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Abstract

Context is important for accurate visual recognition. In

this work we propose an object detection algorithm that not

only considers object visual appearance, but also makes use

of two kinds of context including scene contextual informa-

tion and object relationships within a single image. There-

fore, object detection is regarded as both a cognition prob-

lem and a reasoning problem when leveraging these struc-

tured information. Specifically, this paper formulates object

detection as a problem of graph structure inference, where

given an image the objects are treated as nodes in a graph

and relationships between the objects are modeled as edges

in such graph. To this end, we present a so-called Struc-

ture Inference Network (SIN), a detector that incorporates

into a typical detection framework (e.g. Faster R-CNN) with

a graphical model which aims to infer object state. Com-

prehensive experiments on PASCAL VOC and MS COCO

datasets indicate that scene context and object relationships

truly improve the performance of object detection with more

desirable and reasonable outputs.

1. Introduction

Object detection is one of the fundamental computer vi-

sion problems. Recently, this topic has enjoyed a series of

breakthroughs thanks to the advances of deep learning, and

it is observed that prevalent object detectors predominantly

regard detection as a problem of classifying candidate boxes

[16, 15, 33, 24, 7]. While most of them have achieved im-

pressive performance in a number of detection benchmarks,

they only focus on local information near an object’s region

of interest within the image. Usually an image contains rich

contextual information including scene context and object

relationships [10]. Ignoring these information inevitably

places constraints on the accuracy of objects detected [3].

To illustrate such constraints, considering the practical

(a) (b)

Figure 1. Some Typical Detection Errors of Faster R-CNN. (a)

Some boats are mislabeled as cars on PASCAL VOC [12]. (b) The

mouse is undetected on MS COCO [26].

examples in Fig. 1, detected by Faster R-CNN [33]. In

the first case where is a river field, some of the boats are

mislabeled as cars, since the detector only concentrates on

object’s visual appearance. If the scene information in this

image was taken into account, such banana skin could have

been easily avoided. In the second case, though a laptop and

person have been detected as expected, no further object is

found any more. It is quite common that mouse and laptop

usually co-occur within a single image. If using object rela-

tive position and co-occurrence pattern, more objects within

the given image could be detected.

Many empirical studies [10, 14, 19, 41, 30, 29, 36] have

suggested that recognition algorithms can be improved by

proper modeling of context. To handle the problem above,

two types of contextual information model have been ex-

plored for detection [4]. The first type incorporates con-

text around object or scene-level context [3, 43, 37], and the

second models object-object relationships at instance-level

[18, 4, 30]. While these two types of models capture com-

plementary contextual information, they can be combined

together to jointly help detection.

We are thus motivated to intuitively conjecture that vi-

sual concepts in most of natural images form an organism

with the key components of scene, objects and relation-

ships, and different objects in the scene are organized in a
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Figure 2. Graph Problem. Detection basically aims to answer:

what is where. From a structure perspective, it can be formulated

as a reasoning problem of a graph involving the mutually comple-

mentary information of scene, objects and relationships.

structured manner, e.g. boats are on the river, mouse is near

laptop. Sequentially object detection is regarded as not only

a cognition problem, but also an inference problem which

is based on contextual information with object fine-grained

details. To systematically solve it, a tailored graph is for-

mulated for each individual image. As described in Fig. 2,

objects are nodes of the graph, and object relationships are

edges of the graph. These objects interact with each other

via the graph under the guidance of scene context. More

specifically, an object will receive messages from the scene

and other objects that are highly correlated with it. In such a

way, object state is not only determined by its fine-grained

appearance details but also effected by scene context and

object relationship. Eventually the state of each object is

used to determine its category and refine its location.

To make the above conjecture computationally feasible,

we propose a structure inference network (SIN) to reason

object state in a graph, where memory cell is the key mod-

ule to encode different kinds of messages (e.g. from scene

and other objects) into object state, and a novel way of us-

ing Gated Recurrent Units (GRUs) [5] as the memory cell

is presented in this work. Specifically, we fix object rep-

resentation as the initial state of GRU and then input each

kind of message to achieve the goal of updating object state.

