√

⎷

�
∑

�=1

�� ,

(33)

where �� (� = 1, . . . , �), ordered by �1 ≤ ⋅ ⋅ ⋅ ≤ ��, are

the eigenvalues of S�. The last inequality in Eq. (33) is

obtained by the Ky Fan’s inequality [7], which states that

tr
(

W�S�W
)

≥
∑�

�=1 ��. Again, given an input data

set, S� is an constant matrix thereby
∑�

�=1 �� is a constant.

Thus the denominator of our objective in Eq. (4) is lower

bounded.

The two bounds in Eq. (32) and Eq. (33) together indi-

cate that our objective in Eq. (4) is upper bounded.

Theorem 3 indicates that our proposed Algorithm 3

monotonically increase the objective function value in each

iteration. Theorem 4 indicates that the objective function is

upper bounded, which, together with Theorem 3, indicates

that Algorithm 3 converges to a local optimum.

4. Experiments

In this section, we experimentally evaluate the proposed

image representation method in an automatic image anno-

tation task, where we use the following three multi-instance

image data sets: the PASCAL VOC 2010 data set [6], the

Corel5K data set [5], and the Scene data set [40]. We per-

form our evaluations using standard 5-fold cross-validation

and report the average performances over the 5 trials.

The proposed image representation learning method has

two parameters, the number of neighborhoods � of an

instance and the dimensionality � of the projected sub-

space. In our experiments, the performance of the proposed

method is very stable with respect to these two parameters

in considerably large value ranges. Empirically, in all our

experiments we select � = min {3, �} where � is the num-

ber of instances in an image bag and � = �/10 where � is

the dimensionality of the instance vectors.

Experimental settings. We first compare our method to t-

wo baseline classification methods including support vector

machine (SVM) method and the transductive support vec-

tor machine (TSVM) [13] method. The former is the most

broadly used supervised classification method in statistical

learning, while the latter is an extension of the former one

and is a semi-supervised classification method. Because

both of these two methods are designed for single-instance

data, they are not able to deal with data with representations

of varied sizes. Therefore, we train and classify images us-

ing the holistic representations of the experimental images.

Specifically, for each class we train a one-vs.-others classier

using the images in the training data set, and classify the im-

ages in the test data set. Gaussian kernel is used in the both

methods, i.e., � (x�,x�) = exp
(

−� ∥x� − x�∥
2
)

, where

� and the regularization box parameter � are fine tuned by

searching the grid of
{

10−5, . . . , 10−1, 1, 10, . . . , 105
}

vi-

a an internal 5-fold cross-validation using the training data

of each of the 5 trails. The both methods are implemented

using SVM���ℎ� software package [1].

We also compare our method against two very recent

MIL methods including the miGraph [39] method and the

MIMLSVM+ [17] method. Because miGraph method is a

single-label classification method, one-vs.-others strategy is

used to conduct classification, one class at a time. We im-

plement these two methods using the codes published by

the respective authors. Because the both methods are multi-

instance classification methods, we perform classification

using the semantic instances of the input images.
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Table 1. Comparison of the performances (mean ± std) of the compared methods in the image annotation tasks.

Method Hamming loss ↓ One-error ↓ Coverage ↓ Rank loss ↓ Average precision ↑

PASCAL

SVM 0.183± 0.016 0.336± 0.018 1.025± 0.014 0.186± 0.015 0.476± 0.022
TSVM 0.180± 0.015 0.331± 0.016 1.022± 0.012 0.183± 0.016 0.478± 0.025
miGraph 0.173± 0.011 0.306± 0.018 1.013± 0.018 0.178± 0.013 0.483± 0.023
MIMLSVM+ 0.176± 0.014 0.323± 0.024 0.999± 0.015 0.177± 0.010 0.485± 0.022

Our method (3NN) 0.165± 0.009 0.289± 0.011 0.975± 0.010 0.151± 0.002 0.481± 0.013
Our method (SVM) 0.155± 0.014 0.272± 0.011 0.962± 0.016 0.139± 0.012 0.507± 0.015

