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Abstract

This paper introduces an online model for object de-

tection in videos designed to run in real-time on low-

powered mobile and embedded devices. Our approach com-

bines fast single-image object detection with convolutional

long short term memory (LSTM) layers to create an inter-

weaved recurrent-convolutional architecture. Additionally,

we propose an efficient Bottleneck-LSTM layer that sig-

nificantly reduces computational cost compared to regular

LSTMs. Our network achieves temporal awareness by us-

ing Bottleneck-LSTMs to refine and propagate feature maps

across frames. This approach is substantially faster than ex-

isting detection methods in video, outperforming the fastest

single-frame models in model size and computational cost

while attaining accuracy comparable to much more expen-

sive single-frame models on the Imagenet VID 2015 dataset.

Our model reaches a real-time inference speed of up to 15

FPS on a mobile CPU.

1. Introduction

Convolutional neural networks [24, 35, 36, 12] have been

firmly established as the state-of-the-art in single-image ob-

ject detection [8, 11, 32, 28, 4]. However, the large mem-

ory overhead and slow computation time of these networks

have limited their practical applications. In particular, ef-

ficiency is a primary consideration when designing models

for mobile and embedded platforms. Recently, new archi-

tectures [17, 40] have allowed neural networks to run on

low computational budgets with competitive performance

in single-image object detection. However, the video do-

main presents the additional opportunity and challenge of

leveraging temporal cues, and it has been unclear how to

make a comparably efficient detection framework for video

scenes. This paper investigates the idea of building upon

these single-frame models by adding temporal awareness

while preserving their speed and low resource consumption.

Videos contain various temporal cues which can be ex-
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Figure 1: Most recent video object detection methods still

partially rely on single-image detectors, meaning that a key

step in the process fails to utilize temporal information. Our

work augments these base detectors by directly incorporat-

ing temporal context without sacrificing the efficiency of the

fastest single-image detectors.

ploited to obtain more accurate and stable object detection

than in single images. Since videos exhibit temporal conti-

nuity, objects in adjacent frames will remain in similar lo-

cations and detections will not vary substantially. Hence,

detection information from earlier frames can be used to re-

fine predictions at the current frame. For instance, since the

network is able to view an object at different poses across

frames, it may be able to detect the object more accurately.

The network will also become more confident about pre-

dictions over time, reducing the problem of instability in

single-image object detection [37].

Recent work has shown that this continuity extends into

the feature space, and intermediate feature maps extracted

from neighboring frames of video are also highly correlated

[43]. In our work, we are interested in adding temporal

awareness in the feature space as opposed to only on the

final detections due to the greater quantity of information
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available in intermediate layers. We exploit continuity at

the feature level by conditioning the feature maps of each

frame on corresponding feature maps from previous frames

via recurrent network architectures.

Our method generates feature maps with a joint convolu-

tional recurrent unit formed by combining a standard con-

volutional layer with a convolutional LSTM. The goal is for

the convolutional layer to output a feature map hypothesis,

which is then fed into the LSTM and fused with temporal

context from previous frames to output a refined, tempo-

rally aware feature map. Figure 2 shows an illustration of

our method. This approach allows us to benefit from ad-

vances in efficient still-image object detection, as we can

simply extend some convolutional layers in these models

with our convolutional-recurrent units. The recurrent layers

are able to propagate temporal cues across frames, allow-

ing the network to access a progressively greater quantity

of information as it processes the video.

To demonstrate the effectiveness of our model, we eval-

uate on the Imagenet VID 2015 dataset [33]. Our method

compares favorably to efficient single-frame baselines, and

we argue that this improvement must be due to successful

utilization of temporal context since we are not adding any

additional discriminative power. We present model variants

that range from 200M to 1100M multiply-adds and 1 to 3.5

million parameters, which are straightforward to deploy on

a wide variety of mobile and embedded platforms. To our

knowledge, our model is the first mobile-first neural net-

work for video object detection.

The contributions of this paper are as follows:

• We introduce a unified architecture for performing on-

line object detection in videos that requires minimal

computational resources.

• We propose a novel role for recurrent layers in convo-

lutional architectures as temporal refinement of feature

maps.

• We demonstrate the viability of using recurrent layers

in efficiency-focused networks by modifying convolu-

tional LSTMs to be highly efficient.