Since SIN can accomplish inference as long as the inputs

to it covers the representations of object, scene-level con-

text and instance-level relationship, our structure inference

method is not constrained to specific detection framework.

2. Related Work

Object detection. Modern CNN based object detection

methods can be divided into two groups [25, 35]: (i) re-

gion proposals based methods (two-stage detectors) and (ii)

proposal-free methods (one-stage detectors).

With the resurgence of deep learning, two-stage detec-

tors quickly come to dominate object detection during the

past few years. Representative methods include R-CNN

[16], Fast R-CNN [15], Faster R-CNN [33] and so on.

The first stage produces numbers of candidate boxes, and

then the second stage classifies these boxes into foreground

classes or background. R-CNN [16] extracts CNN features

from the candidate regions and applies linear SVMs as the

classifier. To obtain higher speed, Fast R-CNN [15] pro-

poses a novel ROI-pooling operation to extract feature vec-

tors for each candidate box from shared convolutional fea-

ture map. Faster R-CNN [33] integrates proposal genera-

tion with the second-stage classifier into a single convolu-

tion network. More recently, one-stage detectors like SSD

[27] and YOLO [31] have been proposed for real-time de-

tection with satisfactory accuracy. Anyway, detecting dif-

ferent objects in an image is always considered as some iso-

lated tasks among these state-of-the-art methods especially

in two-stage detectors. While such methods work well for

salient objects most of the time, they are hard to handle

small objects by using vague feature associated only with

the object itself.

Contextual information. Consequently, it is natural to

use richer contextual information. In early years, a number

of approaches have explored contextual information to im-

prove object detection [29, 19, 1, 10, 40, 6, 41]. For exam-

ple, Mottaghi et al. [29] propose a deformable part-based

model, which exploits both local context around each can-

didate detection and global context at the level of the scene.

The presence of objects in irrelevant scenes is penalized in

[41]. Recently, some works [3, 43, 37] based on deep Con-

vNet have made some attempts to incorporate contextual in-

formation to object detection. Contextual information out-

side the region of interest is integrated using spatial recur-

rent neural network in ION [3]. GBD-Net [43] proposes

a novel gated bi-directional CNN to pass message between

features of different support regions around objects. Shri-

vastava et al. [37] use segmentation to provide top-down

context to guide region proposal generation and object de-

tection. While context around object or scene-level context

has been addressed in such works [3, 43, 37] under the deep

learning-based pipeline, they make less progress in explor-

ing object-object relationships. On the contrary, a much re-

cent work [4] proposes a new sequential reasoning architec-

ture that mainly exploits object-object relationships to se-

quentially detect objects in an image, however, with only

implicit yet weak consideration of scene-level context. Dif-

ferent from these existing works, our proposed structure in-

ference network has the capability of jointly modeling both

scene-level context and object-object relationships and in-

ferring different object instances within an image from a

structural and global perspective.

Structure inference. Several interesting works [28, 34,

23, 39, 21, 9, 2, 22, 42] have been proposed to combine

deep networks with graphical models for structured predic-

tion tasks that are solved by structure inference techniques.

A generic structured model is designed to leverage diverse

label relations including scene, object and attributes to im-

prove image classification performance in [21]. Deng et al.
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Figure 3. SIN: The Framework of Our Method. Firstly we get a fixed number of ROIs from an input image. Each ROI is pooled into a

fixed-size feature map and then mapped to a feature vector by a fully connected layer as node. We extract the whole image feature as scene

in the same way, and then we concatenate the descriptors of every two ROIs into edges. To iteratively update the node state, an elaborately

designed structure inference method is triggered, and the final state of each node is used to predict the category and refine the location of

the corresponding ROI. The whole framework is trained end-to-end with the original multi-task loss (this study exploits Faster R-CNN as

the base detection framework).

