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Abstract

Important high-level vision tasks require rich semantic

descriptions of objects at part level. Based upon previ-

ous work on part localization, in this paper, we address the

problem of inferring rich semantics imparted by an object

part in still images. Specifically, we propose to tokenize the

semantic space as a discrete set of part states. Our model-

ing of part state is spatially localized, therefore, we formu-

late the part state inference problem as a pixel-wise anno-

tation problem. An iterative part-state inference neural net-

work that is efficient in time and accurate in performance

is specifically designed for this task. Extensive experiments

demonstrate that the proposed method can effectively pre-

dict the semantic states of parts and simultaneously improve

part segmentation, thus benefiting a number of visual un-

derstanding applications. The other contribution of this pa-

per is our part state dataset which contains rich part-level

semantic annotations.

1. Introduction

Recently there has been growing interest in understand-

ing the detailed semantics of images, because important

high-level vision tasks such as human-object interaction,

robotic manipulation and image captioning require object

understanding beyond holistic object recognition. In par-

ticular, rich description of objects at part level is necessary

since interaction among objects are often manifested as con-

tact of the pertinent object parts.

Existing work has almost exclusively focused on part lo-

calization [26]. However, localization of object parts only

scratched the surface of understanding the rich informa-
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tion embodied in encapsulated by the object parts. In fact,

through scrutinizing the visual appearance of object parts,

rich semantic information about a single object and the re-

lationships among multiple objects can be revealed. For

instance, by seeing observing a person’s hand turning the

door knob, we infer that this person may attempt to open

a door and enter a room. Figure 1 gives more examples of

part semantics, ranging from including functionality, geom-

etry relationship, affordance, moment situation (a.k.a fluent

as in [12]), to interaction. We also notice that high-level

semantics on parts are important for robotic manipulation

tasks. For example, affordance and interaction modeling

are explored in [20] and [21] respectively.

This paper makes a significant attempt to advance the

next step: we propose to tokenize the semantic space of

relevant object parts into a discrete set of part state. Specif-

ically, a part of an object is associated with a set of states,

each of which is characterized by a phrase that describes its

semantic meaning.

To implement this idea, we first have to define a vocab-

ulary of part states. We address this issue by resorting to

natural language processing. We collect phrase-level hu-

man descriptions on the relevant object parts in scene im-

ages, specifically, PASCAL VOC 2010 images. Though

simple, these phrase-level descriptions carry rich semantics

(see Figure 1). The description of a particular part is readily

categorized into different discrete groups, where each group

belongs to a part-state with a summarized phrase. Note that

our part state annotations are object-centric, i.e., only the

object containing the part of interest is described by its cat-

egory name, all the other objects are referred to as “some-

thing else”. Figure 2(a) shows an example of part state gen-

eration, and (b) illustrates an example of part states.

There are two desirable features associated with our

part states implementation: semantic tokenization and the
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(a) functionality (b) geometry relationship (c) affordance (d) moment situation (e) interaction

Figure 1: Parts carry rich semantics: functionality, geometry relationship, affordance, moment situation, interaction. Out-of-

the-scope objects are referred to as “sth”, short form for “something else ”.

Figure 2: The pipeline of part state generation for the part door (in the car category). (a) Phrase descriptions from different

annotators for different images, (b) manually summarizing of descriptions into different part states with phrases, (c) a test

image falls onto two part states with indices 2 and 4.

“something else” trick. Due to the small semantic variation

of simple parts, we can measure the semantic space on parts

with rich descriptions, and categorize them into a manage-

able set of semantic tokens, or part states. This leads to a

conventional multi-class labeling problem that can be ob-

jectively evaluated. Therefore, our work is different from

some more complex tasks like image captioning [25], where

each person has different and possibly subjective descrip-

tions on the same visual data. The other feature, which

is termed as the “something else” trick, allows attention to

be paid only on target objects which greatly simplifies the

complex problem. For non-target objects we refer to them

as “something else”. This trick resonates with how infants

learn to grasp an object unseen before [10]. That is, to learn

the main concept “hand grasps something”, we do not need

to learn exactly what that something is. This trick will be

applied in learning our part states, which can avoid a huge

number of semantically redundant part states (e.g. “hand

grasps apple”, “hand grasps orange”, “hand grasps lemon”,

etc).