• We provide experimental results to justify our design

decisions and compare our final architecture to various

single-image detection frameworks.

2. Related Work

2.1. Object Detection in Images

Recent single-image object detection methods can be

grouped into two categories. One category consists of

region-based two-stage methods popularized by R-CNN [8]

and its descendants [7, 32, 16]. These methods perform

inference by first proposing object regions and then clas-

sifying each region. Alternatively, single-shot approaches

[28, 31, 4, 26] perform inference in a single pass by gener-

ating predictions at fixed anchor positions. Our work builds

on top of the SSD framework [28] due to its efficiency and

competitive accuracy.

2.2. Video Object Detection with Tracks

Many existing methods on the Imagenet VID dataset or-

ganize single-frame detections into tracks or tubelets and

update detections using postprocessing. Seq-NMS [10]

links high-confidence predictions into sequences across the

entire video. TCNN [22, 23] uses optical flow to map detec-

tions to neighboring frames and suppresses low-confidence

predictions while also incorporating tracking algorithms.

However, neither of these methods perform online infer-

ence, nor do they focus on efficiency.

Instead of operating on final detection results, our ap-

proach directly incorporates temporal context on the feature

level and requires no postprocessing steps or online learn-

ing. Since our method can be extended by applying any

of these approaches to our detection results, our network is

more comparable to the base single-frame detector used by

these methods than the methods themselves.

A recent work, D&T [6], combines tracking and detec-

tion by adding an RoI tracking operation and multi-task

losses on frame pairs. However, their experiments focus

on expensive high-accuracy models, whereas our approach

is tailored for mobile environments. Even with aggres-

sive temporal striding, their model cannot be run on mo-

bile devices due to the cost of their Resnet-101 base net-

work, which requires 79× more computation than our larger

model and 450× more than our smaller one.

2.3. Video Object Detection with Optical Flow

A different class of ideas which powered the winning

entry of the 2017 Imagenet VID challenge [42] involves us-

ing optical flow to warp feature maps across neighboring

frames. Deep Feature Flow (DFF) [43] accelerates detec-

tion by running the detector on sparse key frames and using

optical flow to generate the remaining feature maps. Flow-

guided Feature Aggregation [42] improves detection accu-

racy by warping and averaging features from nearby frames

with adaptive weighting.

These ideas are closer to our approach since they also

use temporal cues to directly modify network features and

save computation. However, these methods require optical

flow information, which is difficult to obtain both quickly

and accurately. Even the smallest flow network considered

by DFF is approximately twice as computationally expen-

sive as our larger model and 10× more expensive than our

smaller one. Additionally, the need to run both the flow net-

work and the very expensive key frame detector in tandem

makes this approach require far more memory and storage

consumption than ours, which poses a problem on mobile
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devices. In contrast, our network contains fewer parame-

ters than our already-efficient baseline detector and has no

additional memory overhead.

2.4. LSTMs for Video Analysis

LSTMs [15] have been successfully applied to many

tasks involving sequential data [27]. One specific variant,

the convolutional LSTM [34, 30], uses a 3D hidden state

and performs gate computations using convolutional layers,

allowing the LSTM to encode both spatial and temporal in-

formation. Our work modifies the convolutional LSTM to

be more efficient and uses it to propagate temporal informa-

tion across frames.

Other works have also used LSTMs for video-based

tasks. LRCNs [5] use convolutional networks to extract fea-

tures from each frame and feed these features as a sequence

into an LSTM network. ROLO [29] performs object track-

ing by first running the YOLO detector [31] on each frame,

then feeding the output bounding boxes and final convolu-

tional features into an LSTM network. While these methods

apply LSTMs as postprocessing on top of network outputs,

our method fully integrates LSTMs into the base convolu-

tional network via direct feature map refinement.

2.5. Efficient Neural Networks

Finally, several techniques for creating more efficient

neural network models have previously been proposed, such

as quantization [39, 41], factorization [20, 25], and Deep

Compression [9]. Another option is creating efficient ar-

chitectures such as Squeezenet [19], Mobilenet [17], Xcep-

tion [3], and Shufflenet[40]. In the video domain, NoScope

[21] uses a modified form of distillation [14] to train an ex-

tremely lightweight specialized model at the cost of gener-

alization to other videos. Our work aims to creating a highly

efficient architecture in the video domain where the afore-

mentioned methods are also applicable.