[9] propose structure inference machines for analyzing re-

lations in group activity recognition. Structural-RNN [22]

combines the power of high-level spatio-temporal graphs

and sequence learning, and evaluates the model ranging

from motion to object interactions. In [42], a graph in-

ference model is proposed to tackle the task of generating

structured scene graph from an image. While our work

shares similar spirit as [42] to formulate the object detec-

tion task as a graph structure inference problem, the two

works have essential differences in their technical sides,

such as the graph instantiation manners, inference mecha-

nisms, message passing schemes, etc, which highly depend

on the specific task domains.

3. Method

Our goal is to improve the detection models by ex-

ploring rich contextual information. To this end, different

from existing methods that only make use of visual appear-

ance clues, our model is designed to explicitly take object-

object relationships and scene information into considera-

tion. Specifically, a structure inference network is devised

to iteratively propagate information among different objects

as well as the whole scene. The whole framework of our

method is depicted in Fig. 3, which will be detailed in the

following sections.

3.1. Graphical Modeling

Our structure inference network (SIN) is agnostic to the

choice of base object detection framework. In this work

we build SIN based on Faster R-CNN as a demonstration,

which is an advanced method for detection. We present a

graph G = (V,E, s) to model the graphical problem as

shown in Fig. 2. The nodes v ∈ V represent the region

proposals, while s is the scene of the image, and e ∈ E is

GRU

+�� 
��/

+� ′
Figure 4. An illustration of GRU. The update gate z selects

whether the hidden state ht+1 is to be updated with a new hid-

den state h̃. The reset gate r decides whether the previous hidden

state ht is ignored.

the edge (relationship) between each pair of object nodes.

Specifically, after Region Proposal Network (RPN [33]),

thousands of region proposals that might contain objects are

obtained. We then use Non-Maximum Suppression (NMS

[13]) to choose a fixed number of ROIs (Region of Interest).

For each ROI vi, we extract the visual feature fv
i by an FC

layer that follows an ROI pooling layer. For scene s about

the image, since there is no ground-truth scene label for the

image, the whole image visual feature fs is extracted as

the scene representation through the same layers’ operation

as nodes. For directed edge ej→i from node vj to vi, we

use both the spatial feature and visual feature of vi, vj to

compute a scalar, which represents the influence of vj on vi,

as will be detailed in Sec. 3.3. With such modeling, how

to drive them to interact in the graph? It will be delineated

in the following.

3.2. Message Passing

For each node, the key of interaction is to encode the

messages passed from the scene and other nodes to it. Due

to that each node needs receiving multiple incoming mes-

sages, it is necessary to design an aggregation function that
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can remember the node details itself and then fuse incom-

ing messages into a meaningful representation. Consider-

ing this function behaves like a memory machine, we ex-

plore RNNs. As is well known, an RNN can in principle

map from the entire history of previous inputs to each out-

puts. The key point is that the recurrent connections allow

a memory of previous inputs to persist in the network’s in-

ternal state, and thereby influence the network output [17].

Since that GRU[5] as a special kind of RNN is lightweight

and effective, it is used to act like memory machines in this

work.

Let us review how a GRU cell works in Fig. 4. First, the

reset gate r is computed by

r = σ(Wr[x, ht]), (1)

where σ is the logistic sigmoid function, and [,] denotes the

concatenation of vectors. Wr is a weight matrix which is

learned. ht is the previous hidden state, by the way, the

input x and ht have the same dimensions. Similarly, the

update gate z is computed by

z = σ(Wz[x, ht]). (2)

The actual activation of the proposed unit ht+1 is then com-

puted by

ht+1 = zht + (1− z)h̃, (3)

where

h̃ = φ(Wx+ U(r ⊙ ht)). (4)

φ denotes tanh activate function, W and U are weight ma-

tries which are learned. ⊙ denotes the element-wise mul-

tiplication. As stated in [5], in the above formulations, the

memory cell allows the hidden state to drop any informa-

tion that is found to be irrelevant with input later through

the reset gate r. On the other hand, the memory cell can

control how much information from the previous state will

carry over to the current hidden state, thus, allowing a more

compact representation through the update gate z.

Generally, GRU as an effective memory cell can remem-

ber long-term information, where the initial state of GRU

is empty or a random vector and the input is a sequence

of symbols. In this paper, we use GRU to encode differ-

ent kinds of messages to object state. To encode message

from scene, we take the fine-grained object details as ini-

tial state of GRU, and take the message from scene as input.