Computationally, our goal is to predict part states and si-

multaneously correct part localization errors given an object

image. The inherent challenge is that while part state appar-

ently depends on local part information, it is also related to

the holistic object appearance. Therefore, we propose to use

an RGB-S image which concatenates the input RGB image

and its part-segmented image (S). The RGB image provides

holistic object information while the part-segmented image

provides local part information. With the input RGB-S im-

age, we propose an iterative part state inference network

which iteratively optimizes the part-segmented image un-

der the guidance of the part state prior by minimizing the

part state prediction error. Part segment shapes and part

states are closely related to each other and thus a better part

segmentation will lead to less part state prediction error.

To benchmark our performance, we construct a dataset

with pixel-wise part labels and part states, which will be

published alongside with this paper. Extensive experiments

show that our proposed iterative part state inference net-

work produces excellent part state results.

2. Related Work

Holistic object recognition. Conventional object recog-

nition aims at object category labeling given a test image.

Earlier work such as visual word coding [27] uses statis-

tical information of local patches. The deformable part

model, now known as DPM [6] uses part relationship and

part appearance. Deep learning has recently made signif-
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Figure 3: Iterative Part-state Inference Network (ISIN) architecture. The RGB-S image is the input to the part-6 network and

the state network. The current S image (output of the part-6 network) stacked with the input RGB image is the input RGB-S

image to the next iteration.

icant contributions to object recognition. Representative

network architectures include AlexNet [11], VGG [22] and

ResNet [8]. Excellent object detection methods founded

on one of these architectures include RCNN [7] and Faster

RCNN [18]. Object segmentation can be considered as a

special holistic object recognition task [13, 17] which cuts

the object from the background.

Layout of object parts. Object parts layout has been used

to provide sub-object level information. The specific prob-

lem closely related to object parts detection is human pose

estimation [24, 23, 2] where different human parts (e.g.,

head, body, hands, legs) need to be localized. In [4], a

separate representation was respectively proposed for holis-

tic object and body parts, and a fully connected model was

used to optimize their arrangement. The model was applied

to the six animal categories and achieved a better object rep-

resentation performance. In [26], to segment object parts, a

mixture of compositional models was used to represent the

object boundary and the boundaries of the semantic parts.

This compositional model incorporates edge, appearance,

and semantic parts. The above methods localize parts only,

but not in-depth explore semantics on them.

Image Captioning. Our part state can be considered as a

“caption” on the associated part region. Here, we survey a

number of works on image captioning. In [25], a generative

model was presented that is based on a deep recurrent ar-

chitecture. Combining the recent advanced machine trans-

lation techniques, the model was trained to maximize the

likelihood of the target description sentence on the training

images. In [9], inter-modal correspondences were proposed

between language and visual data. To some degree image

captioning explores high-level image semantics. However,

image captions vary from person to person and are difficult

to be objectively measured.

3. Object Part-state Dataset

None of the existing datasets provides the description of

part states, therefore, we build a dataset with part state de-

scriptions for training and benchmarking our learning-based

system. Our part state dataset is built on top of the part lo-

calization dataset from UCLA [26], which provides pixel-

wise part membership annotation on the PASCAL VOC

2010 dataset. We refer to our part state dataset as PASCAL

VOC 2010 Part State Dataset.