3. Approach

In this section, we describe our approach for efficient on-

line object detection in videos. At the core of our work, we

propose a method to incorporate convolutional LSTMs into

single-image detection frameworks as a means of propagat-

ing frame-level information across time. However, a naive

integration of LSTMs incurs significant computational ex-

penses and prevents the network from running in real-time.

To address this problem, we introduce a Bottleneck-LSTM

with depthwise separable convolutions [17, 3] and bottle-

neck design principles to reduce computational costs. Our

final model outperforms analogous single-frame detectors

in accuracy, speed, and model size.

Figure 2: An example illustration of our joint LSTM-SSD

model. Multiple Convolutional LSTM layers are inserted in

the network. Each propagates and refines feature maps at a

certain scale.

3.1. Integrating Convolutional LSTMs with SSD

Consider a video as a sequence of image frames V =
{I0, I1, . . . In}. Our goal is to recover frame-level detec-

tions {D0, D1, . . . Dn}, where each Dk is a list of bounding

box locations and class predictions corresponding to image

Ik. Note that we consider an online setting where detections

Dk are predicted using only frames up to Ik.

Our prediction model can be viewed as a function

F(It, st−1) = (Dt, st), where sk = {s0k, s
1
k, . . . s

m−1
k } is

defined as a vector of feature maps describing the video up

to frame k. We can use a neural network with m LSTM lay-

ers to approximate this function, where each feature map of

st−1 is used as the state input to one LSTM and each fea-

ture map of st is retrieved from the LSTM’s state output.

To obtain detections across the entire video, we simply run

each image through the network in sequence.

To construct our model, we first adopt an SSD frame-

work based on the Mobilenet architecture and replace all

convolutional layers in the SSD feature layers with depth-

wise separable convolutions. We also prune the Mobilenet

base network by removing the final layer. Instead of hav-

ing separate detection and LSTM networks, we then inject

convolutional LSTM layers directly into our single-frame

detector. Convolutional LSTMs allow the network to en-

code both spatial and temporal information, creating a uni-

fied model for processing temporal streams of images.
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3.2. Feature Refinement with LSTMs

When applied to a video sequence, we can interpret our

LSTM states as features representing temporal context. The

LSTM can then use temporal context to refine its input at

each time step, while also extracting additional temporal

cues from the input and updating its state. This mode of

refinement is general enough to be applied on any interme-

diate feature map by placing an LSTM layer immediately

after it. The feature map is used as input to the LSTM, and

the LSTM’s output replaces the feature map in all future

computations.

Let us first define our single-frame detector as a function

G(It) = Dt. This function will be used to construct a com-

posite network with m LSTM layers. We can view placing

these LSTMs as partitioning the layers of G into m + 1
sub-networks {g0, g1, . . . gm} satisfying

G(It) = (gm ◦ · · · ◦ g1 ◦ g0)(It). (1)

We also define each LSTM layer L0,L1, . . .Lm−1 as a

function Lk(M, skt−1) = (M+, s
k
t ), where M and M+ are

feature maps of the same dimension. Now, by sequentially

computing

(M0
+, s

0
t ) = L0(g0(It), s

0
t−1)

(M1
+, s

1
t ) = L1(g1(M

0
+), s

1
t−1)

...

(Mm−1
+ , sm−1

t ) = Lm−1(gm−1(M
m−2
+ ), sm−1

t−1 )

Dt = gm(Mm−1
+ ),

we have formed the function F(It, st−1) = (Dt, st) repre-

senting our joint LSTM-SSD network. Figure 2 depicts the

inputs and outputs of our full model as it processes a video.

In practice, the inputs and outputs of our LSTM layers can

have different dimensions, but the same computation can be

performed as long as the first convolutional layer of each

sub-network F has its input dimensions modified.