GRU cell could choose to ignore some parts of object state

which are not relative with this scene context, or use scene

context to enhance some parts of object state. To encode

message from other objects, we also take the object de-

tails as initial state of GRU, and take an integrated message

from other nodes as input. The memory cell would also

play a same role to choose relative information to update the

hidden state of objects. When the state of object updated,

the relationships among objects will also change, then more

time steps of updating make the model more stable.
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Figure 5. Structure Inference. For object vi, the input of scene

GRU is scene context message ms

i , and the initial hidden state

is the node vi feature fv

i . For message me

1→i from node v1 to

node vi is controlled by edge e1→i. These messages from all other

objects are integrated as me

i to input the edge GRU. The initial

hidden state of edge GRU is also fv

i . Then these two sets of GRU

output ensemble together as eventual updated node state.

3.3. Structure Inference

To encode two kinds of messages above, a set of scene

GRUs and edge GRUs are designed to propagate message

from scene and other objects to node. Then nodes are up-

dated according to the graph, as shown in Fig. 5.

The scene GRU takes nodes visual feature fv as initial

hidden states, and takes scene message ms as input, which

is exactly scene context fs as shown in the left part of Fig.

5. As described above, the scene GRU would learn its key

gates function to choose information to update nodes.

The edge GRU is used to encode messages from many

other objects, there we need to calculate an integrated mes-

sage me in advance, or we need take a long sequence of

messages from every other object as inputs, which will cost

very much. For each node, the edge GRU will choose parts

of the integrate message to update this node. For the mes-

sages passed from other objects to node vi, various objects

contribute differently. So we model every object-object re-

lationship ej→i as a scalar weight, which represents the in-

fluence of vj on vi. It is reasonable that object-object re-

lationship ej→i is common determined by relative object

position and visual clues, e.g. a mouse is more important to

the keyboard than a cup and more close mouse is more im-

portant to the keyboard. As shown in the right part of Fig.

5, the integrated message to node vi is calculated by

me
i = max

j∈V
pooling(ej→i ∗ f

v
j ), (5)

where

ej→i = relu(WpR
p
j→i) ∗ tanh(Wv[f

v
i , f

v
j ]). (6)

Wp and Wv are learnable weight matrixes. Using max-

pooling can extract the most important message, while if us-
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Table 1. Detection Results on VOC 2007 test. Legend: 07+12: 07 trainval + 12 trainval.

Method Train mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Fast R-CNN [15] 07+12 70.0 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4

Faster R-CNN [33] 07+12 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6

SSD500 [27] 07+12 75.1 79.8 79.5 74.5 63.4 51.9 84.9 85.6 87.2 56.6 80.1 70.0 85.4 84.9 80.9 78.2 49.0 78.4 72.4 84.6 75.5

ION [3] 07+12 75.6 79.2 83.1 77.6 65.6 54.9 85.4 85.1 87.0 54.4 80.6 73.8 85.3 82.2 82.2 74.4 47.1 75.8 72.7 84.2 80.4

SIN (ours) 07+12 76.0 77.5 80.1 75.0 67.1 62.2 83.2 86.9 88.6 57.7 84.5 70.5 86.6 85.6 77.7 78.3 46.6 77.6 74.7 82.3 77.1

Table 2. Detection Results on VOC 2012 test. Legend: 07++12: 07 trainval + 12 trainval + 07 test.

Method Train mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Fast R-CNN [15] 07++12 68.4 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2

SSD300 [27] 07++12 70.3 84.2 76.3 69.6 53.2 40.8 78.5 73.6 88.0 50.5 73.5 61.7 85.8 80.6 81.2 77.5 44.3 73.2 66.7 81.1 65.8

Faster R-CNN [33] 07++12 70.4 84.9 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1 55.3 86.9 81.7 80.9 79.6 40.1 72.6 60.9 81.2 61.5

HyperNet [38] 07++12 71.4 84.2 78.5 73.6 55.6 53.7 78.7 79.8 87.7 49.6 74.9 52.1 86.0 81.7 83.3 81.8 48.6 73.5 59.4 79.9 65.7

SIN (ours) 07++12 73.1 84.8 79.5 74.5 59.7 55.7 79.5 78.8 89.9 51.9 76.8 58.2 87.8 82.9 81.8 81.6 51.2 75.2 63.9 81.8 67.8

Table 3. Detection Results on COCO 2015 test-dev. Legend: trainval35k: COCO train + 35k val. *Baseline our trained.