Corel5K

SVM 0.283± 0.011 0.584± 0.011 5.972± 0.011 0.291± 0.011 0.465± 0.012
TSVM 0.276± 0.005 0.579± 0.012 5.993± 0.052 0.291± 0.006 0.476± 0.015
miGraph 0.246± 0.015 0.571± 0.009 5.510± 0.013 0.233± 0.011 0.545± 0.013
MIMLSVM+ 0.238± 0.004 0.568± 0.013 5.104± 0.009 0.241± 0.015 0.559± 0.018

Our method (3NN) 0.211± 0.011 0.526± 0.013 4.611± 0.021 0.216± 0.012 0.611± 0.016

Our method (SVM) 0.204± 0.015 0.507± 0.009 4.751± 0.021 0.207± 0.008 0.604± 0.010

Scene

SVM 0.228± 0.011 0.374± 0.011 1.041± 0.018 0.209± 0.011 0.695± 0.021
TSVM 0.231± 0.005 0.381± 0.011 1.078± 0.009 0.211± 0.012 0.701± 0.018
miGraph 0.221± 0.012 0.384± 0.012 1.071± 0.014 0.241± 0.022 0.715± 0.033
MIMLSVM+ 0.215± 0.011 0.370± 0.012 1.015± 0.003 0.238± 0.012 0.709± 0.022

Our method (3NN) 0.187± 0.011 0.350± 0.017 0.995± 0.012 0.182± 0.014 0.795± 0.026

Our method (SVM) 0.175± 0.004 0.355± 0.016 0.980± 0.026 0.174± 0.007 0.794± 0.011

For our method, once the multi-instance enriched rep-

resentations of the input images are learned, they can be

directly fed into any traditional single-instance classifiers.

Thus we evaluate our new image representation learning

method using two most broadly used classifiers: the �-

nearest neighbour (KNN) classifier and the SVM. In our

experiments, we select � = 3 in KNN classifiers and use

the same settings as detailed above the SVM classifiers.

Experimental results. Because the three experimental im-

age data sets are all multi-label data sets, we evaluate the

classification performances of the compared methods using

five broadly used multi-label evaluation metrics as in Ta-

ble 1, where “↓” indicates “the smaller is the better”, while

“↑” indicates “the bigger is the better”. We refer readers to

[22] for detailed definitions of these evaluation metrics.

The average classification performances (mean ± stan-

dard deviation) of the compared methods over the 5 trials

of the experiments are reported in Table 1, from which we

can see a number of interesting observations as following.

First, the proposed method is consistently better than the

other four competing methods, sometimes very significant-

ly. Second, the MIL methods are generally better than the

two baseline classification methods that only use the holis-

tic image representations. This observation is reasonable in

that the two baseline methods are both single-instance clas-

sification methods, which only use the holistic image repre-

sentations. As a result, the important structural information

contained in image patches with semantic meanings are not

exploited, which leads to inferior performance. Last, but

not least, the SVMs using the raw holistic image representa-

tions perform drastically worse than those using the learned

image representations by our new method, i.e., the holistic

image representation with multi-instance enrichments. This

observation firmly confirms that our proposed method can

improve the image representations in terms of image anno-

tation. To summarize, the experimental results in Table 1

clearly demonstrate the effectiveness of the proposed meth-

ods in multi-instance multi-label image classification.

5. Conclusions

In this paper, we have presented a novel image represen-

tation learning method that is able integrates the informa-

tion conveyed by both local image patches and the holistic

representation of the entire image. Our new method first

learns a projection to preserve both global and local con-

sistencies of the instances of the input image in a project-

ed subspace, then it projects the holistic representation of

the entire image into the learned subspace for information

enrichment. Taking into account the content and charac-

terization variations in pictures for nature scenes and pho-

tos, we developed an objective that simultaneously maxi-

mizes and minimizes the summations of a number of ℓ1-

norm distances, which is difficult to solve in general. Thus,

we derived an efficient iterative solution algorithm that is

non-greedy and theoretically proved to converge. Our new

method has been validated in extensive experiments to sim-

ulate the real-world applications.
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