In our architecture, we choose the partitions of G ex-

perimentally. Note that placing the LSTM earlier results

in larger input volumes, and the computational cost quickly

becomes prohibitive. To make the added computation feasi-

ble, we consider LSTM placements only after feature maps

with the lowest spatial dimensions, which is limited to the

Conv13 layer (see Table 1) and SSD feature maps. In sec-

tion 4.2, we empirically show that placing LSTMs after the

Conv13 layer is most effective. Within these constraints, we

consider several ways to place LSTM layers:

1. Place a single LSTM after the Conv13 layer.

2. Stack multiple LSTMs after the Conv13 layer.

3. Place one LSTM after each feature map

Figure 3: Illustration of our Bottleneck-LSTM. Note that

after the bottleneck gate, all layers have only N channels.

3.3. Extended Width Multiplier

LSTMs are inherently expensive due to the need to com-

pute several gates in a single forward pass, which presents

a problem in efficiency-focused networks. To address this,

we introduce a host of changes that make LSTMs compati-

ble with the goal of real-time mobile object detection.

First, we address the dimensionality of the LSTM. We

can obtain finer control over the network architecture by

extending the channel width multiplier α defined in [17].

The original width multiplier is a hyperparameter used to

scale the channel dimension of each layer. Instead of ap-

plying this multiplier uniformly to all layers, we introduce

three new parameters αbase, αssd, αlstm, which control the

channel dimensions of different parts of the network.

Any given layer in the base Mobilenet network with N

output channels is modified to have Nαbase output chan-

nels, while αssd applies to all SSD feature maps and αlstm

applies to LSTM layers. For our network, we set αbase = α,

αssd = 0.5α, and αlstm = 0.25α. The output of each

LSTM is one-fourth the size of the input, which drastically

cuts down on the computation required.

3.4. Efficient Bottleneck­LSTM Layers

We are also interested in making the LSTM itself more

efficient. Let M and N be the number of input and out-

put channels in the LSTM respectively. Since the defini-

tion of convolutional LSTMs varies among different works

[34, 30], we will define a standard convolutional LSTM as:

ft = σ((M+N)WN
f ⋆ [xt, ht−1])

it = σ((M+N)WN
i ⋆ [xt, ht−1])

ot = σ((M+N)WN
o ⋆ [xt, ht−1])

ct = ft ◦ ct−1 + it ◦ φ(
(M+N)WN

c ⋆ [xt, ht−1])

ht = ot ◦ φ(ct).

This LSTM takes 3D feature maps xt and ht−1 as inputs

and concatenates them channel-wise. It outputs a feature

map ht and cell state ct. Additionally, jW k ⋆ X denotes
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Layer Filter Size Stride

Conv1 3 × 3 × 3 × 32 2

Conv2
3 × 3 × 32 dw 1

1 × 1 × 32 × 64 1

Conv3
3 × 3 × 64 dw 2

1 × 1 × 64 × 128 1

Conv4
3 × 3 × 128 dw 1

1 × 1 × 128 × 128 1

Conv5
3 × 3 × 128 dw 2

1 × 1 × 128 × 256 1

Conv6
3 × 3 × 256 dw 1

1 × 1 × 256 × 256 1

Conv7
3 × 3 × 256 dw 2

1 × 1 × 256 × 512 1

Conv8-12
3 × 3 × 512 dw 1

1 × 1 × 512 × 512 1

Conv13
3 × 3 × 512 dw 2

1 × 1 × 512 × 1024 1

Bottleneck-LSTM

3 × 3 × 1024 dw 1

1 × 1 × (1024 + 256) × 256 1

3 × 3 × 256 dw 1

1 × 1 × 256 × 1024 1

Feature Map 1

1 × 1 × 256 × 128 1

3 × 3 × 128 dw 2

1 × 1 × 128 × 256 1

Feature Map 2

1 × 1 × 256 × 64 1

3 × 3 × 64 dw 2

1 × 1 × 64 × 128 1

Feature Map 3

1 × 1 × 128 × 64 1

3 × 3 × 64 dw 2

1 × 1 × 64 × 128 1

Feature Map 4

1 × 1 × 128 × 32 1

3 × 3 × 32 dw 2

1 × 1 × 32 × 64 1

Table 1: Convolutional layers in one of our LSTM-SSD ar-

chitectures using a single LSTM with a 256-channel state.