Method Train AP AP 50 AP 70 APS APM APL AR1 AR10 AR100 ARS ARM ARL

Fast R-CNN [15] train 20.5 39.9 19.4 4.1 20.0 35.8 21.3 29.5 30.1 7.3 32.1 52.0

Faster R-CNN* [33] train 21.1 40.9 19.9 6.7 22.5 32.3 21.5 30.4 30.8 9.9 33.4 49.4

YOLOv2 [32] trainval35k [3] 21.6 44.0 19.2 5.0 22.4 35.5 20.7 31.6 33.3 9.8 36.5 54.4

ION [3] train 23.0 42.0 23.0 6.0 23.8 37.3 23.0 32.4 33.0 9.7 37.0 53.5

SIN (ours) train 23.2 44.5 22.0 7.3 24.5 36.3 22.6 31.6 32.0 10.5 34.7 51.3

ing mean-pooling, message might be disturbed by the large

number of ROIs from irrelevant regions. The visual rela-

tionship vector is formed by concatenating visual feature

fv
i and fv

j . R
p
j→i denotes the spatial position relationship,

which is represented as

R
p
j→i =[wi, hj , si, wj , hj , sj ,

(xi − xj)

wj

,
(yi − yj)

hj

,

(xi − xj)
2

w2
j

,
(yi − yj)

2

h2
j

, log(
wi

wj

), log(
hi

hj

)],

(7)

where (xi, yi) is the center of ROI bi, while wi, hi are the

width and height of bi, and si is the area of bi.

For node vi, it receives messages both from the other

nodes and scene context. Eventually we get the compre-

hensive representation ht+1, which denotes the node state.

In our current study, we empirical find that (details in Sec.

5.3) mean-pooling is the most effective, compared to max-

pooling and concatenation, so

ht+1 =
hs
t+1 + he

t+1

2
, (8)

where hs
t+1 is the output of scene GRU, and he

t+1 denotes

the output of edge GRU.

In the following iterations, scene GRUs will put the new

(updated) node state as their hiddens, and take fixed scene

feature as input, then compute next node states. Edge GRUs

would take the new object-object message as new input,

then compute the next hidden states. Finally, the eventual

integrated node representations are used to predict object

category and bounding box offsets.

4. Results

In this part, we comprehensively evaluate SIN on two

datasets including PASCAL VOC [12] and MS COCO [26].

4.1. Implementation Details

We use a VGG-16 model pre-trained on ImageNet [8].

During training and testing stage, we use NMS [13] to se-

lect 128 boxes as object proposals. Faster R-CNN is trained

by ourself as baseline, where all parameters are set accord-

ing to the original publications. For our method, since we

find that smaller learning rate is more suitable, consequently

the number of train iterations is increased. The momen-

tum, weight decay and batch size are all the same as base-

line. Specifically, when training on VOC 2007 trainval com-

bined with VOC 2012 trainval and testing on VOC 2007

test, we use a learning rate of 5 × 10−4 for 80k iterations,

and 5 × 10−5 for the next 50k iterations. When training

on VOC 2007 trainvaltest combined with VOC 2012 train-

val and testing on VOC 2012 test, we use a learning rate

of 5 × 10−4 for 100k iterations, and 5 × 10−5 for the next

70k iterations. When training on COCO train and testing on

COCO 2015 dev-test, we use a learning rate of 5×10−4 for

350k mini-batches, and 5 × 10−5 for the next 200k mini-

batches. Our method and baseline are both implemented

with Tensorflow1 [11].