Our dataset covers 15 object categories, 104,965 parts

and 856 part states in total, annotated from 19,437 object

images. Some parts, such as eyes and ears, are too small

to detect individually, so we merge them together into one

bigger part with a detectable size, e.g., eyes and ears are

merged to be parts of heads. We have also fixed missing

and wrong annotations. We follow [26] for the training and

testing splits. We asked 15 subjects to annotate the UCLA

part dataset [26] with phrase descriptions without any given

constraints. Then, we manually categorize these raw de-

scriptions into different groups where each group is indexed

by a part state (with a phrase description) according to their

semantic meaning. We ask different subjects to work inde-

pendently. Majority rule is used to resolve different opin-

ions when they arise. Details of part state annotation are

presented in the supplementary file.

To verify the generality of collected part states, we also

ask 8 subjects to label part states (without part segmenta-

tion) in ImageNet. We found that our current part-states

definitions can cover 97.1% cases in the ImageNet dataset

(in the labeled 15 categories) which our dataset collects a

large variety of natural scenes. Additionally, our proposed

description generation scheme is scalable, which can easily

expand the semantic space with more data available.

4. Iterative Part-state Inference Network

In this section, we present the Iterative Part-state Infer-

ence Network (ISIN) to simultaneously predict part states

and part segmentation on object images. The network oper-

ates on a novel RGB-S image format. In the training phase,

we learn a model from images with annotation. In the test-

ing phase, part segments and part states on an RGB image

without annotation are predicted. We learn different models
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for different categories independently. Mathematically, we

use a binary variable to indicate whether a particular part

state exists (i.e., 1 for exist, 0 otherwise). We concatenate

all the binary variables into a “part state vector”. If a part

is missing in an image, the vector is a zero vector. In the

following, we will first introduce the part network block,

and then the RGB-S image and finally detail the iterative

part-state inference network.

4.1. Part Localization Network

This network aims at localizing in a pixel-wise manner

part regions given an object image. Therefore, the prob-

lem can be modeled as semantic segmentation. We denote

the part segmentation networks with input 6 and 3 channels

respectively as Part-6 network and Part-3 network. Specif-

ically, the image input to the part network is of dimension

W×H×F , where W×H are the spatial dimensions of the

object image and F is the number of channels, which can

be 3 or 6. The segmentation solver outputs a W ×H × C

volume, where C is the number of part categories. The ith

layer of the volume is a pixel-wise probability map of the

ith part class. We adopt an end-to-end deconvolution net-

work [17], which is one of the state-of-the-art semantic seg-

mentation solvers, to segment the parts.

4.2. Iterative RGB­S Representation

We stack the input RGB image I (resized to 224× 224)

and its part-segmented image S (with size 224 × 224) to

form an RGB-S image (see examples in Figure 4). We de-

note the RGB-S image as u (with size 224 × 224 × 6). S

is a 3-channel image to indicate the parts in distinct colors.

Recall that the part network outputs C probability maps for

C parts. We linearly map this volume into a 3-channel color

image with a fixed mapping matrix M in R
k×3, where k is

the number of parts. We uniformly sample k colors from

RGB color space to be the rows of M , where k is the num-

ber of object part. In this way, sampled colors are distin-

guishable from each other. Using M , we map in a pixel-

wise manner k-channels probability volume to a 3-channel

one. Each part will be marked as a sampled color in the

mapped S image (named as part image).

In the beginning, the initial part image S1 is obtained by

training a Part-3 network on RGB image . With the initial

RGB-S image u1 = {S1, I}, we iteratively improve the

image by implementing a Part-6 network f(u; Θf ), which

can receive a RGB-S input (224×224×6) where Θf is the

network parameter.

In the ith step, the updating of u can be expressed as

Si−1 = M · f(ui−1; Θf ) (1)

ui = {Si−1; I} (2)

where ui is the RGB-S image in the ith iteration, and M·
is a linear mapping operator over f .

The RGB-S representation encodes both local parts and

holistic object information: the target parts are highlighted

with pixel-wise part shape to let the network look into a par-

ticular part region, while the global object appearance is re-

vealed in the RGB image. Mapping the segmentation score

volume into 3 channels reduces the computation while con-

veying sufficient part information. As shown in Figure 4,

we can visually distinguish different parts in the S image.