“dw” denotes a depthwise convolution. Final bounding

boxes are obtained by applying an additional convolution

to the Bottleneck-LSTM and Feature Map layers. Note that

we combine all four LSTM gate computations into a single

convolution, so the LSTM computes 1024 channels of gates

but outputs only 256 channels.

a depthwise separable convolution with weights W , input

X , j input channels, and k output channels, φ denotes the

activation function, and ◦ denotes the Hadamard product.

Our use of depthwise separable convolutions immedi-

ately reduces the required computation by 8 to 9 times com-

pared to previous definitions. We also choose a slightly un-

usual φ(x) = ReLU(x). Though ReLU activations are not

commonly used in LSTMs, we find it important not to alter

the bounds of the feature maps since our LSTMs are inter-

spersed among convolutional layers.

We also wish to leverage the fact that our LSTM has sub-

stantially fewer output channels than input channels. We

introduce a minor modification to the LSTM equations by

first computing a bottleneck feature map with N channels:

bt = φ((M+N)WN
b ⋆ [xt, ht−1]). (2)

Then, bt replaces the inputs in all other gates as shown

in Figure 3. We refer to this new formulation as the

Bottleneck-LSTM. The benefits of this modification are

twofold. Using the bottleneck feature map decreases com-

putation in the gates, outperforming standard LSTMs in

all practical scenarios. Secondly, the Bottleneck-LSTM is

deeper than the standard LSTM, which follows empirical

evidence [12, 13] that deeper models outperform wide and

shallow models.

Let the spatial dimensions of each feature map be DF ×
DF , and let the dimensions of each depthwise convolutional

kernel be DK × DK . Then, the computational cost of a

standard LSTM is:

4(D2
K · (M +N) ·D2

F + (M +N) ·N ·D2
F ). (3)

The cost of a standard GRU is nearly identical, except with

a leading coefficient of 3 instead of 4. Meanwhile, the cost

of a Bottleneck-LSTM is:

D2
K · (M +N) ·D2

F + (M +N) ·N ·D2
F

+4(D2
K ·N ·D2

F +N2 ·D2
F ).

(4)

Now, set DK = 3 and let k = M
N

. Then, Equation (3) is

greater than Equation (4) when k > 1
3 . That is, as long as

our LSTM’s output has less than three times as many chan-

nels as the input, it is more efficient than a standard LSTM.

Since it would be extremely unusual for this condition to

not hold, we claim that the Bottleneck-LSTM is more ef-

ficient in all practical situations. The Bottleneck-LSTM is

also more efficient than a GRU when k > 1. In our net-

work, k = 4, and the Bottleneck-LSTM is substantially

more efficient than any alternatives. One of our complete

architectures is detailed in Table 1.

4. Experiments

4.1. Experiment Setup

We train and evaluate on the Imagenet VID 2015 dataset.

For training, we use all 3,862 videos in the Imagenet VID

training set. We unroll the LSTM to 10 steps and train on se-

quences of 10 frames. We train our model in Tensorflow [1]

using RMSprop [38] and asynchronous gradient descent.

Like the original Mobilenet, our model can be customized

to meet specific computational budgets. We present results

for models with width multiplier α = 1 and α = 0.5. For

the α = 1 model, we use an input resolution of 320 × 320
and a learning rate of 0.003. For the α = 0.5 model, we use

256× 256 input resolution and a learning rate of 0.002.

We include hard negative mining and data augmentation

as described in [28]. We adjust the original hard negative

mining approach by allowing a ratio of 10 negative exam-

ples for each positive while scaling each negative loss by

0.3. We obtain significantly better accuracy with this mod-

ification, potentially because the original approach harshly

penalizes false negatives in the groundtruth labels.

To deal with overfitting, we train the network using a

two-stage process. First, we finetune the SSD network

without LSTMs. Then, we freeze the weights in the base
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Placed After mAP

No LSTM (baseline) 50.3

Conv3 49.1

Conv13 53.5

Feature Map 1 51.0

Feature Map 2 50.5

Feature Map 3 50.8

Feature Map 4 51.0

Outputs 51.2

Table 2: Performance of our model (α = 1) with a single

LSTM placed after different layers. Layer names match Ta-

ble 1. For the outputs experiment, we place LSTMs after all

five final prediction layers.

network, up to and including layer Conv13, and inject the

LSTM layers for the remainder of the training.