4.2. Overall Performance

PASCAL VOC. VOC involves 20 categories. VOC

2007 dataset consists of about 5k trainval images and 5k

test images, while VOC 2012 dataset includes about 11k

trainval images and 11k test images. We set two kinds of

train dataset, and the evaluations were carried out on the

VOC 2007 and VOC 2012 test set (from VOC 2012 evalua-

tion server) respectively in Tab. 1 and Tab. 2. Applying our

method, we get a higher mAP of 76.0% on VOC 2007 and

a mAP of 73.1% on VOC 2012 test. Especially to deserve

1Our source code is available at http://vipl.ict.ac.cn/resources/codes.
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to be mentioned, our method is also better than ION [3] on

VOC 2007 test, which is a multi-scale network with explicit

modeling of context using a recurrent network.

MS COCO. To further validate our method on a larger

and more challenging dataset, we conduct experiments on

COCO and report results from test-dev 2015 evaluation

server in Tab. 3. The evaluation metric of COCO dataset

is different from VOC. The overall performance AP aver-

ages mAP over different IOU thresholds from 0.5 to 0.95.

This places a significantly larger emphasis on localization

compared to the VOC metric with only requires IOU of 0.5.

In this more challenging dataset, our SIN achieves 23.2% on

test-dev score, again verifying the advantage of our method.

5. Design Evaluation

In this section, we explore the effectiveness of our

model, including two main modules of using scene contex-

tual information named as Scene and using object relative

relationships named as Edge. Additionally, we conduct in-

depth analysis of the performance metrics of our method.

5.1. Scene Module

In this experiment, only scene contextual information is

considered to update nodes feature. In other words, just a

set of scene GRUs is used in structure inference.

Performance. As shown in Tab. 4, for the simplify to do

ablation study, all methods are trained on VOC 2007 train-

val and test on VOC 2007 test. Scene module achieves a

better mAP of 70.23% compared with baseline on VOC.

Interestingly, it is found that Scene gets a prominent aver-

age precision on some categories including aeroplane, bird,

boat, table, train, tv and so on, especially the average pre-

cision of boat increases by more than 6%. This result is ac-

tually not surprising since one can find that such categories

generally have pretty high correlations with the scene con-

text. For instance, planes and birds are mostly in the sky,

while boats are commonly in the river.

Small, vague or occluded object. To further examine

the differences between baseline and Scene, we look at a

detailed breakdown of results of VOC 2007. We use the de-

tection analysis tool from [20]. Fig. 6 provides a compact

summary of the sensitivity to each characteristic and the po-

tential impact of improving robustness on seven categories

selected by [20]. Overall, our method is more robust than

baseline against occlusion, truncation, area size and part.

Efforts to improve these characteristics are explicit. The

further specialized analysis on area size is shown in Fig.

7. Our method gets a distinct improvement on extra-small

bird, boat and cat category, and achieves better performance

on other size. Besides, the APS of COCO test depicted in

Tab. 5 which represents the performance of small objects

also gets improved compared with baseline.
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box area, aspect ratio, viewpoint, part visibility). Overall APN is

indicated by the dashed line. The difference between max and min

indicates sensitivity. The difference between max and overall in-

dicates the impact. Red: Scene. Green: baseline.
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Baseline: BBox Area

0.94
0.

.99
0.96 0.97

0.43

Figure 7. Sensitivity and Impact of BBox Area on VOC 2007

test. Each plot shows APN [20] with standard error bars (red).

Black dashed lines indicate overall APN . The plot shows the ef-

fects of BBox Area per category. Key: BBox Area: XS=extra-

small; S=small; M=medium; L=large; XL=extra-large. The top

figure is for baseline, and the bottom one is for Scene.

Qualitative results of Scene. Additionally, a couple of

examples of how Scene module can help improve the de-

tection performance are shown in Fig. 8. In the first case,

some boats are mislabeled as car by the baseline of Faster

R-CNN, while our method correctly labeled these vague ob-

jects as boats. In the second case, nothing is detected by

the baseline, however a chair is detected using scene con-

textual information. The third one is a failure case, where

an aeroplane is truly detected in a quite rare situation (on

the river) by the baseline but it is misclassified as a boat

by our model. This sample suggests us further improve our

method to flexibly balance the general cases and rare ones

by weighting the importance of global scene context.
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Table 4. Ablation Study on VOC 2007 test. All methods are trained on VOC 2007 trainval. Baseline: Faster R-CNN our trained. Scene:

only using scene context. Edge: only using object-object relationships.