4.3. Iterative Joint Learning of Part Segmentation
and Part State

In [3], employing feedback in building predictors is

shown to be effective in handling complex structure (e.g. in

pose estimation), which echoes human visual system where

feedback connections are abounded [5]. Inspired by this,

we employ an iterative scheme to jointly learn part segmen-

tation and part state. Prediction error of the part state can

be considered as a feedback of part segmentation, because

good part segmentation can improve part state prediction.

The part state will in turn help to guide the part segmenta-

tion (e.g., if the keyboard is not used, it should be shaped

like a quadrilateral). Thus, we propose to iteratively refine

part segmentation labeling under the guidance of part states

which encode the knowledge of part appearance. A better

part segmentation will in turn lead to improved part states

as the iterations proceed.

Part-state Guidance Our part state vector is predicted

given an RGB-S image. Denote g(·) as the state network

whose input and output are respectively an RGB-S image

and part state vector. Our problem can be considered as one

of multi-class labeling, so we adopt the VGG network [22]

to solve the problem.

In the ith step, denote the input as ui and the output as

ai. Then, we have

ai = g(ui,Θg) = g({M · f(ui−1,Θf ); I},Θg) (3)

where Θg is the network parameter.

Objective Function In the ith iteration, we jointly min-

imize the two tasks. Given ui−1, the objective function

min{Θg,Θf} Gi(Θg,Θf ) is

N∑

j=0

{l[g((f(uj
i−1),Θf ),Θg), a

j
gt]

+λl[f(uj
i−1,Θf ), s

j
gt]}

(4)

where N is the total number of training samples, u
j
i , a

j
gt

and s
j
gt are respectively the RGB-S image, ground truth part

state vector and part segments of the jth sample; λ = 0.2
is a hyper-parameter that was obtained through grid search
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Figure 4: RGB-S image examples. In each pair, the left is the RGB image and right is S image.

for maximizing the performance on the validation set. The

function l[·] measures the distance in the form of a soft-max

loss error. We iteratively train the model. The stopping

criterion can either be the loss error being smaller than a

certain threshold, or the iteration number exceeding a max-

imum number M = 12. Experimental results in the follow-

ing show that part state prediction is progressively refined

thanks to the improvement of the part segmentation. This

is due to the fact that the network parameter of the previous

iteration makes a good initialization for the network train-

ing in the current iteration. We optimize the cost function

Eq. (4) using stochastic gradient descent (SGD). Typically

the iterative optimization converges in 6–8 iterations.

Given an image, in the testing phase, we iteratively com-

pute the learned f(·) to produce a part segment to form the

RGB-S image. The number of iterations is the same as in

the training phase. In the last step, part state vector is pre-

dicted based on the final RGB-S image by computing g(·).

The Unfolded Architecture We find that our iterative

framework can be unfolded into a sequential architecture

as shown in Figure 6. This unfolded architecture, in fact,

looks similar to a recurrent neural network (RNN) [1, 15].

However, our problem is significantly different from those

solved by conventional recurrent neural network and hence

our resulting architecture is fundamentally different. Firstly,

our data is not sequential and is not well-suited for the RNN.

Secondly, according to the unfolded model in Figure 6, our

S is analogous to the hidden units of RNN, but in RNN, the

hidden units are free in the learning process, while we im-

pose constraints on S to encourage part segment formation.

Nevertheless, for the sake of comparison, we also train

the unfolded architecture. Directly training the sequential

objective function will lead to training a very deep model

which is very time-consuming. So, we train a sub-sequence

Figure 5: The shape of a part segmentation mask is related

with its part state: (a) and (b) “keyboard is being used”,

(c) and (d) “keyboard is not being used”. In (a) and (b),

keyboards are occluded by human hands, thus the occluded

area is excluded from the part segmentation mask.

iteratively. We minimize the objective function involving

the error sum from kth to (k+h)th iterations. The objective

function can be expressed as

min
Θg,Θf

h+k∑

i=k

Gi(Θg,Θf ) (5)

The optimization result uh+k will be used to train the next

round which minimizes the error sum from k + h + 1 to

k + 2h.