For evaluation, we randomly select a segment of 20 con-

secutive frames from each video in the Imagenet VID eval-

uation set for a total of 11080 frames. We designate these

frames as the minival set. For all results, we report the stan-

dard Imagenet VID accuracy metric, mean average preci-

sion @0.5 IOU. We also report the number of parameters

and multiply-adds (MAC) as benchmarks for efficiency.

4.2. Ablation Study

In this section, we demonstrate the individual effective-

ness of each of our major design decisions.

Single LSTM Placement First, we place a single LSTM

after various layers in our model. Table 2 confirms that

placing the LSTM after feature maps results in superior

performance with the Conv13 layer providing the great-

est improvement, validating our claim that adding temporal

awareness in the feature space is beneficial.

Recurrent Layer Type Next, we compare our proposed

Bottleneck-LSTM with other recurrent layer types includ-

ing averaging, LSTMs, and GRUs [2]. For this experiment,

we place a single recurrent layer after the Conv13 layer and

evaluate our model for both α = 1 and α = 0.5. As a

baseline, we use weighted averaging of features in consec-

utive frames, with a weight of 0.75 for the current frame

and 0.25 for the previous frame. The Bottleneck-LSTM’s

output channel dimension is reduced according to the ex-

tended width multiplier, but all other recurrent layer types

have the same input and output dimensions since they are

not designed for bottlenecking. Results are shown in Table

3. Our Bottleneck-LSTM is an order of magnitude more

efficient than other recurrent layers while attaining compa-

rable performance.

α Type mAP Params (M) MAC (M)

0.5

Averaging 37.6 – –

LSTM 43.3 2.11 135

GRU 44.5 1.59 102

Bottleneck-LSTM 42.8 0.15 5.6

1.0

Averaging 50.7 – –

LSTM 53.5 8.41 840

GRU 54.0 6.33 632

Bottleneck-LSTM 53.5 0.60 34

Table 3: Performance of different recurrent layer types. The

parameters and multiply-adds columns are computed for the

recurrent layer only.
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Figure 4: Model Performance vs. LSTM Output Channels.

This figure shows model performance as a function of the

LSTM’s output channel dimension.

Bottleneck Dimension We further analyze the effect of

the LSTM output channel dimension on accuracy, shown

in Figure 4. A single Bottleneck-LSTM is placed after the

Conv13 layer in each experiment. Accuracy remains near-

constant up to αlstm = 0.25α, then drops off. This supports

our use of the extended width multiplier.

Multiple LSTM Placement Strategies Our framework

naturally generalizes to multiple LSTMs. In SSD, each fea-

ture map represents features at a certain scale. We investi-

gate the benefit of incorporating multiple LSTMs to refine

feature maps at different scales. In Table 4, we evaluate dif-

ferent strategies for incorporating multiple LSTMs. In this

experiment, we incrementally add more LSTM layers to the

network. Due to difficulties in training multiple LSTMs si-

multaneously, we finetune from previous checkpoints while

progressively adding layers. Placing LSTMs after feature

maps at different scales results in a slight performance im-

provement and nearly no change in computational cost due

to the small dimensions of later feature maps and the effi-

ciency of our LSTM layers. However, stacking two LSTMs
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Place Bottleneck-LSTMs After mAP Params (M) MAC (B)

Conv13 FM1 FM 2 FM 3 FM 4 α = 0.5 α = 1.0 α = 0.5 α = 1.0 α = 0.5 α = 1.0
X 42.8 53.5 0.81 3.01 0.19 1.12

XX 42.9 53.3 0.91 3.41 0.20 1.16

X X 43.3 53.7 0.82 3.07 0.19 1.13

X X X 43.5 54.0 0.82 3.11 0.19 1.13

X X X X 43.8 54.4 0.85 3.21 0.19 1.13

X X X X X 43.8 54.4 0.86 3.24 0.19 1.13

Table 4: Performance of our architecture with multiple Bottleneck-LSTMs. Layer names match Table 1, where FM stands

for Feature Map. Xdenotes a single LSTM placed after the specified layer, while XXdenotes two LSTMs placed.