Method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Baseline 68.79 68.86 77.70 67.52 54.00 53.84 75.98 80.07 79.89 49.31 73.98 65.80 77.15 80.21 76.52 76.88 38.72 66.75 65.48 75.54 71.53

Scene 70.23 70.11 78.38 69.33 60.88 53.09 76.98 79.64 86.01 49.86 75.02 68.00 78.66 80.66 74.70 77.34 41.21 68.28 65.38 76.59 74.47

Edge 70.31 70.08 78.20 67.46 57.64 56.04 78.54 80.02 79.89 51.10 74.12 70.17 77.99 80.58 77.54 77.60 41.07 69.04 68.33 76.20 74.60

Table 5. Ablation Study on COCO test-dev 2015. All meth-

ods are trained on COCO train set. Baseline: Faster R-CNN our

trained. Scene: only using scene context. Edge: only using object-

object relationships.

Method AP AP 50 AP 70 APS APM APL

Baseline 21.1 40.9 19.9 6.7 22.5 32.3

Scene 22.5 43.9 21.1 7.1 24.1 34.9

Edge 22.7 43.3 21.6 7.0 24.2 35.7

(a) mislabeled boats (b) nothing detected (c) an aero with a boat

(d) boats are detected (e) chair is detected (f) only a boat

Figure 8. Qualitative results of Baseline vs. Scene on VOC. In

every pair of detection results (top vs. bottom), the top is based on

baseline, and the bottom is detection result of Scene.

5.2. Edge Module

We evaluate the effectiveness of only Edge module in

this part. Like Scene module, only a set of edge GRUs is

used to direct the nodes updating according to relative ob-

jects. From Tab. 4 and 5, its advantage over the baseline is

again verified.

Localization. To understand the effectiveness of Edge

in more details, we use the detection analysis tool in [20]

again. It is found that most categories have enjoyed more

accurate localization compared with the baseline. Fig. 9

takes two example categories (i.e., aeroplane and bus) to

show the frequency and impact on the performance of each

type of false positive. One can see that the localization error

has been largely decreased. More results are provided in

supplementary material. By further checking the results of

COCO in Tab. 5, the AP 70 improves greatly, which means

that our method provides more accurate results.

Qualitative results of Edge. Comparing qualitative re-

sults between baseline and Edge module, we find a com-

mon type of detection error of Faster R-CNN that one ob-

ject would be detected by two or more boxes labeled as

similar categories, because Faster R-CNN predicts a spe-

cific regression box for each possible category given a can-

aeroplane 
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(a) aeroplane on baseline
aeroplane 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

BG: 3% 
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Sim: 9% 
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Cor: 71% 

 

(b) aeroplane on Edge

bus 

 

 

 

    BG: 7% 
Oth: 3% 

Sim: 9% 

Loc: 11% 

Cor: 70% 

 

(c) bus on baseline
bus 

 

 
 

      
BG: 7% 

Oth: 4% 
Sim: 10% 

Loc: 7% 

Cor: 72% 

 

(d) bus on Edge

Figure 9. Analysis of Top-Ranked False Positives. Pie charts:

fraction of detections that are correct (Cor) or false positive due

to poor localization (Loc), confusion with similar objects (Sim),

confusion with other VOC objects (Oth), or confusion with back-

ground or unlabeled objects (BG). Left: results of the baseline

Faster R-CNN. Right: results of Edge. Loc errors are fewer than

baseline on aeroplane and bus.

didate region. It would record all high score categories with

the specific boxes. Namely, one candidate box would pro-

duce numbers of close detection results. As shown in Fig.