Experimentally, the significant extra computation for this

setup only marginally improves the performance comparing

with our proposed iterative framework. One possible ex-

planation is that the iterative architecture is already a good

approximation of this unfolded architecture.

5. Experiments

In this section, we first introduce the evaluation metric

and baseline methods for comparison, followed by present-

ing a discussion. Qualitative experiments will then be de-

scribed. Finally, we apply our part state method on visual

relationship recognition.

5.1. Evaluation Metric

Our task consists of detecting part states with corrected

localization which is analogous to object detection. We re-

visit the typical evaluation metric of object detection: if the

ratio intersection over union (IoU) between the predicted

object box and the ground truth bounding box is larger than

0.5, and that the confidence score in the ground truth cate-

gory is larger than a threshold, then we say this is a correct

detection. By varying the thresholds, we can produce dif-

ferent precisions under different recalls. The average preci-

sions (AP) is used to evaluate the performance.

We adopt this metric to produce a mAP measure that is

reported by the mean APs over all part categories. The only

difference is that the IoU we compute here is based on pixel-

wise segments rather than bounding boxes. We do not use

bounding box since a large number of non-compact parts

simply cannot be accurately delineated using a bounding

box.

5.2. Baseline Methods

The following baseline methods are compared:
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Figure 6: The unfolded network from iterations 1 to M , where PN6 is Part-6 network on the RGB-S image and SN is the

state network. PN3 is Part-3 network on the RGB image.

(a) input (b) iter 1 (c) iter 2 (d) iter 3 (e) iter 4 (f) iter 7 (g) GT

Figure 7: The segmentation map is improved while iterations are in progress. The iteration converges within 6 ∼ 8 “GT” is

ground truth.

Baseline 1: Global-RGB model We directly train a state

network (using the VGG architecture [22]) on the RGB

image to predict the part state vector. The learned

model is named as global-RGB model. In the testing

phase, we produce the part state vector on the input

RGB image directly.

Baseline 2: Local-RGB model We predict part states in

local part regions. We use the part network (training

and testing) on the RGB image to localize parts. Then,

the regions tightly bounding the parts are extracted,

and we implement the VGG network on them to pre-

dict the part state vectors. The learned model is named

as local-RGB model.

Baseline 3: Global+Local RGB model We combine the

previous two baseline models. The parameters of the

last layer of the local-RGB and global-RGB model are

respectively extracted and then concatenated to form

a vector. Binary SVMs are trained on the vectors to

predict the elements of the part state vector.

5.3. Quantitative Evaluation

Table 1 compares the results of the above baseline meth-

ods and our method under different settings:

Setting 1: Implementing one iteration only in the training.

That is, the S image is not iteratively updated.

Setting 2: Learning the model to use our iterative state-part

guided network as described in section 4.

Setting 3: Training the unfolded architecture model with

Eq. (5) (using subsequence length h = 3).

The results of baseline 1 and baseline 2 indicate that it is

insufficient to model only globally (whole object image) or

locally (part regions): to effectively perceive a part we must

consider both the local part appearance and the object con-

text. For baseline 3, although local and global information

are considered, they are not jointly learned, which explains

the performance drop of 7% in mAP when compared with

our method. In contrast, our RGB-S image format can ef-

fectively derive local part regions in the pixel level (S im-

age), while providing the object appearance and its relation-

ship among different parts (RGB image). Furthermore, our

experiments verify that the iterative scheme (setting 2) out-

performs the non-iterative solver (setting 1) by 5%. If we

train on the unfolded architecture Eq. (5), the improvement

is very minor at 0.4%. A possible explanation is that iter-

ative training (setting 2) is already a good approximation.