Model mAP Params (M) MAC (B)

Resnet-101 Faster-RCNN 62.5 63.2 143.37

Inception-SSD 56.3 13.7 3.79

Mobilenet-SSD (α = 1) 50.3 4.20 1.20

Ours (α = 1) 54.4 3.24 1.13

Mobilenet-SSD (α = 0.5) 40.0 1.17 0.20

Ours (α = 0.5) 43.8 0.86 0.19

Table 5: Final results on our Imagenet VID minival set.

after the same feature map is not beneficial. For the last two

feature maps (FM3, FM4), we do not further bottleneck the

LSTM output channels because the channel dimension is

already very small. We use the model with LSTMs placed

after all feature maps as our final model.

4.3. Comparison With Other Architectures

In Table 5, we compare our final model against state-of-

the-art single-image detection frameworks. All baselines

are trained with the open source Tensorflow Object Detec-

tion API [18]. Among these methods, only the Mobilenet-

SSD variants and our method can run in real-time on mobile

devices, and our method outperforms Mobilenet-SSD on all

metrics. Qualitative differences are shown in Figure 5. We

also include performance-focused architectures which are

much more computationally expensive. Our method ap-

proaches the accuracy of the Inception-SSD network at a

fraction of the cost. Additionally, we include the param-

eters and MAC of a Resnet Faster-RCNN to highlight the

vast computational difference between our method and non-

mobile video object detection methods, which generally in-

clude similarly expensive base networks.

4.4. Robustness Evaluation

We test the robustness of our method to input noise by

creating artificial occlusions in each video. We generate

these occlusions as follows: for each groundtruth bounding

box, we assign a probability p of occluding the bounding

box. For each occluded bounding box of dimension H×W ,

Model mAP

p = 0.25 p = 0.50 p = 0.75
Inception-SSD 43.3 34.6 25.9

Mobilenet-SSD (α = 1) 43.0 33.8 24.6

Ours (α = 1) 49.1 42.4 33.3

Mobilenet-SSD (α = 0.5) 33.2 26.0 19.3

Ours (α = 0.5) 39.8 33.9 25.6

Table 6: Model performance after randomly occluding a

fraction p of the bounding boxes.

Model big core (ms) LITTLE core (ms)

Inception-SSD 1020 2170

Mobilenet-SSD (α = 1) 357 794

Ours (α = 1) 322 665

Mobilenet-SSD (α = 0.5) 72 157

Ours (α = 0.5) 65 140

Table 7: Runtime comparison of single-frame detection

models and our LSTM-SSD model on both the big and LIT-

TLE core of a Qualcomm Snapdragon 835 on a Pixel 2.

we zero out all pixels in a randomly selected rectangular re-

gion of size between H
2 × W

2 and 3H
4 × 3W

4 within that

bounding box. Results for this experiment are reported in

Table 6. All methods are evaluated on the same occlusions,

and no method is trained on these occlusions prior to test-

ing. Our method outperforms all single-frame SSD meth-

ods on this noisy data, demonstrating that our network has

learned the temporally continuous nature of videos and uses

temporal cues to achieve robustness against noise.

4.5. Mobile Runtime

We evaluate our models against baselines on the latest

Pixel 2 phone with Qualcomm Snapdragon 835. Runtime is

measured on both Snapdragon 835 big and LITTLE core,

with single-threaded inference using a custom on-device

implementation of Tensorflow [1]. Table 7 shows that our

model outperforms all baselines. Notably, our α = 0.5
model achieves real-time speed of 15 FPS on the big core.
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Figure 5: Example clips in Imagenet VID minival set where our model (α = 1) outperforms an analogous single-frame

Mobilenet-SSD model (α = 1). Our network uses temporal context to provide significantly more stable detections across

frames. The upper row of each sequence corresponds to our model, and the lower row corresponds to Mobilenet-SSD.

5. Conclusion

We introduce a novel framework for mobile objection

detection in videos based on unifying mobile SSD frame-

works and recurrent networks into a single temporally-

aware architecture. We propose an array of modifications

that allow our model to be faster and more lightweight than

mobile-focused single-frame models despite having a more

complex architecture. We proceed to examine each of our

design decisions individually, and empirically show that our

modifications allow our network to be more efficient with

minimal decrease in performance. We also demonstrate that

our network is sufficiently fast to run in real-time on mo-

bile devices. Finally, we show that our method outperforms

comparable state-of-the-art single-frame models to indicate

that our network benefits from temporal cues in videos.
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