10(a)(c), the multiple box results of one object detected by

baseline are redundant. This kind of errors can be largely

reduced by Edge, due to that object relationships between

those overlapping nodes make them homogenized. Not only

a higher accuracy is achieved, detection results also look

more comfortable by using Edge in Fig. 10(b)(d).

Relative object visualization. As described above in

Sec. 3.3, the input of edge GRU is an integrated mes-

sage from relative nodes for one object. In this part, we

check whether the relative object-object relationship has re-

ally been learned. For this purpose, we visualize object re-

lationship in an image by edges ej→i. For each node vi,

we find the maximum ej→i. If node i and node j are truly

detected objects, we draw a dashed line to concatenate box

i and j to represent that object i and j have a highly corre-

lated relationship. The results are shown in Fig. 11.

5.3. Ensemble

At this moment, we have evaluated the effectiveness of

two key modules. Then we explore how to conduct an ef-
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(a) cars are redundant (b) results of Edge

(c) the sheep is redundant (d) results of Edge

Figure 10. Qualitative results of Baseline vs. Edge on VOC. In

every pair of detection results, the left is based on baseline, and

the right is detection result of Edge.

Figure 11. Relative Object Visualization on COCO. Those ob-

jects connected by red dashed line are most relative. Left: person -

tennis racket & tennis racket - sports ball. Right: person1 - frisbee

& person2 - person3.

Table 6. Performance on VOC 2007 test Using Different En-

semble Ways and Time Steps. All methods are trained on VOC

07 trainval.

Ensemble Way Time Steps mAP

concatenation 2 70.2

max-pooling 2 70.4

mean-pooling 2 70.5

mean-pooling 1 69.8

mean-pooling 3 69.6

fective fusion of the two separated updated hidden state hs

and he of nodes respectively obtained by the modules of

Scene and Edge.

Way of ensemble. We explore three ways to integrate

these two modules, including max-pooling, mean-pooling

and concatenation: Wa[h
s;he]. From Tab. 6, it can be ob-

served that mean-pooling performs the best.

Time steps of updating. We explore the performance

of different numbers of time step. As shown in Tab. 6,

our final model achieves the highest performance at training

with two time steps, and gradually gets worse afterwards.

One possible reason is that the graph can form a close loop

of message communication after 2 time steps. While with

0.0 0.2 0.4 0.6 0.8
score

0.4

0.5

0.6

0.7

0.8

0.9 Pbaseline
Pscene
Pedge
PSIN

Rbaseline

Rscene

Redge

RSIN

Figure 12. PR curves. Legend: solid line: precision curve,

dashed line: recall curve, red: baseline. coral: Scene, green:

Edge, blue: SIN. SIN yields the highest the precision curve, while

at the meantime obtains an almost same recall curve compared

with the baseline.

more than 3 time steps, noisy messages start to permeate

through the graph.

Performance of PR curves. In this part, we detailedly

discuss the performance metrics of our method. At detec-

tion score of [0: 0.1: 0.9], we calculate the global precision

and recall of detection results by baseline, Scene, Edge and

SIN (Scene & Edge). Then we plot the PR curves in Fig. 12.

The results show that SIN is able to reach higher precision

than the baseline and meanwhile performs almost the same

recall, suggesting that when recalling almost the same num-

ber of positive instances, our detection results are fewer and

more accurate. The limited recall rate might be attributed to

the additional relationship constraints which make it more

difficult to detect rare samples in a specific scene e.g. a boat

lies on a street. However, detection results using context

information are more accurate and confident. This obser-

vation exactly manifests the major characteristics of using

context information.

6. Conclusion

In this paper, we propose a detection method to jointly

use scene context and object relationships. In order to effec-

tively leverage these information, we propose a novel struc-

ture inference network. Experiments show that scene-level

context is important and useful for detection. It particularly

performs well on the categories which are highly correlated

with scene context, though rare failure cases might happen

in case of uncommon situations. As to instance-level rela-

tionships, it also plays an important role for object detec-

tion, and it could especially improve object localization ac-

curacy. From our current evaluations on VOC to COCO, it

is believed that our method has great potential to be applied

to larger realistic datasets with more of categories.
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