The drawback of the unfolded architecture (setting 3), how-

ever, is the large computation cost. In short, we recommend

setting 2 for solving this problem, which is a good balance

between effectiveness and computation cost.

5.4. Discussion

Iteration The results in Table 1 shows that the itera-

tive method on RGB-S image outperforms the non-iterative

method. Table 2 tabulates the detail of iterations, where

the mAP and segmentation accuracy in each iteration are

shown. An example of part segmentation during iterations

is shown in Figure 7. Both quantitative results and quali-

tative results (below) demonstrate that our iterative scheme

can indeed improve the performance. The solver is always

nicely converge within 6 ∼ 8 round iterations.
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aero bike bird bottle bus car cat cow dog horse mbike person plant sheep train ave

B1 26.7 10.9 27.0 24.7 30.2 28.0 31.8 24.2 27.3 24.2 28.8 28.9 18.0 26.6 26.4 25.7

B2 29.6 12.5 31.7 26.2 30.8 28.2 31.8 25.0 29.6 26.8 38.4 29.1 23.5 27.8 25.9 27.8

B3 32.4 14.6 34.5 35.4 38.8 39.8 35.9 31.7 32.8 28.8 36.3 32.3 25.1 33.4 32.7 32.3

S1 44.9 15.1 44.3 39.9 56.9 49.4 44.8 38.5 45.8 37.0 43.0 45.6 30.3 42.1 33.1 40.7

S2 52.1 20.1 50.3 39.9 53.5 58.2 44.3 45.2 53.1 38.0 53.5 52.0 37.9 52.4 47.0 46.5

S3 45.2 19.8 50.7 50.1 55.2 59.8 52.9 42.2 42.6 43.2 56.8 55.2 37.5 46.0 46.3 46.9

GT Seg 66.7 25.7 66.7 60.2 75.3 70.6 69.6 57.7 61.0 57.7 72.0 68.9 50.4 61.4 58.5 61.5

Table 1: The mean average precision (mAP) for different object categories on the PASCAL VOC 2010 part state dataset.

Baselines 1,2 and 3 are respectively denoted as B1, B2, and B3. Settings 1,2 and 3 are respectively denoted as S1, S2, and

S3. “GT Seg” means we use ground truth segment image as the part-segmented image (S).

Figure 8: Representative results where the detected part segments and part state on them are illustrated.

Influence of Segmentation We study the case when per-

fect segmentation is available in RGB-S image, which will

effectively eliminate the influence of segmentation error.

Table 1 shows the result in the ‘Seg GT’ row. We find that

even given perfect pixel-wise part localization, we may still

not be able to perfectly predict the correct part states. The

possible explanation is that the semantic meaning conveyed

by the pertinent parts are beyond simple part shape patterns.

5.5. Qualitative Experiments

Figure 8 shows representative part state predictions. We

find that the parts are well segmented and the part states

are quite accurately predicted, although we observe some

imperfect part segmentation (see the torso in Figure 8(c)).

5.6. Relationship Prediction

We apply our part state method on visual relationship

recognition. We use the visual relationship dataset [14]

which includes object-pairs relationship annotation, such as

“person holds cup”. We select the relationships where each

object-pair contains at least one object in our 15 categories.

After manual refinement, we have 6429 object-part relation-

ships (5000 for training, 1425 for testing) which include 31

predicate types, such as “hold”, “push” and “under”. We

found giving two object names alone is limited to infer their

relationship. We should look into part level to further judge.

Solution with Part State. The part state vectors capture

rich and explicit relationship information. For instance, if

the part state bin for “hand holds something” is 1 and some-

thing is detected as a cell phone, it is straightforward to de-

rive the relationship is “person holds phone”. Therefore, we

can extract part state vectors as feature vectors. To unify the

feature length, we pad zeros for vectors with length smaller

than 72, where 72 is the maximum vector length among the

15 object categories. Then, SVM is applied to the concate-

nated part state vector of two objects. We combine our SVM

score with the score of [14] by simply averaging them as fi-

nal relationship prediction score.

Baselines. For baseline 1, we use visual phrase recogni-

tion [19] to classify the relationships. For baseline 2, we

follow [22] to jointly learn object and relationship in a uni-

fied CNN. For baseline 3, we adopt the conventional com-

puter vision scheme: concatenate the CNN feature from
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Iteration #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12
mIoU 57.6 60.8 62.0 63.6 65.4 67.1 70.1 70.8 71.2 71.3 71.2 71.3

mAP 40.7 41.6 42.5 43.3 44.0 44.8 45.6 45.9 46.2 46.3 46.3 46.5

Table 2: Average part state mAP (second row) and segmentation accuracy (mean IoU) of part categories (first row) of as

iterations are proceeding.
Phrase Det. Relationship Det. Predicate Det.

R@100 R@50 R@100 R@50 R@100 R@50

[19] 0.05 0.04 - - 1.82 0.92

[22] 0.09 0.06 0.08 0.07 1.94 1.36

B3 9.42 8.91 9.04 7.85 36.15 36.15

[14] 16.32 15.80 13.01 12.48 44.19 44.19

Ours 25.37 24.80 26.13 24.48 53.50 53.50

Table 3: Results of visual relationship detection. Note that the dataset we use is different from the one used in [14]. Here,

[19], [22] and B3 respectively refer to baseline 1, 2 and 3. We use the relationships with at least one object in our 15

categories. R@100 and R@50 are respectively the abbreviations for Recall @ 100 and Recall @ 50. Note that in predicate

det., we are predicting multiple predicates per image (one between every pair of objects) and hence R@100 is less than 1.

Figure 9: An example of relationship prediction. BL1 is

baseline 1 (visual phrase), BL2 is baseline 2(Joint CNN),

BL3 is baseline 3 (vision-language prior) and Lu et al.

refers to [14]. “GT” is the ground truth. The part state at

hand is correctly detected by the proposed method.

VGG [22] and the word-vector [16] (language prior) of two

objects to form a baseline feature. Then, we use SVM to

classify the relationship types. Approach of [14] is taken

as the fourth baseline.

Results. The result is tabulated in Table 3, where we fol-

low the convention recall @ 100 and recall @ 50 in [14].

Recall @ x computes the fraction of times the correct re-

lationship is predicted in the top x confident relationship

predictions. The first and second baselines do not have a

language prior. For baseline 3 and [14], the language prior

improves performance. However they preform at the holis-

tic object level. In contrast, our method which incorporates

part level information significantly advances 12 mAP the

detection performance.

Analysis. Object relationship is a higher level concept

than holistic objects, and our part state encodes richer in-

formation such as interaction, affordance and functionality.

Our method shows good promise and we believe more pow-

erful tools based on part states can be explored. Figure 9

demonstrates an example: given the complex concept of

“hold” the holistic object-level appearance is not sufficient,

so we should look into the key part region – hand.

6. Conclusion and Future Work

We have presented part state to tokenize the seman-

tic space of object parts and explore richer semantic in-

formation for image understanding. With the proposed it-

erative part-state inference Network operating on RGB-S

representation, we can iteratively improve part state pre-

diction. Extensive experiments have demonstrated the pro-

posed method outperforms various baseline methods. Our

part state can be applied to object relationship prediction

and very promising results are obtained.

One limitation is that the model we trained is not class-

agnostic. That is, we cannot use a unified model for

all categories. The difficulty in training a unified, class-

agnostic model stems from the fact that the output part

states for different categories vary largely among each other.

We find about 8% mAP performance drop if the model

is trained without category consideration. Future work is

therefore to learn a unified model without significant perfor-

mance degradation in comparison to independently-learned

category-specific models. The other limitation is that we

still have no theoretical stopping criterion on iterations. We

will also perform a principled study of the unfolded model

to explain its incremental improvement in comparison to the

iterative model.
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